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Abstract

This paper investigates the problem of designing a deterministic system matrix, that is
measurement matrix, for sparse recovery. An efficient greedy algorithm is proposed in order
to extract the class of sparse signal/image which cannot be reconstructed by ℓ1-minimization
for a fixed system matrix. Based on the polytope theory, the algorithm provides a geometric
interpretation of the recovery condition considering the seminal work by Donoho. The paper
presents an additional condition, extending the Fuchs/Tropp results, in order to deal with
noisy measurements. Simulations are conducted for tomography-like imaging system in which
the design of the system matrix is a difficult task consisting of the selection of the number of
views according to the sparsity degree.
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philippe.ricoux@total.com.

1



1 Introduction

The main goal of compressed sensing is to design a system matrix A ∈ R
M×N with M < N

for which every s-sparse signals x ∈ R
N can be recovered from the observations y = Ax. The

sparsity degree s denotes the number of nonzero components in the signal. The considered problem
may include an additive perturbation that leads to an observation vector y = Ax + n where
n ∈ R

M . The objective of designing a system matrix involves to specify the smallest number M
of required observations we need as well as the way to acquire them (e.g. random sampling or
regular sampling). Moreover, we have to recall that this design will be obviously dependent on the
sparsity degree s and of the signal size N .

The classical approach to look for some sufficiently sparse solution consists to solve:

x̂ ∈ Argmin
x∈RN

‖x‖1 subject to ‖y −Ax‖2 ≤ ǫ, (1)

where ǫ > 0 and the ℓ1-norm is formally defined as, for every x = (xi)1≤i≤N ∈ R
N , ‖x‖1 =∑N

i=1 |xi|. Numerous algorithms have been proposed to solve problem (1) or its Lagrangian for-
mulation [1, 2, 3, 4]. By making use of the ℓ1/ℓ0-equivalence guarantees, the latest non-smooth
convex optimization techniques propose a specific framework to exactly recover sparse signals by
ℓ1-minimization.

The main theoretical results about sparse recovery by ℓ1-minimization are briefly recalled below.
On the one hand, sufficient conditions were proposed by:

• Donoho and Huo [5] with the concept of coherence for a matrix A. This allows us to char-
acterize ℓ1/ℓ0-equivalence and thus leads to x = x̂,

• Candès et al. [6] through the restricted isometry property (RIP) onto A to establish that
x = x̂,

• Fuchs [7] and Tropp [8] using first order necessary condition and then the subdifferential of
the ℓ1 norm in order to prove that x = x̂.

Note that these sufficient conditions can include robustness to noise. On the other hand, Donoho
gives a necessary and sufficient condition based on polytope theory [9] to prove that x = x̂. Its
dual interpretation is known as the null space property.

Apart from the coherence property proposed in [5], these theoretical results require NP-hard
computations to test their validity. Normalized random system matrices have been largely studied
in the compressed sensing literature in order to simplify the recovery conditions. Indeed, such an
assumption onto the system matrix enables to control the associated eigenvalue distribution and
thus to obtain an explicit relation between the observation number M , the signal/image size N ,
and the sparsity degree s. However, such a relation does not exist for deterministic matrices such
those encountered in tomography applications. Until now, in order to design the system matrix
for a specific sparsity degree, it seems that most of the existing works dealing with a deterministic
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context have introduced some randomness in their formulation in order to justify the good results
obtained from ℓ1-minimization [10, 11, 12].

In this work we propose a greedy algorithm based on Donoho results [9] in order to extract the
class of sparse signals which cannot be reconstructed by ℓ1-minimization for a fixed system matrix.
A consequence will be to extract an approximation of the largest sparsity degree s allowing us to
recover every s-sparse vectors by ℓ1-minimization based on a given deterministic matrix A.

The paper is organized as follows. Section 2 details a greedy algorithm designed by Dossal et al.
[13] which initially considers neighborly condition of a polytope associated with a random matrix.
Section 3 presents the adaptation of this greedy algorithm in order to deal with a deterministic
matrix and details how to extract the approximation of the sparsity degree s that allows us to
recover every s-sparse signal by ℓ1-minimization. The way to integrate robustness to noise in the
sparsity extraction is also presented. Finally, Section 4 illustrates the performance of the algorithm
in a context of tomography.

2 Polytope theory for sparse recovery

2.1 Theoretical results

In [9], Donoho describes the ℓ1/ℓ0-equivalence by considering ideas from the convex polytope the-
ory. In this work, Donoho introduced a necessary and sufficient condition based on the neighborly
property of a polytope.

Definition 2.1 For every i ∈ {1, . . . , N}, let ai denote the i-th column of A. The quotient
polytope associate to A is formed by taking the convex hull of the 2N points (±ai) in R

M . A
polytope P is called (s-1)-neighborly if every subset of s elements (±iℓaiℓ)

s
ℓ=1 are the vertices of a

face of P .

An illustration of a polytope P is provided in Figure 1(a) for N = 3 and M = 2. In this
example, it appears that P has 2N = 6 vertices and is 0-neighborly but not 1-neighborly (e.g.
(a1, a3) does not span a face of P ).

Theorem 2.2 [9, Theorem 1] Let A be a M ×N matrix with M < N . These two properties of A
are equivalent:
(i) The quotient polytope P has 2N vertices and is (s-1)-neighborly;
(ii) Whenever y = Ax has a solution x having at most s nonzeros, x is the unique optimal solution
of the ℓ1-minimization problem.
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Figure 1: Illustration relative to the polytope formed by taking the convex hull of the 2N points
(±ai) in R

M .

2.2 Greedy algorithm to extract vectors inside the polytope for random ma-

trices

The geometric interpretation of Donoho was considered by Dossal et al. [13], in a context of
normalized random matrices, in order to extract non-ℓ1-identifiable vectors.

Regarding Theorem 2.2, a non-ℓ1-identifiable vector denotes a vector x ∈ R
N with a support

I for which the image of the ℓ1-ball associated to the support I is inside the polytope. In other
words, non-ℓ1-identifiable vectors have a small distance from the center of the polytope to the
hyperplane Hx (hyperplane going through {sign(xi)ai}i∈I where I ⊂ {1, . . . , N}). This distance
[13, Proposition 1], illustrated in Figure 1(b), is 1/Dx where

Dx = ‖d(x)‖2 with

{
d(x) = AI(A

∗
IAI)

−1 sign(xI),

AI = (ai)i∈I .

In Figure 1(b), we can notice that (a1,−a2) does not span a face of P and has a large Dx while
(a1,a2) spans a face of P and has a smaller value of Dx.

It results that looking for non-ℓ1-identifiable vectors leads to search vectors x with the largest
measure Dx. Consequently, Dossal et al. [13] have proposed an algorithm allowing to extract
sparse vectors with the largest Dx.

The greedy algorithm proposed by Dossal et al. [13] is recalled in Algorithm 1 and the associated
complexity is evaluated in Proposition 2.3.

Algorithm 1 constructs a set of s-sparse vectors with the largest Dx values. At each iteration,

the new set of non-identifiable k-sparse vectors Σ
(k)
max is built from the previous vector set Σ

(k−1)
max

(e.g. set of vectors with a sparsity degree k − 1). It results that each step looks for the k-sparse

vectors x̃ such that x̃ = x+o∆i where x denotes a (k-1)-sparse vector from Σ
(k−1)
max , o ∈ {−1,+1} and

∆i is a Dirac vector at the location i. In Algorithm 1, the notation argmax[R] (resp. argmax[Q])
involves to keep the R indexes and signum which lead to the maximum ‖d(x + o∆i)‖2 (resp. the
Q vectors which lead to the maximum ‖d(x)‖2).
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Algorithm 1 [13] - Extract sparse vectors with the large Dx.

Set the pruning rate Q and the extension rate R,
Set the sparsity degree S,

Set Σ
(1)
max = {∆1, . . . ,∆N},

For k = 2, . . . , S

Σmax = ∅,

For every x ∈ Σ
(k−1)
max

(Î , Ô) = argmax[R]

i/∈I(x);o∈{−1,+1}
‖d(x+ o∆i)‖2

For j ∈ {1, . . . , R}

⌊ Σmax = Σmax ∪ {x+ Ôj∆Îj
}

Set Σ
(k)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

Proposition 2.3 The iteration complexity of Algorithm 1 is

O
(
2Q(N − k + 1)(N(k + 1) + k3)

)
≪ O(CN

k ).

Regarding Proposition 2.3, it appears that the computational cost of each iteration is too high
to be used in real experiments. However, it is possible to write [13, Proposition 4]:

‖d(x̃)‖22 = ‖d(x)‖22 + ‖ãi‖
2
2| 〈d(x), ai〉 − o|2 (2)

where x denotes a k-sparse vector with the support I, o ∈ {−1,+1}, x̃ denotes a (k+1)-sparse
vector with the support I ∪ {i}, and ãi ∈ Span (aj , j ∈ I ∪ {i}) such that 〈ãi, ai〉 = 1, and, for
every j ∈ I, 〈ãi, aj〉 = 0. Note that 〈·, ·〉 denotes the scalar product. An illustration of ãi is given
in Figure 1(c). An accelerated version of Algorithm 1 for random matrices was proposed in [13]
by making the assumption that ‖ãi‖2 is close to 1. In the next section, we refer to this accelerated
version by Algorithm 1bis.

3 Evaluate sparsity in a deterministic context

In some real applications such as tomographic imaging, the inversion problem issue does not
involve a random system matrix. Thus, an interesting question is how to get such an efficient
algorithm considering a deterministic matrix. Moreover, it can be noticed that the polytope
theory proposed by Donoho is not adapted to the noisy case. Another natural question is how
to introduce robustness to noise. In this section, an adaptation of Algorithm 1 in a deterministic
context is proposed and the noisy case is handled via the derivation of a new criterion based on
Fuchs/Tropp theorems [7, 8] .

3.1 Adaptation of Algorithm 1 to deterministic matrices

For deterministic matrices, the accelerated version of Algorithm 1 can no longer be used due to
the fact that ‖ãi‖2 cannot be discarded. However, in order to reduce the computational cost of
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Algorithm 1 (stated in Proposition 2.3), we consider Equation (2) and give the closed form of
‖ãi‖2.

Proposition 3.1 Let ãi ∈ Span (aj , j ∈ I ∪ {i}) and such that 〈ãi, ai〉 = 1 and 〈ãi, aj〉 = 0, for
every j ∈ I. It results that

ãi =
ai −AI(A

∗
IAI)

−1A∗
Iai〈

ai, ai −AI(A∗
IAI)−1A∗

Iai
〉 . (3)

The computation of d(x̃) can thus be expressed as a function of d(x) and ãi. For each sparsity
degree k in Algorithm 1, this expression leads to the computation of Q matrix inversions of size
(k− 1)× (k− 1) rather than Q× (N − k) matrix inversions of size k× k. The proposed algorithm
is detailled in Algorithm 2 and the associated computational cost is specified in Proposition 3.2.

Algorithm 2 Accelerated version of Algorithm 1 for deterministic matrices.

Set the pruning rate Q and the extension rate R,
Set the sparsity degree s,

Set Σ
(1)
max = {∆1, . . . ,∆N},

For k = 2, . . . , s

Σmax = ∅,

For every x ∈ Σ
(k−1)
max

Compute the matrix inversion involved in (3)

(Î , Ô) = argmax[R]

i/∈I(x);
o∈{−1,+1}

‖d(x)‖22 + ‖ãi‖
2
2| 〈d(x), ai〉 − o|2

For j ∈ {1, . . . , R}

⌊ Σmax = Σmax ∪ {x+ Ôj∆Îj
}

Set Σ
(k)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

Proposition 3.2 The iteration complexity of Algorithm 2 is

O
(
Q(N(k − 1) + (k − 1)3) + 2Q(N − (k − 1))(N(k + 4))

)

≪ O
(
2Q(N − k + 1)(N(k + 1) + k3)

)

In Figure 2, we compare the original algorithm (Algorithm 1), the accelerated version of this
algorithm designed for random matrices (Algorithm 1bis), and the proposed accelerated version
devoted to the deterministic matrices (Algorithm 2). The evaluation of the proposed algorithm is
presented both in a context of random matrix and of tomography, i.e. A denotes either a Radon
transform (this matrix is obtained with the MATLAB implementation of the Radon transform)
where N = 20 × 20 and M = 198 (that corresponds to 4 angles) or a random matrix of the
same size. We compare these algorithms in terms of computation time and of maximum extracted
Dx values. The pruning rate Q and the extension rate R are fixed to Q = N and R = 1. It
appears that in a deterministic context (bottom figures), the extraction performances (i.e. find
sparse vectors with large Dx) of Algorithm 2 are similar to those of Algorithm 1 with a much
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better convergence rate while the extraction performance are better than the accelerated version
considering Algorithm 1bis. However, note that in a random context (top figures), the proposed
approach leads to smaller improvements. To sum up, these results illustrate the relevance of the
proposed algorithm in order to easily handle deterministic matrices with higher dimensionality.

3.2 Extract sparsity with Algorithm 2

Considering the tomography-like experiment detailed above, we present in Figure 3 the reconstruc-
tion results obtained by ℓ1-minimization for vectors with large Dx considering different sparsity

degrees (i.e. vectors in Σ
(k)
max). We also present the obtained reconstruction vectors with small Dx

that require to compute the “minimum version of Algorithm 2” (i.e. vectors choose in Σ
(k)
min). In

these experiments the ℓ1-minimization algorithm is FISTA [3] and the stopping criterion takes in
consideration the evolution of the relative error between x and x̂ (< 10−10) as well as the iteration
number (< 106).

Algorithm 2 allows us to extract k-sparse vectors with the largest value of Dx. It results that

if the vector x ∈ Σ
(k)
max having the largest Dx value cannot be recovered by ℓ1-minimization, a

good approximation of the sparsity degree s for which every s-sparse vectors can be

reconstructed by ℓ1-minimization from z = Ax is the largest s < k.

3.3 Noisy case

We have mentionned in the introduction that Fuchs [7] and also Tropp [8] proposed a sufficient
condition in order to recover sparse vectors by ℓ1-minimization. Contrary to Theorem 2.2, this
condition is not a necessary condition but it has the nice property that it can be extended in
order to take into account the robustness w.r.t noise. Here, we propose a new result inspired by
Fuchs/Tropp result which allows us to easily control the reconstruction error in the noisy case.

Proposition 3.3 Let I ⊂ {1, . . . , N} denote a set of index such that |I| = s and let J =
{1, . . . , N} \ I . Let

ERC(I) = max
j∈J

‖(A∗
IAI)

−1A∗
Iaj‖1. (4)

We assume that:
1) ERC(I) < 1,

2) γ >
maxj∈J ‖aj‖2‖n‖2

1−ERC(I) .

Then, it results that the support of the solution x̂ of

argmin
x∈RN

1

2
‖y −Ax‖22 + γ‖x‖1, (5)

is included in the support of x and

‖x̂− x‖2 ≤
(
λmin(A

∗
IAI)

)−1

(
‖A∗

In‖2 +

√
|I|maxj∈J ‖aj‖2‖n‖2

1− ERC(I)

)
. (6)
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4 Experimental results

We consider a problem of few angle tomography for sparse data. It appears that some industrial
materials which requires to be studied through a tomographic process exhibit sparsity properties.
The goal of this experiment is to design the system matrix (i.e. find the adapted number of views)
according to a given sparsity degree.

The system matrix A is associated to a Radon tranform. The MATLAB implementation makes
it possible to select the number and the location of the polar angles (between 0o and 180o). In
this experiment we fix the angle between two views. The experiments have been held for images
of size N = 32 × 32. Algorithm 2 is successively employed with a system matrix associated to 6
view angles (M = 294), 9 view angles (M = 441), and 12 view angles (M = 588). Moreover, due
to the positivity of the data, o = +1 in Algorithm 2.

In Table 1, we evaluate the sparsity degree allowing us to recover every sparse vectors. The
first row details the state-of-the-art results related to the coherence [7] such that:

s <
1

2

(
1 +

1

µ(A)

)
where µ(A) = max

< ai, aj >

‖ai‖22‖aj‖
2
2

.

The second row presents the approximated value of the sparsity degree extracted by considering
the proposed approach described in Section 3.2.

In Table 2, we evaluate the sparsity degree allowing us to recover every sparse vectors in the
noisy case. We have filled in the table in considering Proposition 3.3 where I denotes the support

of the vector x ∈ Σ
(s)
max, extracted with Algorithm 2, with the largest Dx. The values of ‖A∗

In‖2
and ‖n‖2 are obtained by a Monte-Carlo process with 100 realizations of a vector n ∼ N (0, σ2).
The robustness to noise expressed by Proposition 3.3 requires to insure the convergence inside the
support. This is a strong condition and it explains why the extracted sparsity is small compare to
the results presented in Table 1.

5 Conclusion

We propose an efficient method to upper bound the sparsity degree s for which every s-sparse
vectors can be reconstructed by ℓ1-minimization according to a specific system matrix. Such a
value is important to know in a context where we want to be sure that ℓ1-minimization leads to
the exact true sparse solution or, in presence of noise, to a solution for which we control the error.

Note that the proposed method does not directly give a relation between the sparsity and the
size of the matrix but one might construct it by considering system matrices A with different sizes.

In a future work, a parallel implementation will be done in order to extract the sparsity degree
for real tomography matrices. Moreover, we should notice that this approach can be considered for
various contexts in inverse problems such as restoration or inpainting, and also in the case where
A models the product of the system matrix with a frame transform.
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Figure 2: Algorihm 1 (solid black), Algorithm 1bis (dash-dotted blue), Algorithm 2 (dash-dotted
red). The bottom figures present the results obtained with a tomography-like matrix while the top
figures illustrate the results for a normalized random matrix.

6 views 9 views 12 views
(M = 294) (M = 441) (M = 588)

Sparsity
(Coherence) 2 3 5

Sparsity
(Proposed method) 39 120 144

Table 1: Sparsity s allowing us to recover every s-sparse vectors by ℓ1-minimization in the absence
of noise consideration. The second row presents the approximation of the sparsity obtained with
the proposed approach. Results for three different configurations of the tomography-like matrix
A.
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