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Proximal algorithms for multicomponent image recovery

problems ∗

L. M. Briceño-Arias†, P. L. Combettes‡, J.-C. Pesquet§, N. Pustelnik¶.

May 28, 2013

Abstract

In recent years, proximal splitting algorithms have been applied to various monocomponent

signal and image recovery problems. In this paper, we address the case of multicomponent prob-

lems. We first provide closed form expressions for several important multicomponent proximity

operators and then derive extensions of existing proximal algorithms to the multicomponent set-

ting. These results are applied to stereoscopic image recovery, multispectral image denoising, and

image decomposition into texture and geometry components.

1 Problem statement

In this paper, we consider signal and image recovery problems in which the ideal solution is repre-
sented by m components x1, . . . , xm lying, respectively, in real Hilbert spaces H1, . . . , Hm. Such
problems arise in many areas ranging from color and hyperspectral imaging to multichannel signal
processing and geometry/texture image decomposition [2, 4, 5, 6, 7, 12, 23, 25, 29, 30, 40, 43, 46].
Oftentimes, multicomponent signal/image processing tasks can be formulated as variational prob-
lems of the form

minimize
x1∈H1,..., xm∈Hm

Φ(x1, . . . , xm), (1)

where Φ is a convex function modeling the available information on the m components, their
interactions, and, possibly, the data acquisition process.
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The abstract convex minimization problem (1) is usually too generic to be solved directly and
it must be formulated in a more structured fashion to be amenable to efficient numerical solution.
To this end, Φ can be decomposed as a sum of p functions that can be handled individually more
easily. This leads to the following model, which will be the focus of the paper.

Problem 1.1 Let (Hi)1≤i≤m be real Hilbert spaces, and let (fk)1≤k≤p be proper lower semicon-
tinuous convex functions from the direct Hilbert sum H1 ⊕ · · · ⊕ Hm to ]−∞,+∞]. The problem
is to

minimize
x1∈H1,..., xm∈Hm

p∑

k=1

fk(x1, . . . , xm), (2)

under the assumption that solutions exist.

In the case of univariate (m = 1) signal processing problems, proximal methods have been
successfully used to solve (2); see [17, 19, 21] for basic work, and [20] and the references therein for
a variety of applications. It is therefore natural to ask whether these methods can be extended to
the multivariate case. Initial work in this direction was carried out in [10] in the special instance
when m = 2, f1 is a separable sum (i.e., f1 : (xi)1≤i≤m 7→∑m

i=1 ϕi(xi)), and f2 is differentiable on
H1 ⊕ · · · ⊕ Hm with a Lipschitz continuous gradient (this setting also covers formulations found
in [4, 5, 6, 21, 26, 27, 41, 42, 46]). The objective of our paper is to address the general case and
to present several proximal algorithms with guaranteed convergence to a solution to Problem 1.1
under suitable assumptions.

The paper is organized as follows. In section 2, the main notation used in the paper is in-
troduced. Proximity operators will be an essential ingredient in the multicomponent algorithms
proposed in the paper. They are briefly reviewed in section 3, where we also provide new re-
sults concerning multicomponent proximity operators. In section 4, we describe proximal splitting
algorithms which are pertinent for solving Problem 1.1. Finally, in section 5, we illustrate the
effectiveness of the proposed algorithms in three multicomponent imaging examples.

2 Notation

Throughout, H, G, and (Hi)1≤i≤m are real Hilbert spaces. For convenience, their scalar products
are all denoted by 〈· | ·〉, the associated norms by ‖ · ‖, and their identity operators are all denoted
by Id . It will be convenient to denote by x = (xi)1≤i≤m a generic element in H1 × · · · × Hm, and
by H the direct Hilbert sum H1 ⊕ · · · ⊕ Hm, i.e., the product space H1 × · · · × Hm equipped with
the usual vector space structure and the scalar product

(x,y) 7→
m∑

i=1

〈xi | yi〉. (3)

The space of bounded linear operators from H to G is denoted by B (H,G). Moreover, Γ0(H)
denotes the class of lower semicontinuous convex functions ϕ : H → ]−∞,+∞] which are proper in
the sense that

domϕ =
{
x ∈ H

∣∣ ϕ(x) < +∞
}
6= ∅. (4)
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Let C and D be nonempty convex subsets of H. The indicator function of C is

ιC : x 7→
{
0, if x ∈ C;

+∞, if x /∈ C.
(5)

If C is closed, for every x ∈ H, there exists a unique point PCx ∈ C such that ‖x − PCx‖ =
infy∈C ‖x− y‖; PCx is called the projection of x onto C. We say that 0 lies in the strong relative
interior of C, in symbol, 0 ∈ sriC, if

⋃
λ>0 λC = spanC. In particular, if we set C − D ={

x− y
∣∣ (x, y) ∈ C ×D

}
, the inclusion 0 ∈ sri(C −D) holds in each of the following cases:

• C −D is a closed vector subspace.

• 0 ∈ int(C −D).

• C ∩ intD 6= ∅.

• H is finite dimensional and (riC) ∩ (riD) 6= ∅, where riC denotes the relative interior of C,
i.e., its interior relative to its affine hull.

General background on convex analysis will be found in [8, 47].

3 Proximity operators

3.1 Definition and properties

For a detailed account of the theory of proximity operators, see [8] and the classical paper [33].

Let ϕ ∈ Γ0(H). For every x ∈ H, the function

y 7→ ϕ(y) +
1

2
‖x− y‖2 (6)

has a unique minimizer, which is denoted by proxϕ x and characterized by the variational inequality

(∀p ∈ H) p = proxϕ x ⇔ (∀y ∈ H) 〈y − p | x− p〉+ ϕ(p) ≤ ϕ(y). (7)

The proximity operator proxϕ of ϕ thus defined is nonexpansive, i.e.,

(∀x ∈ H)(∀y ∈ H) ‖proxϕ x− proxϕ y‖ ≤ ‖x− y‖. (8)

Example 3.1 Let C be a nonempty closed convex subset of H. Then proxιC = PC .

Other closed-form expressions for the proximity operators can be found in [3, 10, 14, 17, 18, 21,
33].

Lemma 3.2 [17, Proposition 11] Let ψ ∈ Γ0(G), let L ∈ B (H,G), and set ϕ = ψ ◦ L. Suppose
that L ◦ L∗ = α Id , for some α ∈ ]0,+∞[. Then ϕ ∈ Γ0(H) and

proxϕ = Id +
1

α
L∗ ◦ (proxαψ − Id ) ◦ L. (9)
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3.2 Multicomponent proximity operators

The computation of proximity operators in the Hilbert direct sum H will play a fundamental role
in the next sections. Below, we provide some important situations in which this computation is
explicit.

Proposition 3.3 Suppose that, for every i ∈ {1, . . . ,m}, (ei,k)k∈K is an orthonormal basis of Hi.
Furthermore, let (φk)k∈K be functions in Γ0(R

m) and suppose that one of the following holds.

(i) For every i ∈ {1, . . . ,m}, Hi is infinite dimensional and, for every k ∈ K, φk ≥ φk(0) = 0.

(ii) For every i ∈ {1, . . . ,m}, Hi is finite dimensional.

Set

f : H → ]−∞,+∞]

x 7→
∑

k∈K

φk
(
〈x1 | e1,k〉, . . . , 〈xm | em,k〉

)
. (10)

Then f ∈ Γ0(H) and, for every x ∈ H,

proxf x =

(
∑

k∈K

π1,ke1,k, . . . ,
∑

k∈K

πm,kem,k

)
, (11)

where
(∀k ∈ K) (π1,k, . . . , πm,k) = proxφk

(
〈x1 | e1,k〉, . . . , 〈xm | em,k〉

)
. (12)

Proof 3.4 Let us set, for every k ∈ K,

ψk : H → ]−∞,+∞]

x 7→ φk
(
〈x1 | e1,k〉, . . . , 〈xm | em,k〉

)
. (13)

Then our assumptions imply that the functions (ψk)k∈K are in Γ0(H). Under assumption (i),
assuming without loss of generality that K = N, we can write f = supK∈K

∑K
k=0 ψk. Since lower

semicontinuity and convexity are preserved under finite sums and taking suprema, it follows that f
is lower semicontinuous and convex. In addition, since f(0) = 0, we obtain f ∈ Γ0(H). On the
other hand, under assumption (ii), the sum in (10) is finite and our assumptions imply at once
that f ∈ Γ0(H).

Now let x ∈ H and denote the Euclidean norm on R
m by | · |. Set

(∀i ∈ {1, . . . ,m})(∀k ∈ K) ξi,k = 〈xi | ei,k〉. (14)

Moreover, for every i ∈ {1, . . . ,m}, let yi ∈ Hi and set (ηi,k)k∈K = (〈yi | ei,k〉)k∈K. We derive from
(12) and (7) that, for every k ∈ K,

m∑

i=1

(ηi,k − πi,k)(ξi,k − πi,k) + φk(π1,k, . . . , πm,k) ≤ φk(η1,k, . . . , ηm,k). (15)
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Let us first assume that (i) holds. For every k ∈ K observe that, since 0 is a minimizer of φk, (7)
yields proxφk 0 = 0. Hence, using (12), (14), (8), and Parseval’s identity, we obtain

∑

k∈K

m∑

i=1

|πi,k|2 =
∑

k∈K

|(π1,k, . . . , πm,k)|2

=
∑

k∈K

|proxφk(ξ1,k, . . . , ξm,k)|
2

=
∑

k∈K

|proxφk(ξ1,k, . . . , ξm,k)− proxφk 0|
2

≤
∑

k∈K

|(ξ1,k, . . . , ξm,k)− 0|2

=
∑

k∈K

|(ξ1,k, . . . , ξm,k)|2

=
∑

k∈K

m∑

i=1

|ξi,k|2

=
m∑

i=1

‖xi‖2. (16)

Therefore, (∀i ∈ {1, . . . ,m}) ∑k∈K |πi,k|2 < +∞. Consequently, we can define

(∀i ∈ {1, . . . ,m}) zi =
∑

k∈K

πi,kei,k, (17)

which is equally well defined under assumption (ii) as K is then finite. It remains to show that
(zi)1≤i≤m = proxf (x1, . . . , xm). Summing over k in (15) yields

∑

k∈K

m∑

i=1

(ηi,k − πi,k)(ξi,k − πi,k) +
∑

k∈K

φk(π1,k, . . . , πm,k) ≤
∑

k∈K

φk(η1,k, . . . , ηm,k) (18)

and, therefore,
m∑

i=1

〈yi − zi | xi − zi〉+ g(z1, . . . , zm) ≤ g(y1, . . . , ym). (19)

In view of (7), the proof is complete. �

Proposition 3.5 For every j ∈ {1, . . . , q}, let Gj be a real Hilbert space, let ϕj ∈ Γ0(Gj), and, for
every i ∈ {1, . . . ,m}, let Lj,i ∈ B (Hi,Gj). Set

f : H → ]−∞,+∞]

x 7→
q∑

j=1

ϕj

( m∑

i=1

Lj,ixi

)
(20)

and suppose that, for every j ∈ {1, . . . , q}, there exists αj ∈ ]0,+∞[ such that

(∀k ∈ {1, . . . , q})
m∑

i=1

Lj,i ◦ L∗
k,i =

{
αj Id , if j = k;

0, otherwise.
(21)
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Then f ∈ Γ0(H) and, for every x ∈ H,

proxf x = (p1, . . . , pm) (22)

where, for every i ∈ {1, . . . ,m},

pi = xi +

q∑

j=1

α−1
j L∗

j,i proxαjϕj

( m∑

k=1

Lj,kxk

)
−

q∑

j=1

α−1
j L∗

j,i

m∑

k=1

Lj,kxk. (23)

Proof 3.6 Let us denote by G the product space G1 × · · · × Gq equipped with the usual vector space
structure and the scalar product

(y,z) 7→
q∑

j=1

α−1
j 〈yj | zj〉. (24)

We can write f = g ◦L, where

g : G → ]−∞,+∞]

y 7→
q∑

j=1

ϕj(yj) (25)

and L ∈ B (H,G) is defined by

L : H → G

x 7→
(

m∑

i=1

L1,ixi, . . . ,

m∑

i=1

Lq,ixi

)
. (26)

It follows from (24) that, for every (x,y) ∈ H× G,

〈Lx | y〉 =
q∑

j=1

α−1
j

〈 m∑

i=1

Lj,ixi

∣∣∣∣ yj
〉

=

q∑

j=1

α−1
j

m∑

i=1

〈
xi | L∗

j,iyj
〉

=

m∑

i=1

〈
xi

∣∣∣∣
q∑

j=1

α−1
j L∗

j,iyj

〉
, (27)

from which we deduce that the adjoint of L is

L∗ : G → H

y 7→
(

q∑

j=1

α−1
j L∗

j,1yj, . . . ,

q∑

j=1

α−1
j L∗

j,myj

)
. (28)

We then get from (21) that L ◦L∗ = Id . Hence, Lemma 3.2 implies that f = g ◦L ∈ Γ0(H) and
that

proxg◦L = Id +L∗ ◦ (proxg − Id ) ◦L. (29)
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In addition, it follows from (25) and (24) that, for every y ∈ G,

proxg y = (proxα1ϕ1
y1, . . . ,proxαqϕq

yq). (30)

Altogether, (26), (28), (29), and (30) yield (22)–(23). �

Corollary 3.7 Let ϕ ∈ Γ0(G) and, for every i ∈ {1, . . . ,m}, let Li ∈ B (Hi,G). Set

f : H → ]−∞,+∞]

x 7→ ϕ

( m∑

i=1

Lixi

)
(31)

and suppose that there exists α ∈ ]0,+∞[ such that

m∑

i=1

Li ◦ L∗
i = α Id . (32)

Then f ∈ Γ0(H) and, for every x ∈ H, proxf x = (p1, . . . , pm) where, for every i ∈ {1, . . . ,m},

pi = xi + α−1L∗
i proxαϕ

( m∑

k=1

Lkxk

)
− α−1L∗

i

m∑

k=1

Lkxk. (33)

Proof 3.8 Set q = 1 in Proposition 3.5. �

Proposition 3.9 Suppose that G has finite dimension K, let (φk)1≤k≤K be functions in Γ0(R),
and let (ek)1≤k≤K be an orthonormal basis of G. For every i ∈ {1, . . . ,m}, let Li ∈ B (Hi,G) and
suppose that there exists {αk}1≤k≤K ⊂ ]0,+∞[ such that

(∀y ∈ G)
m∑

i=1

LiL
∗
i y =

K∑

k=1

αk〈y | ek〉ek. (34)

Set

f : H → ]−∞,+∞] : x 7→
K∑

k=1

φk

(〈 m∑

j=1

Ljxj

∣∣∣∣ ek
〉)

(35)

and, for every k ∈ {1 . . . ,K},

πk =
1

αk
proxαkφk

(〈 m∑

j=1

Ljxj

∣∣∣∣ ek
〉)

. (36)

Then f ∈ Γ0(H) and, for every x ∈ H, proxf x = (pi)1≤i≤m where, for every i ∈ {1, . . . ,m},

pi = xi + L∗
i

K∑

k=1

(
πk −

1

αk

m∑

j=1

〈Ljxj | ek〉
)
ek. (37)
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Proof 3.10 For every j ∈ {1, . . . ,K}, set Gj = R, ϕj = φj , and

(∀i ∈ {1, . . . ,m}) Lj,i : Hi → Gj : x 7→ 〈Lix | ej〉, (38)

hence
L∗
j,i : Gj → Hi : ξ 7→ ξ L∗

i ej . (39)

Thus, for every j and k in {1, . . . ,K} and every ξ ∈ R, we derive from (34) that

m∑

i=1

Lj,iL
∗
k,iξ =

m∑

i=1

Lj,iξ L
∗
i ek

= ξ

m∑

i=1

〈(LiL∗
i )ek | ej〉

= ξ

〈 K∑

l=1

αl〈ek | el〉el
∣∣∣∣ ej
〉

= ξ
K∑

l=1

αl〈ek | el〉〈el | ej〉. (40)

Therefore, for every j ∈ {1, . . . ,K}, (21) is satisfied. In turn, Proposition 3.5 with q = K guaran-
tees that f ∈ Γ0(H), and (23) reduces to (37). �

4 Multicomponent proximal algorithms

We present several algorithms for solving Problem 1.1 under various assumptions on the functions
involved. Most of these algorithms are tolerant to errors in the computation of proximal points
and gradients. To quantify the amount of error which is tolerated, it will be convenient to use the
following notation: given two sequences (xn)n∈N and (yn)n∈N in H,

[
(∀n ∈ N) xn ≈ yn

]
⇔

∑

n∈N

‖xn − yn‖ < +∞. (41)

4.1 Forward-backward splitting

Problem 4.1 In Problem 1.1, suppose that p = 2 and that f2 is differentiable on H with a
β–Lipschitz continuous gradient for some β ∈ ]0,+∞[. Hence, the problem is to

minimize
x1∈H1,..., xm∈Hm

f1(x1, . . . , xm) + f2(x1, . . . , xm), (42)

under the assumption that solutions exist.

The particular case when f1 is a separable sum and f2 involves a linear mixture of the variables
was investigated in [10]. The following result addresses the general case; it implicitly assumes that
the proximity operator of f1 can be computed to within a quantifiable error.
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Theorem 4.1 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences generated by the following routine.

Initialization

ε ∈ ]0,min{1, 1/β}[
For i = 1, . . . ,m
⌊ xi,0 ∈ Hi

For n = 0, 1, . . .


(yi,n)1≤i≤m ≈ ∇f2(xi,n)1≤i≤m
γn ∈ [ε, (2/β) − ε]
(ui,n)1≤i≤m ≈ proxγnf1(xi,n − γnyi,n)1≤i≤m
λn ∈ [ε, 1]
For i = 1, . . . ,m
⌊ xi,n+1 = xi,n + λn(ui,n − xi,n)

Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges weakly to a point xi ∈ Hi. Moreover, (xi)1≤i≤m
is a solution to Problem 4.1.

Proof 4.2 Apply [21, Theorem 3.4(i)] in H and use (3). �

Remark 4.3

(i) Multicomponent version of variants of the above forward-backward algorithm such as the
Nesterov-like first-order methods [9, 34, 45] can be obtained by similar reformulations in H.
However, for these methods, convergence of the iterates ((xi,n)1≤i≤m)n∈N to a solution to Prob-
lem 4.1 is not guaranteed, even in a finite-dimensional setting.

(ii) Strong convergence conditions in Theorem 4.1 can be derived from [21, Theorem 3.4(iv)].

4.2 Douglas-Rachford splitting

In this section, we relax the assumption of smoothness on f2 and assume that its proximity operator
is implementable to within a quantifiable error.

Problem 4.2 In Problem 1.1, suppose that p = 2 and that

0 ∈ sri(dom f1 − dom f2). (43)

Hence, the problem is to

minimize
x1∈H1,..., xm∈Hm

f1(x1, . . . , xm) + f2(x1, . . . , xm), (44)

under the assumption that solutions exist.
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Theorem 4.4 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences generated by the following routine.

Initialization


ε ∈ ]0, 1[
γ ∈ ]0,+∞[
For i = 1, . . . ,m
⌊ xi,0 ∈ Hi

For n = 0, 1, . . .


(yi,n)1≤i≤m ≈ proxγf2(xi,n)1≤i≤m
(ui,n)1≤i≤m ≈ proxγf1(2yi,n − xi,n)1≤i≤m
λn ∈ [ε, 2 − ε]
For i = 1, . . . ,m⌊
xi,n+1 = xi,n + λn(ui,n − yi,n).

Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges weakly to a point xi ∈ Hi. Moreover,
proxγf2(x1, . . . , xm) is a solution to Problem 4.2. Furthermore, if H is finite dimensional, the
sequence ((yi,n)1≤i≤m)n∈N converges to proxγf2(x1, . . . , xm).

Proof 4.5 Apply [17, Theorem 20] in H and use (3). �

Remark 4.6

(i) Strong convergence conditions in Theorem 4.4 can be derived from [16, Theorem 2.1(ii)].

(ii) If H is finite dimensional, the qualification condition (43) reduces to

(ri dom f1) ∩ (ri dom f2) 6= ∅. (45)

4.3 Parallel proximal algorithm (PPXA)

The algorithm presented in this section aims at solving Problem 1.1 under minimal technical as-
sumptions. Its cost of implementation depends on the ease of (approximate) computation of the
individual proximity operators.

Problem 4.3 In Problem 1.1, suppose that

0 ∈ sri(D − dom f1 × · · · × dom fp) (46)

where D =
{
(x, . . . ,x)

∣∣ x ∈ H
}
. The problem is to

minimize
x1∈H1,..., xm∈Hm

p∑

k=1

fk(x1, . . . , xm), (47)

under the assumption that solutions exist.
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In [1], a particular instance of Problem 4.3 in finite dimensional spaces is considered. It is
approached via the alternating direction method of multipliers. The algorithm used below is an
application of the PPXA algorithm proposed in [19] that allows us to address the general case.

Theorem 4.7 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences generated by the following routine.

Initialization


ε ∈ ]0, 1[
γ ∈ ]0,+∞[

{ωk}1≤k≤p ⊂ ]0, 1] and

p∑

k=1

ωk = 1

For i = 1, . . . ,m

For k = 1, . . . , p
⌊ yi,k,0 ∈ Hi

xi,0 =

p∑

k=1

ωkyi,k,0

For n = 0, 1, . . .


For k = 1, . . . , p⌊
(ui,k,n)1≤i≤m ≈ proxγfk/ωk

(yi,k,n)1≤i≤m

For i = 1, . . . ,m

si,n =

p∑

k=1

ωkui,k,n

λn ∈ [ε, 2 − ε]
For k = 1, . . . , p
⌊ yi,k,n+1 = yi,k,n + λn(2si,n − xi,n − ui,k,n)
xi,n+1 = xi,n + λn(si,n − xi,n)

Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges weakly to a point xi ∈ Hi. Moreover,
(x1, . . . , xm) is a solution to Problem 4.3.

Proof 4.8 Apply [19, Theorem 3.4] in H and use (3). �

Remark 4.9 Suppose that H is finite dimensional and that

p⋂

k=1

ri dom fk 6= ∅. (48)

Then it follows from [19, Proposition 3.6(vi)] that the qualification condition (46) is satisfied.

4.4 Dykstra-like splitting

We consider instances of Problem 1.1 in which fp is a simple quadratic function.
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Problem 4.4 In Problem 1.1, suppose that p ≥ 3, that

p−1⋂

k=1

dom fk 6= ∅, (49)

and that fp : x 7→ (p− 1)
∑m

i=1 ‖xi − zi‖2/2, where z ∈ H. Hence, the problem is to

minimize
x1∈H1,..., xm∈Hm

p−1∑

k=1

fk(x1, . . . , xm) +
p− 1

2

m∑

i=1

‖xi − zi‖2. (50)

Set f =
∑p−1

k=1 fk/(p − 1). Then it follows from (49) that f ∈ Γ0(H). Hence, in view of (3),
Problem 4.4 admits a unique solution, namely proxf z.

Theorem 4.10 Let (x1,n)n∈N, . . . , (xm,n)n∈N be sequences generated by the following routine.

Initialization


For i = 1, . . . ,m
xi,0 = zi
For k = 1, . . . , p − 1
⌊ yi,k,0 = xi,0

For n = 0, 1, . . .


For k = 1, . . . , p − 1⌊
(ui,k,n)1≤i≤m = proxfk(yi,k,n)1≤i≤m

For i = 1, . . . ,m

xi,n+1 =
1

p− 1

p−1∑

k=1

ui,k,n

For k = 1, . . . , p − 1
⌊ yi,k,n+1 = xi,n+1 + yi,k,n − ui,k,n.

(51)

Then, for every i ∈ {1, . . . ,m}, (xi,n)n∈N converges strongly to a point xi ∈ Hi. Moreover,
(x1, . . . , xm) is a solution to Problem 4.4.

Proof 4.11 Apply [16, Theorem 4.2] in H and use (3). �

Remark 4.12 Suppose that (49) is replaced by the stronger condition (46) (applied to the functions
(fk)1≤k≤p−1). Then it follows from [16, Theorem 3.3] that the conclusion of the above theorem
remains valid if the proximity operators are implemented approximately in (51).

5 Applications to image decomposition and recovery

In this section, we apply the algorithms proposed in Section 4 to stereoscopic image restoration,
multispectral imaging, and image decomposition.
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5.1 Stereoscopic image restoration

5.1.1 Problem formulation

We consider the problem of restoring a pair of N -pixel stereoscopic images x1 ∈ R
N and x2 ∈ R

N ,
which correspond to the left and the right views of the same scene. For a given value of the disparity
field, the disparity compensation process between the two images is modeled as

x1 = Dx2 + v, (52)

where the matrix D is in R
N×N [39] and where v stands for modeling errors. The observations

consist of degraded versions

z1 = L1x1 + w1 and z2 = L2x2 + w2 (53)

of x1 and x2, respectively, where the matrices L1 ∈ R
N×N and L2 ∈ R

N×N model the data
acquisition process, and where w1 and w2 are mutually independent Gaussian noise vectors with
independent components which are N (0, σ21)– and N (0, σ22)–distributed, respectively. In addition, it
is assumed that the decompositions of x1 and x2 in orthonormal bases (e1,k)1≤k≤N and (e2,k)1≤k≤N ,
respectively, of R

N are sparse. For every k ∈ {1, . . . , N}, functions φ1,k ∈ Γ0(R) and φ2,k ∈
Γ0(R) are used to promote the sparsity of the decompositions [18, 22]. The following variational
formulation is consistent with the above hypotheses and models.

Problem 5.1 Let ϑ ∈ [0,+∞[. The objective is to

minimize
x1∈RN , x2∈RN

N∑

k=1

φ1,k(〈x1 | e1,k〉) +
N∑

k=1

φ2,k(〈x2 | e2,k〉)

+
1

2σ21
‖L1x1 − z1‖2 +

1

2σ22
‖L2x2 − z2‖2 +

ϑ

2
‖x1 −Dx2‖2. (54)

We can formulate Problem 5.1 as an instance of Problem 1.1 with H1 = H2 = R
N and m = 2

functions, namely

f1 : (x1, x2) 7→
N∑

k=1

φ1,k(〈x1 | e1,k〉) +
N∑

k=1

φ2,k(〈x2 | e2,k〉) (55)

and

f2 : (x1, x2) 7→
1

2σ21
‖L1x1 − z1‖2 +

1

2σ22
‖L2x2 − z2‖2 +

ϑ

2
‖x1 −Dx2‖2. (56)

Proposition 5.1 Let x1 and x2 be arbitrary vectors in R
N . Then f2 is differentiable at (x1, x2)

and

∇f2(x1, x2) =
( 1

σ21
L⊤
1 (L1x1 − z1) + ϑ(x1 −Dx2),

1

σ22
L⊤
2 (L2x2 − z2) + ϑD⊤(Dx2 − x1)

)
. (57)

Moreover, ∇f2 is β-Lipschitz continuous, with

β = max{σ−2
1 ‖L1‖2, σ−2

2 ‖L2‖2}+ ϑ(1 + ‖D‖2). (58)

13



Original left x1 Original right x2

Degraded left z1 Degraded right z2
SNR = 12.9 dB – SSIM = 0.39 SNR = 18.0 dB – SSIM = 0.56

Restored left x1 with ϑ = 0 Restored right x2 with ϑ = 0
SNR = 15.5 dB – SSIM = 0.58 SNR = 19.3 dB – SSIM = 0.73

Restored left x1 with ϑ = 1.6× 10−3 Restored right x2 with ϑ = 1.6 × 10−3

SNR = 17.8 dB – SSIM = 0.79 SNR = 19.7 dB – SSIM = 0.83

Figure 1: Stereoscopic image restoration.
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Proof 5.2 The expression (57) follows from straightforward calculus. Now set

L =

[
σ−1
1 L1 [0]

[0] σ−1
2 L2

]
and M =

√
ϑ

[
I −D
[0] [0]

]
. (59)

Then, using matrix notation, we can write

∇f2
[
x1
x2

]
= (L⊤L+M⊤M )

[
x1
x2

]
−L⊤

[
σ−1
1 z1
σ−1
2 z2

]
. (60)

Hence, a Lipschitz constant of ∇f2 is ‖L⊤L+M⊤M‖, where ‖ · ‖ denotes the spectral norm. To
obtain a tractable bound, we observe that

‖L⊤L+M⊤M‖ ≤ ‖L⊤L‖+ ‖M⊤M‖
= ‖L‖2 + ‖M‖2

= ‖L‖2 + ϑ(1 + ‖D‖2). (61)

Now set x =
[
x1 x2

]⊤
. Then

‖Lx‖2 = σ−2
1 ‖L1x1‖2 + σ−2

2 ‖L2x2‖2

≤ σ−2
1 ‖L1‖2‖x1‖2 + σ−2

2 ‖L2‖2‖x2‖2

≤ max{σ−2
1 ‖L1‖2, σ−2

2 ‖L2‖2}‖x‖2. (62)

Hence, ‖L‖2 ≤ max{σ−2
1 ‖L1‖2, σ−2

2 ‖L2‖2} and (61) yields ‖L⊤L+M⊤M‖ ≤ β. �

In view of Proposition 5.1, Problem 5.1 can be solved by the forward-backward algorithm (see
Theorem 4.1).

5.1.2 Numerical experiments

Experimental results are displayed in Figure 1 for stereoscopic images of size 256×256 (N = 2562).
In this example, L1 and L2 are periodic convolution operators with motion kernel blur of sizes
7 × 7 and 3 × 3, respectively. This kind of blur was considered in a related context in [36]. A
white Gaussian noise is added corresponding to a blurred signal-to-noise-ratio (BSNR) of 21.6 dB
for z1 and 21.8 dB for z2. The observed image zi with i ∈ {1, 2} being degraded by an additive
noise with variance σ2i , the BSNR is defined as 10 log10

(
‖Lixi‖2/(Nσ2i )

)
. In addition, (e1,k)1≤k≤N

and (e2,k)1≤k≤N are symmlet wavelet orthonormal bases (length 6) over 2 resolution levels. For
every k ∈ {1, . . . , N}, φ1,k = µ1,k| · |p1,k and φ2,k = µ2,k| · |p2,k , where {µ1,k, µ2,k} ⊂ ]0,+∞[ and
{p1,k, p2,k} ⊂ [1,+∞[.

The operators (proxφ1,k)1≤k≤N and (proxφ2,k)1≤k≤N can be calculated explicitly [14, Exam-
ples 4.2 and 4.4]. The proximity operator of f1 can thus be deduced from Proposition 3.3, the
separability of this function, and [21, Lemma 2.8 and 2.9]. For every k ∈ {1, . . . , N}, the values of
µ1,k, µ2,k, p1,k, and p2,k are chosen using a maximum likelihood approach in a subband-adaptive
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manner with p1,k and p2,k in {1, 4/3, 3/2, 2}. The value of ϑ is selected so as to maximize the
signal-to-noise-ratio (SNR). The SNR between an image y and the original image y is defined as
20 log10(‖y‖/‖y−y‖). In our experiments we also propose to compare the restored images in terms
of structural similarity (SSIM) [44]. The SSIM takes on values from -1 to 1. The value 1 is achieved
for two identical images. The disparity map has been estimated by using the method described
in [32]. Note that the existence of a solution to Problem 5.1 is secured by the fact that f1 + f2
is a coercive function in Γ0(R

N ⊕ R
N ) [21, Propositions 3.1(i) and 5.15(i)]. Thus, Problem 5.1 is

a special case of Problem 4.1. In this context, setting λn ≡ 1, the forward-backward algorithm
assumes the following form.

Initialization


σ1 = σ2 = 12
ϑ = 0 or ϑ = 1.6× 10−3

γ =1.9/
(
max{σ−2

1 ‖L1‖2, σ−2
2 ‖L2‖2}+ϑ(1 +‖D‖2)

)

x1,0 = z1
x2,0 = z2

For n = 0, 1, . . .

y1,n = σ−2
1 L⊤

1 (L1x1,n − z1) + ϑ(x1,n −Dx2,n)

y2,n = σ−2
2 L⊤

2 (L2x2,n − z2)− ϑD⊤(x1,n −Dx2,n)

x1,n+1=
N∑

k=1

(
proxγφ1,k〈x1,n− γy1,n | e1,k〉

)
e1,k

x2,n+1=

N∑

k=1

(
proxγφ2,k〈x2,n− γy2,n | e2,k〉

)
e2,k

When ϑ = 0, there is no coupling between the left and right views (images in the third row of
Figure 1). As can be observed in Figure 1, the coupling term leads to a significant improvement of
the restoration, especially for the most degraded image (bottom-left image).

Using ϑ = 1.6×10−3, we compare the forward-backward algorithm of Theorem 4.1 (implemented
with λn ≡ 1 and γn ≡ 1.99/β) to a multicomponent version of the Beck-Teboulle algorithm [9]
and a multicomponent version of the Nesterov algorithm [35]. Although, contrary to the forward-
backward algorithm, the Beck-Teboulle and Nesterov algorithms do not insure convergence of the
iterates, they are known to provide a theoretically optimal convergence rate for the objective
function. However, in this example, their performance appear to be quite comparable on that score
(see Figure 2).
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1 2 3 4 5 6 7 8 9

10^5

3.10^5

2.10^5

Figure 2: Convergence of the objective function in Problem 5.1 for the forward-backward algorithm
(solid line), the Nesterov algorithm (dotted line), and the Beck-Teboulle algorithm (dashed line)
versus iteration number.

5.2 Multispectral image denoising

5.2.1 Problem formulation

A common multispectral image processing problem is to denoise m images (yi)1≤i≤m in R
N from

noisy observations (zi)1≤i≤m given by

(∀i ∈ {1, . . . ,m}) zi = yi + wi, (63)

where (wi)1≤i≤m are realizations of mutually independent zero-mean white Gaussian noise processes
with respective variances (σ2i )1≤i≤m. Early methods for multispectral image recovery are described
in [28]. A tutorial on wavelet-based multispectral denoising can be found in [13].

To solve this denoising problem, we assume that, for every i ∈ {1, . . . ,m}, yi satisfies some
constraint represented by a nonempty closed convex set Ci ⊂ R

N , and that it admits a sparse
decomposition in an orthonormal basis (ei,k)1≤k≤N of R

N . In addition, similarities between the
images are promoted by penalizing a distance between their components in some orthonormal basis
(bk)1≤k≤N of RN . These considerations lead to the variational problem

minimize
y1∈C1,..., ym∈Cm

m∑

i=1

1

2σ2i
‖yi − zi‖2 +

m∑

i=1

N∑

k=1

µ̃i,k|〈yi | ei,k〉|+
m−1∑

i=1

m∑

j=i+1

ϑ̃i,j

N∑

k=1

|〈yi − yj | bk〉| (64)

where, for every i ∈ {1, . . . ,m}, {µ̃i,k}1≤k≤N ⊂ ]0,+∞[ and {ϑ̃i,j}i+1≤j≤m ⊂ ]0,+∞[. After
appropriate rescaling of the variables, this problem can be reformulated as follows.

Problem 5.2 For every i ∈ {1, . . . ,m}, let {µi,k}1≤k≤N ⊂ ]0,+∞[ and {ϑi,j}i+1≤j≤m ⊂ ]0,+∞[.
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The objective is to

minimize
x1∈RN ,..., xm∈RN

p− 1

2

m∑

i=1

‖xi − σ−1
i zi‖2

+
m∑

i=1

N∑

k=1

µi,kσi|〈xi | ei,k〉|

+

m−1∑

i=1

m∑

j=i+1

ϑi,j

N∑

k=1

|〈σixi − σjxj | bk〉|

+

m∑

i=1

ιCi
(σixi). (65)

To cast this problem in the format of Problem 1.1, let us define

J =
{
(i, j) ∈ N

2
∣∣ 1 ≤ i ≤ m− 1, i+ 1 ≤ j ≤ m

}
(66)

and

i : J →
{
1, . . . ,m(m− 1)/2

}

(i, j) 7→ m(i− 1)− i(i+ 1)/2 + j. (67)

Moreover, let us set p = m(m− 1)/2 + 3 and




(∀(i, j) ∈ J) fi(i,j) : (x1, . . . , xm) 7→

ϑi,j

N∑

k=1

|〈σixi − σjxj | bk〉|

fp−2 : (x1, . . . , xm) 7→
m∑

i=1

N∑

k=1

µi,kσi|〈xi | ei,k〉|

fp−1 : (x1, . . . , xm) 7→
m∑

i=1

ιCi
(σixi)

fp : (x1, . . . , xm) 7→
p− 1

2

m∑

i=1

‖xi − σ−1
i zi‖2.

(68)

Note that, for every k ∈ {1, . . . , p − 2}, dom fk = (RN )m and dom fp−1 = σ−1
1 C1 × · · · × σ−1

m Cm.
Hence, since the sets (Ci)1≤i≤m are nonempty, (49) holds and Problem 5.2 can be solved by the
Dykstra-like algorithm presented in Theorem 4.10, with H1 = · · · = Hm = R

N . An explicit form
of the proximity operators of the functions (fk)1≤k≤m(m−1)/2 can be deduced from Proposition 3.9.

Indeed, for every (i, j) ∈ J , we can set in this proposition H1 = · · · = Hm = G = R
N , (∀k ∈

{1, . . . , N}) and φk = ϑi,j| · |, and define the matrices (Lℓ)1≤ℓ≤m in R
N×N as

(∀ℓ ∈ {1, . . . ,m}) Lℓ =





σℓ I , if ℓ = i;

−σℓ I , if ℓ = j;

0 otherwise.

(69)
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Finally, the proximity operator of fp−2 can be derived from Proposition 3.3 combined with the
separability of this function, [21, Lemma 2.8 and 2.9], and [14, Example 4.2]. The proximity
operator of fp−1 is provided in Example 3.1.

5.2.2 Numerical experiments

Figure 3 shows the results obtained on a multispectral image of size 256 × 256 (N = 2562) with 3
channels (m = 3) and pixel values in the range [0, 255]. These images are corrupted by white Gaus-
sian noises with standard deviations σ1 = 11, σ2 = 12, and σ3 = 13 (the corresponding SNR values
are indicated in Figure 3). On the other hand, (bk)1≤k≤N is the Haar orthonormal wavelet basis on
3 resolution levels and, for every i ∈ {1, . . . ,m}, (ei,k)1≤k≤N are symmlet orthonormal wavelet bases
(length 6) on 3 resolution levels. The values of the regularization parameters ((µi,k)1≤i≤3)1≤k≤N
(chosen subband-adaptive by a maximum likelihood approach), and of the coupling parameters ϑ1,2,
ϑ1,3, and ϑ2,3 are selected so as to maximize the SNR. For every i ∈ {1, . . . ,m}, Ci = [0, 255]N

models the constraint on the range of pixel values. The resulting Dykstra-like algorithm is described
below.
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Original image y1 Original image y2 Original image y3

Degraded image z1 Restored y1 without coupling term Restored y1 with coupling term
SNR = 16.2 dB – SSIM = 0.47 SNR = 22.3 dB – SSIM = 0.78 SNR = 24.2 dB – SSIM = 0.87

Degraded image z2 Restored y2 without coupling term Restored y2 with coupling term
SNR = 8.28 dB – SSIM = 0.38 SNR = 17.4 dB – SSIM = 0.85 SNR = 19.3 dB – SSIM = 0.91

Degraded image z3 Restored y3 without coupling term Restored y3 with coupling term
SNR = 7.08 dB – SSIM = 0.45 SNR = 13.2 dB – SSIM = 0.75 SNR = 14.7 dB – SSIM = 0.82

Figure 3: Multispectral restoration.
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Initialization


σ1 = 11 ; σ2 = 12 ; σ3 = 13
y1,1,0 = . . . = y1,5,0 = x1,0 = z1
y2,1,0 = . . . = y2,5,0 = x2,0 = z2
y3,1,0 = . . . = y3,5,0 = x3,0 = z3
α1,2 = σ21 + σ22
α1,3 = σ21 + σ23
α2,3 = σ22 + σ23

For n = 0, 1, . . .


u1,1,n = y1,1,n + α−1
1,2σ1

∑N
k=1

(
proxα1,2ϑ1,2|·| 〈σ1y1,1,n − σ2y2,1,n | bk〉+ 〈σ1y1,1,n − σ2y2,1,n | bk〉

)
bk

u2,1,n = y2,1,n − α−1
1,2σ2

∑N
k=1

(
proxα1,2ϑ1,2|·| 〈σ1y1,1,n − σ2y2,1,n | bk〉+ 〈σ1y1,1,n − σ2y2,1,n | bk〉

)
bk

u3,1,n = y3,1,n

u1,2,n = y1,2,n + α−1
1,3σ1

∑N
k=1

(
proxα1,3ϑ1,3|·| 〈σ1y1,2,n − σ3y3,2,n | bk〉+ 〈σ1y1,2,n − σ3y3,2,n | bk〉

)
bk

u2,2,n = y2,2,n

u3,2,n = y3,2,n − α−1
1,3σ3

∑N
k=1

(
proxα1,3ϑ1,3|·| 〈σ1y1,2,n − σ3y3,2,n | bk〉+ 〈σ1y1,2,n − σ3y3,2,n | bk〉

)
bk

u1,3,n = y1,3,n

u2,3,n = y2,3,n + α−1
2,3σ2

∑N
k=1

(
proxα2,3ϑ2,3|·| 〈σ2y2,3,n − σ3y3,3,n | bk〉+ 〈σ2y2,3,n − σ3y3,3,n | bk〉

)
bk

u3,3,n = y3,3,n − α−1
2,3σ3

∑N
k=1

(
proxα2,3ϑ2,3|·| 〈σ2y2,3,n − σ3y3,3,n | bk〉+ 〈σ2y2,3,n − σ3y3,3,n | bk〉

)
bk

u1,4,n =
∑N

k=1

(
proxµ1,kσ1|·| 〈y1,4,n | e1,k〉

)
e1,k

u2,4,n =
∑N

k=1

(
proxµ2,kσ2|·| 〈y2,4,n | e2,k〉

)
e2,k

u3,4,n =
∑N

k=1

(
proxµ3,kσ3|·| 〈y3,4,n | e3,k〉

)
e3,k

u1,5,n = PC1
(σ1 y1,5,n)

u2,5,n = PC2
(σ2 y2,5,n)

u3,5,n = PC3
(σ3 y3,5,n)

x1,n+1 = (u1,1,n + u1,2,n + u1,3,n + u1,4,n + u1,5,n)/5
x2,n+1 = (u2,1,n + u2,2,n + u2,3,n + u2,4,n + u2,5,n)/5
x3,n+1 = (u3,1,n + u3,2,n + u3,3,n + u3,4,n + u3,5,n)/5

For j = 1, . . . , 5
y1,j,n+1 = x1,n+1 + y1,j,n − u1,j,n
y2,j,n+1 = x2,n+1 + y2,j,n − u2,j,n
y3,j,n+1 = x3,n+1 + y3,j,n − u3,j,n
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It can be observed from the images displayed on the second and third columns of Figure 3
that the introduction of the coupling term has a significant influence on denoising performance.
Moreover, in our experiments, we observed that better results were obtained when different bases
(bk)1≤k≤N , (e1,k)1≤k≤N , . . . , (em,k)1≤k≤N were employed.

It turns out that, in this particular problem, an alternative solution method is PPXA (see
Theorem 4.7) applied to the minimization of the sum of the m(m− 1)/2 + 2 functions f1, f2,
. . . , fp−2, and fp−1 + fp defined in (68). The proximity operator of the latter is given by [21,
Lemma 2.6(i)]. Indeed, the qualification condition (see (48)) is satisfied since dom f1 = · · · =
dom fp−2 = (RN )m and, (∀i ∈ {1, . . . ,m}) intCi = ]0, 255[ 6= ∅. The choice of the PPXA
parameters has been optimized empirically for speed of convergence and set to λn ≡ 1.3, γ = 1,
and ω1 = · · · = ωp−1 = 1/(p − 1). In Figure 4, ‖xn − x∞‖/‖x0 − x∞‖ is plotted as a function
of computation time, where (xn)n∈N =

(
(x1,n, x2,n, x3,n)

)
n∈N

is the sequence generated by an
algorithm and x∞ is the unique solution to Problem 5.2. In our experiments, 500 iterations were
used to produce this solution.
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Figure 4: Problem 5.2: Convergence profiles of the Dykstra-like algorithm (solid line) and of PPXA
(dashed line) versus computation time in seconds.

5.3 Structure–texture image decomposition

An important problem in image processing is to decompose an image into elementary structures. In
the context of denoising, this decomposition was investigated in [38] with a total variation potential.
In [31], a different potential was used to better penalize strongly oscillating components. The
resulting variational problem is not straightforward. Numerical methods were proposed in [4, 41]
and experiments were performed for image denoising and analysis problems based on a geometry-
texture decomposition. Another challenging problem is to extract meaningful components from a
blurred and noise-corrupted image. In the presence of additive Gaussian noise, a decomposition
into geometry and texture components is proposed in [2, 23]. The method developed in the present
paper, will make it possible to consider general (not necessarily additive and Gaussian) noise models
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and arbitrary linear degradation operators. We consider a simple geometry-texture decomposition
from a degraded observation.

5.3.1 Problem formulation

In this experiment, the observed image z ∈ R
N is obtained by multiplying the original image

x ∈ R
N with a matrix T ∈ R

N×N , which models a blur, and corrupting Tx by a Poisson noise with
scaling parameter α. It is assumed that

T has its entries in [0,+∞[ andeach of its rows is nonzero. (70)

The inverse problem we address is to obtain the decomposition of x into the sum of a geometry
and a texture component, say

x = R1(x1) +R2(x2), (71)

where R1 : R
N1 7→ R

N and R2 : R
N2 7→ R

N are known operators. The vectors x1 ∈ R
N1 and

x2 ∈ R
N2 to be estimated parameterize, respectively, the geometry and the texture components.

We consider a simple instance of (71) involving a linear mixture: N1 = N , R1 : x1 7→ x1, and
R2 : x2 7→ F⊤x2, where F⊤ ∈ R

N×K is a linear tight frame synthesis operator. In other words, the
information regarding the texture component pertains to the coefficients x2 of its decomposition in
the frame. The tightness condition implies that

F⊤F = ν Id , for some ν ∈ ]0,+∞[ . (72)

Thus, the original image is decomposed as x = x1 + F⊤x2. It is known a priori that x ∈ C1 ∩ C2,
where

C1 = [0, 255]N (73)

models the constraint on the range of pixel values, and

C2 =

{
x ∈ R

N
∣∣ x̂ = (ηk)1≤k≤N ,

∑

k∈I

|ηk|2 ≤ δ

}
, (74)

for some δ ∈ ]0,+∞[, models an energy constraint on the 2-D DFT x̂ of the original image in some
low frequency band I ⊂ {1, . . . , N}. In addition, to limit the total variation [11] of the geometrical
component, the potential x 7→ ψ(Hx, V x) is used, with

ψ :
(
(ηk)1≤k≤N , (ζk)1≤k≤N

)
7→ χ

N∑

k=1

√
|ηk|2 + |ζk|2, (75)

where H ∈ R
N×N and V ∈ R

N×N are matrix representations of the horizontal and vertical discrete
differentiation operators, respectively, and where χ ∈ ]0,+∞[. Furthermore, to promote sparsity
in the frame of the texture component of the image, the potential

h : (ηk)1≤k≤K 7→
K∑

k=1

τk|ηk| (76)
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is introduced, where {τk}1≤k≤K ⊂ ]0,+∞[. Finally, as a data fidelity term well adapted to Poisson
noise, we employ the generalized Kullback-Leibler divergence with a scaling parameter α ∈ ]0,+∞[.
Upon setting z = (ζk)1≤k≤N , this leads to the function

g : (ξk)1≤k≤N 7→
N∑

k=1

φk(ξk), (77)

where, for every k ∈ {1, . . . ,K},

φk : R → ]−∞,+∞]

ξ 7→





−ζk ln(ξ) + αξ, if ζk ≥ 0 and ξ > 0;

0, if ξ = 0;

+∞, otherwise.

(78)

Altogether, the variational problem is to

minimize
x1∈RN, x2∈RK

x1+F⊤x2∈C1

x1+F⊤x2∈C2

ψ(Hx1, V x1) + h(x2) + g(Tx1 + TF⊤x2). (79)

This problem is a particular case of (2) with m = 2, p = 4, and




f1 : (x1, x2) 7→ ψ(Hx1, V x1) + h(x2),

f2 : (x1, x2) 7→ g(Tx1 + TF⊤x2),

f3 : (x1, x2) 7→ ιC1
(x1 + F⊤x2),

f4 : (x1, x2) 7→ ιC2
(x1 + F⊤x2).

(80)

However, since the operators (proxfi)1≤i≤4 are not easily implementable, we cannot apply directly
Theorems 4.1, 4.4, or 4.7. To circumvent this difficulty, a strategy is to decompose (79) into an
equivalent problem by introducing auxiliary variables.

A first equivalent problem to (79) is

minimize
x1,x2,x3,x4,x5,x6
x3=x1+F⊤x2
x3∈C1∩C2

x4=Tx3
x5=Hx1, x6=V x1

ψ(x5, x6) + h(x2) + g(x4), (81)

where we have introduced the auxiliary variables (x3, x4, x5, x6) ∈ R
N ⊕R

N ⊕R
N ⊕R

N . Problem
(81) is a particular case of (2) with m = 6, p = 3, and





f1 : (x1, . . . , x6) 7→ h(x2) + ιC1
(x3) + g(x4) + ψ(x5, x6),

f2 : (x1, . . . , x6) 7→ ιC2
(x3),

f3 : (x1, . . . , x6) 7→ ι{0}(x1 + F⊤x2 − x3) + ι{0}(Tx3 − x4) + ι{0}(Hx1 − x5) + ι{0}(V x1 − x6).

(82)
In this formulation, the rôle of f3 is to impose the constraints x1+F

⊤x2 = x3, Tx3 = x4, Hx1 = x5,
and V x1 = x6. As seen in Example 3.1, proxιC1

= PC1
and proxιC2

= PC2
. On the other hand, the
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proximity operators of ψ, h, and g can be obtained from [19, Proposition 2.8(i)], [21, Example 2.16],
and [17, Example 30], respectively. In turn, since f1 is separable, its proximity operator follows
straightforwardly componentwise. Now set

L1 =




I F⊤ − I [0] [0] [0]
[0] [0] T − I [0] [0]
H [0] [0] [0] − I [0]
V [0] [0] [0] [0] − I


 . (83)

It follows from (82) and (83) that f3 = ιkerL1
, where kerL1 =

{
x ∈ H

∣∣ L1x = 0
}
. Hence, by

Example 3.1 and [24, Chapter 8],

proxf3 = PkerL1
= I −L⊤

1

(
L1L

⊤
1

)−1
L1. (84)

Under the assumption that the matrices T , H, and V are block-circulant with circulant blocks, they
are diagonalized by the 2-D DFT. Hence, combining (84), (83), and (72) we deduce that proxf3
is computable explicitly. On the other hand, it follows from (82), (76), (73), (77), (75), (74), and
(83) that 




ri dom f1 = R
N × R

K × intC1 × ]0,+∞[N × R
N × R

N

ri dom f2 = R
N × R

K × intC2 × R
N × R

N × R
N

ri dom f3 = kerL1.

(85)

Hence, qualification condition (48) reduces to

(∃ (x1, . . . , x6) ∈ kerL1)

{
x3 ∈ intC1 ∩ intC2

x4 ∈ ]0,+∞[N ,
(86)

which is equivalent to

(∃(x1, . . . , x6) ∈ R
N × R

K × R
N × R

N × R
N × R

N )



x1 + F⊤x2 = x3 ∈ intC1 ∩ intC2,

Tx3 = x4 ∈ ]0,+∞[N

Hx1 = x5

V x1 = x6.

(87)

This condition is satisfied if
T (int(C1 ∩C2)) ∩ ]0,+∞[N 6= ∅. (88)

Indeed, let y ∈ T (int(C1 ∩C2))∩ ]0,+∞[N . Then there exists x ∈ int(C1 ∩C2) such that Tx = y ∈
]0,+∞[N . Hence, for every x2 ∈ R

K , if we set x3 = x, x4 = y = Tx3, x1 = x3 − F⊤x2, x5 = Hx1,
and V x1 = x6, (87) is seen to hold. Since (73) and (74) yield int(C1 ∩ C2) 6= ∅, we deduce from
(70) that (88) (and hence (48)) is satisfied. Thus, (81) can be solved by PPXA (see Theorem 4.7
and Remark 4.9).

Another equivalent formulation of (79) is

minimize
x1,x2,x3,x4,x5,x6,x7

x3=x1+F⊤x2
x4=Tx3

x5=Hx1, x6=V x1
x7=x3

x3∈C1, x7∈C2

ψ(x5, x6) + h(x2) + g(x4), (89)
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where the additional auxiliary variable x7 ∈ R
N has been introduced. Problem (89) is a particular

case of (2) with m = 7, p = 2, and





f1 : (x1, . . . , x7) 7→ h(x2) + ιC1
(x3) + g(x4) + ψ(x5, x6) + ιC2

(x7)

f2 : (x1, . . . , x7) 7→ ι{0}(x1 + F⊤x2 − x3) + ι{0}(Tx3 − x4) + ι{0}(Hx1 − x5)

+ι{0}(V x1 − x6) + ι{0}(x3 − x7).

(90)

As previously observed, since the proximity operators of ψ, h, g, ιC1
, and ιC2

are easily computable,
so is proxf1 . Furthermore, if we set

L2 =




I F⊤ − I [0] [0] [0] [0]
[0] [0] T − I [0] [0] [0]
H [0] [0] [0] − I [0] [0]
V [0] [0] [0] [0] − I [0]
[0] [0] I [0] [0] [0] − I



, (91)

it can be deduced from (90) that the proximity operator of f2 = ιkerL2
can be computed like that

of ιkerL1
. We derive from (90), (76), (73), (77), (75), (74), and (91) that

{
ri dom f1 = R

N × R
K × intC1 × ]0,+∞[N × R

N × R
N × intC2

ri dom f2 = kerL2.
(92)

Hence, arguing as above, (45) reduces to (88), which is seen to be satisfied. This shows that (89)
can be solved by the Douglas-Rachford algorithm (see Theorem 4.4 and Remark 4.6(ii)).

5.3.2 Numerical experiments

Figure 5 shows the results of the decomposition into geometry and texture components of an
electron microscopy image of size 512× 512 (N = 5122) degraded by a Gaussian blur of size 5× 5
and Poisson noise with scaling parameter α = 0.5. The parameter χ of (75) and the parameters
(τk)1≤k≤K of (76) are selected so as to maximize the SNR. The matrix F is a tight frame version of
the dual-tree transform proposed in [15] using symmlet of length 6 applied over 3 resolution levels
(ν = 2 and K = 2N). The same discrete gradient matrices H and V as in [4] are used. We aim
at comparing the PPXA and Douglas-Rachford algorithms in the image decomposition problem
under consideration. In both algorithms we set λn ≡ 1.

In this context, setting ω1 = ω2 = ω3 = 1/3, PPXA assumes the following form.
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Original image x Degraded image z
SNR = 14.2 dB – SSIM = 0.74.

Geometry component x1. Texture component F⊤x2.

Restored image x3
SNR = 17.7 dB – SSIM = 0.86.

Figure 5: Decomposition and restoration results.
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Initialization


γ = 100
(y1,1,0, . . . , y6,1,0) = (z, F⊤z, z, z, z, z)
(y1,2,0, . . . , y6,2,0) = (z, F⊤z, z, z, z, z)
(y1,3,0, . . . , y6,3,0) = (z, F⊤z, z, z, z, z)
For i = 1, . . . , 6⌊
xi,0 = (yi,1,0 + yi,2,0 + yi,3,0)/3

For n = 0, 1, . . .


u1,1,n = y1,1,n
u2,1,n = prox3γh(y2,1,n)

u3,1,n = PC1
(y3,1,n)

u4,1,n = prox3γg(y4,1,n)

(u5,1,n, u6,1,n) = prox3γψ(y5,1,n, y6,1,n)

(u1,2,n, u2,2,n) = (y1,2,n, y2,2,n)
u3,2,n = PC2

(y3,2,n)
(u4,2,n, u5,2,n, u6,2,n) = (y4,2,n, y5,2,n, y6,2,n)
(u1,3,n, . . . , u6,3,n) = PkerL1

(y1,3,n, . . . , y6,3,n)
For i = 1, . . . , 6

si,n = (1/3)

3∑

k=1

ui,k,n

yi,1,n+1 = yi,1,n + 2si,n − xi,n − ui,1,n
yi,2,n+1 = yi,2,n + 2si,n − xi,n − ui,2,n
yi,3,n+1 = yi,3,n + 2si,n − xi,n − ui,3,n
xi,n+1 = xi,n + si,n − xi,n
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On the other hand, the Douglas-Rachford algorithm reduces to the following.

Initialization
⌊
γ = 100
(x1,0, . . . , x7,0) = (z, F⊤z, z, z, z, z, z)

For n = 0, 1, . . .


y1,n = x1,n
y2,n = proxγh(x2,n)

y3,n = PC1
(x3,n)

y4,n = proxγg(x4,n)

(y5,n, y6,n) = proxγψ(x5,n, x6,n)

y7,n = PC2
(x7,n)

(u1,n, . . . , u7,n) = PkerL2

(
2(y1,n, . . . , y7,n)− (x1,n, . . . , x7,n)

)

For i = 1, . . . , 7
⌊ xi,n+1 = xi,n + ui,n − yi,n

In Figure 6, the value of ‖yn−y∞‖/‖y0−y∞‖ for the sequence (yn)n∈N =
(
(y1,n, . . . , y7,n)

)
n∈N

of Theorem 4.4 and ‖xn − x∞‖/‖x0 − x∞‖ for the sequence (xn)n∈N =
(
(x1,n, . . . , x6,n)

)
n∈N

of
Theorem 4.7 (where y∞ and x∞ denote the respective limits) are plotted as a function of the
computation time in seconds. In our experiments, 1000 iterations were used to produce a solution.
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Figure 6: Convergence profiles of the Douglas-Rachford algorithm (solid line) and PPXA (dashed
line) versus computation time in seconds.
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6 Conclusion

In this paper, the proximal formalism has been applied to multicomponent signal/image process-
ing. Expressions of new proximity operators in product spaces have been derived. The proposed
multicomponent framework has been illustrated through three different applications: stereocospy,
multispectral imagery, and decomposition into geometry and texture components. Another field
of application in which these techniques could be useful is the processing of color images. The
proposed proximal formalism can also be used to derive algorithms for complex signal and image
processing by regarding a complex signal as a signal with m = 2 real components, namely its real
and imaginary parts.
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