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Proximal algorithms for multicomponent image recovery problems *

In recent years, proximal splitting algorithms have been applied to various monocomponent signal and image recovery problems. In this paper, we address the case of multicomponent problems. We first provide closed form expressions for several important multicomponent proximity operators and then derive extensions of existing proximal algorithms to the multicomponent setting. These results are applied to stereoscopic image recovery, multispectral image denoising, and image decomposition into texture and geometry components.

Problem statement

In this paper, we consider signal and image recovery problems in which the ideal solution is represented by m components x 1 , . . . , x m lying, respectively, in real Hilbert spaces H 1 , . . . , H m . Such problems arise in many areas ranging from color and hyperspectral imaging to multichannel signal processing and geometry/texture image decomposition [START_REF] Anthoine | Deux méthodes de déconvolution et séparation simultanées; application à la reconstruction des amas de galaxies[END_REF][START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Aujol | Dual norms and image decomposition models[END_REF][START_REF] Aujol | Structure-texture image decomposition -Modeling, algorithms, and parameter selection[END_REF][START_REF] Aujol | Color image decomposition and restoration[END_REF][START_REF] Chan | Image decomposition combining staircase reduction and texture extraction[END_REF][START_REF] Daubechies | Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising[END_REF][START_REF] Elad | Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA)[END_REF][START_REF] Kang | Generalized multichannel image deconvolution approach and its applications[END_REF][START_REF] Katsaggelos | A general framework for frequency domain multichannel signal processing[END_REF][START_REF] Tschumperlé | Diffusion PDEs on vector-valued images[END_REF][START_REF] Wang | A new alternating minimization algorithm for total variation image reconstruction[END_REF][START_REF] Wen | Iterative algorithms based on decoupling of deblurring and denoising for image restoration[END_REF]. Oftentimes, multicomponent signal/image processing tasks can be formulated as variational problems of the form minimize

x 1 ∈H 1 ,..., xm∈Hm Φ(x 1 , . . . , x m ), (1) 
where Φ is a convex function modeling the available information on the m components, their interactions, and, possibly, the data acquisition process.

The abstract convex minimization problem [START_REF] Afonso | An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[END_REF] is usually too generic to be solved directly and it must be formulated in a more structured fashion to be amenable to efficient numerical solution. To this end, Φ can be decomposed as a sum of p functions that can be handled individually more easily. This leads to the following model, which will be the focus of the paper.

Problem 1.1 Let (H i ) 1≤i≤m be real Hilbert spaces, and let (f k ) 1≤k≤p be proper lower semicontinuous convex functions from the direct Hilbert sum

H 1 ⊕ • • • ⊕ H m to ]-∞, +∞]. The problem is to minimize x 1 ∈H 1 ,..., xm∈Hm p k=1 f k (x 1 , . . . , x m ), (2) 
under the assumption that solutions exist.

In the case of univariate (m = 1) signal processing problems, proximal methods have been successfully used to solve [START_REF] Anthoine | Deux méthodes de déconvolution et séparation simultanées; application à la reconstruction des amas de galaxies[END_REF]; see [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF][START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] for basic work, and [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] and the references therein for a variety of applications. It is therefore natural to ask whether these methods can be extended to the multivariate case. Initial work in this direction was carried out in [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF] in the special instance when m = 2, f 1 is a separable sum (i.e., f 1 : (x i ) 1≤i≤m → m i=1 ϕ i (x i )), and f 2 is differentiable on H 1 ⊕ • • • ⊕ H m with a Lipschitz continuous gradient (this setting also covers formulations found in [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Aujol | Dual norms and image decomposition models[END_REF][START_REF] Aujol | Structure-texture image decomposition -Modeling, algorithms, and parameter selection[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Goldburg | Signal synthesis in the presence of an inconsistent set of constraints[END_REF][START_REF] Huang | A fast total variation minimization method for image restoration[END_REF][START_REF] Vese | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF][START_REF] Vese | Image denoising and decomposition with total variation minimization and oscillatory functions[END_REF][START_REF] Wen | Iterative algorithms based on decoupling of deblurring and denoising for image restoration[END_REF]). The objective of our paper is to address the general case and to present several proximal algorithms with guaranteed convergence to a solution to Problem 1.1 under suitable assumptions.

The paper is organized as follows. In section 2, the main notation used in the paper is introduced. Proximity operators will be an essential ingredient in the multicomponent algorithms proposed in the paper. They are briefly reviewed in section 3, where we also provide new results concerning multicomponent proximity operators. In section 4, we describe proximal splitting algorithms which are pertinent for solving Problem 1.1. Finally, in section 5, we illustrate the effectiveness of the proposed algorithms in three multicomponent imaging examples.

Notation

Throughout, H, G, and (H i ) 1≤i≤m are real Hilbert spaces. For convenience, their scalar products are all denoted by • | • , the associated norms by • , and their identity operators are all denoted by Id . It will be convenient to denote by x = (x i ) 1≤i≤m a generic element in H 1 × • • • × H m , and by H the direct Hilbert sum H 1 ⊕ • • • ⊕ H m , i.e., the product space H 1 × • • • × H m equipped with the usual vector space structure and the scalar product

(x, y) → m i=1 x i | y i . (3) 
The space of bounded linear operators from H to G is denoted by B (H, G). Moreover, Γ 0 (H) denotes the class of lower semicontinuous convex functions ϕ : H → ]-∞, +∞] which are proper in the sense that dom ϕ = x ∈ H ϕ(x) < +∞ = ∅.

Let C and D be nonempty convex subsets of H. The indicator function of C is

ι C : x → 0, if x ∈ C; +∞, if x / ∈ C. (5) 
If C is closed, for every x ∈ H, there exists a unique point P C x ∈ C such that x -P C x = inf y∈C xy ; P C x is called the projection of x onto C. We say that 0 lies in the strong relative interior of C, in symbol, 0 ∈ sri C, if λ>0 λC = span C. In particular, if we set C -D = xy (x, y) ∈ C × D , the inclusion 0 ∈ sri(C -D) holds in each of the following cases:

• C -D is a closed vector subspace.

• 0 ∈ int(C -D). • C ∩ int D = ∅.
• H is finite dimensional and (ri C) ∩ (ri D) = ∅, where ri C denotes the relative interior of C, i.e., its interior relative to its affine hull.

General background on convex analysis will be found in [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Zălinescu | Convex Analysis in General Vector Spaces[END_REF].

3 Proximity operators

Definition and properties

For a detailed account of the theory of proximity operators, see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] and the classical paper [START_REF] Moreau | Proximité et dualité dans un espace Hilbertien[END_REF].

Let ϕ ∈ Γ 0 (H). For every x ∈ H, the function

y → ϕ(y) + 1 2 x -y 2 (6) 
has a unique minimizer, which is denoted by prox ϕ x and characterized by the variational inequality

(∀p ∈ H) p = prox ϕ x ⇔ (∀y ∈ H) y -p | x -p + ϕ(p) ≤ ϕ(y). (7) 
The proximity operator prox ϕ of ϕ thus defined is nonexpansive, i.e.,

(∀x ∈ H)(∀y ∈ H) prox ϕ x -prox ϕ y ≤ x -y . ( 8 
) Example 3.1 Let C be a nonempty closed convex subset of H. Then prox ι C = P C .
Other closed-form expressions for the proximity operators can be found in [START_REF] Antoniadis | Regularization of wavelet approximations[END_REF][START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF][START_REF] Chaux | A variational formulation for framebased inverse problems[END_REF][START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF][START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Moreau | Proximité et dualité dans un espace Hilbertien[END_REF].

Lemma 3.2 [17, Proposition 11] Let ψ ∈ Γ 0 (G), let L ∈ B (H, G), and set ϕ = ψ • L. Suppose that L • L * = α Id , for some α ∈ ]0, +∞[. Then ϕ ∈ Γ 0 (H) and prox ϕ = Id + 1 α L * • (prox αψ -Id ) • L. (9) 

Multicomponent proximity operators

The computation of proximity operators in the Hilbert direct sum H will play a fundamental role in the next sections. Below, we provide some important situations in which this computation is explicit.

Proposition 3.3 Suppose that, for every i ∈ {1, . . . , m}, (e i,k ) k∈K is an orthonormal basis of H i . Furthermore, let (φ k ) k∈K be functions in Γ 0 (R m ) and suppose that one of the following holds.

(i) For every i ∈ {1, . . . , m}, H i is infinite dimensional and, for every

k ∈ K, φ k ≥ φ k (0) = 0. (ii) For every i ∈ {1, . . . , m}, H i is finite dimensional. Set f : H → ]-∞, +∞] x → k∈K φ k x 1 | e 1,k , . . . , x m | e m,k . (10) 
Then f ∈ Γ 0 (H) and, for every x ∈ H,

prox f x = k∈K π 1,k e 1,k , . . . , k∈K π m,k e m,k , (11) 
where

(∀k ∈ K) (π 1,k , . . . , π m,k ) = prox φ k x 1 | e 1,k , . . . , x m | e m,k . (12) 
Proof 3.4 Let us set, for every k ∈ K,

ψ k : H → ]-∞, +∞] x → φ k x 1 | e 1,k , . . . , x m | e m,k . (13) 
Then our assumptions imply that the functions (ψ k ) k∈K are in Γ 0 (H). Under assumption (i), assuming without loss of generality that K = N, we can write f = sup K∈K K k=0 ψ k . Since lower semicontinuity and convexity are preserved under finite sums and taking suprema, it follows that f is lower semicontinuous and convex. In addition, since f (0) = 0, we obtain f ∈ Γ 0 (H). On the other hand, under assumption (ii), the sum in [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF] is finite and our assumptions imply at once that f ∈ Γ 0 (H).

Now let x ∈ H and denote the Euclidean norm on

R m by | • |. Set (∀i ∈ {1, . . . , m})(∀k ∈ K) ξ i,k = x i | e i,k . (14) 
Moreover, for every i ∈ {1, . . . , m}, let y i ∈ H i and set (η i,k ) k∈K = ( y i | e i,k ) k∈K . We derive from (12) and (7) that, for every k ∈ K,

m i=1 (η i,k -π i,k )(ξ i,k -π i,k ) + φ k (π 1,k , . . . , π m,k ) ≤ φ k (η 1,k , . . . , η m,k ). ( 15 
)
Let us first assume that (i) holds. For every k ∈ K observe that, since 0 is a minimizer of φ k , (7) yields prox φ k 0 = 0. Hence, using (12), ( 14), [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF], and Parseval's identity, we obtain

k∈K m i=1 |π i,k | 2 = k∈K |(π 1,k , . . . , π m,k )| 2 = k∈K | prox φ k (ξ 1,k , . . . , ξ m,k )| 2 = k∈K | prox φ k (ξ 1,k , . . . , ξ m,k ) -prox φ k 0| 2 ≤ k∈K |(ξ 1,k , . . . , ξ m,k ) -0| 2 = k∈K |(ξ 1,k , . . . , ξ m,k )| 2 = k∈K m i=1 |ξ i,k | 2 = m i=1 x i 2 . ( 16 
)
Therefore, (∀i ∈ {1, . . . , m}) k∈K |π i,k | 2 < +∞. Consequently, we can define

(∀i ∈ {1, . . . , m}) z i = k∈K π i,k e i,k , (17) 
which is equally well defined under assumption (ii) as K is then finite. It remains to show that (z i ) 1≤i≤m = prox f (x 1 , . . . , x m ). Summing over k in [START_REF] Chaux | Image analysis using a dual-tree M -band wavelet transform[END_REF] 

yields k∈K m i=1 (η i,k -π i,k )(ξ i,k -π i,k ) + k∈K φ k (π 1,k , . . . , π m,k ) ≤ k∈K φ k (η 1,k , . . . , η m,k ) (18) 
and, therefore,

m i=1 y i -z i | x i -z i + g(z 1 , . . . , z m ) ≤ g(y 1 , . . . , y m ). (19) 
In view of (7), the proof is complete.

Proposition 3.5 For every j ∈ {1, . . . , q}, let G j be a real Hilbert space, let ϕ j ∈ Γ 0 (G j ), and, for every i ∈ {1, . . . , m}, let

L j,i ∈ B (H i , G j ). Set f : H → ]-∞, +∞] x → q j=1 ϕ j m i=1 L j,i x i ( 20 
)
and suppose that, for every j ∈ {1, . . . , q}, there exists α j ∈ ]0, +∞[ such that

(∀k ∈ {1, . . . , q}) m i=1 L j,i • L * k,i = α j Id , if j = k; 0, otherwise. (21) 
Then f ∈ Γ 0 (H) and, for every x ∈ H,

prox f x = (p 1 , . . . , p m ) (22) 
where, for every i ∈ {1, . . . , m},

p i = x i + q j=1 α -1 j L * j,i prox α j ϕ j m k=1 L j,k x k - q j=1 α -1 j L * j,i m k=1 L j,k x k . ( 23 
)
Proof 3.6 Let us denote by G the product space G 1 × • • • × G q equipped with the usual vector space structure and the scalar product

(y, z) → q j=1 α -1 j y j | z j . ( 24 
)
We can write f = g • L, where

g : G → ]-∞, +∞] y → q j=1 ϕ j (y j ) (25) 
and L ∈ B (H, G) is defined by

L : H → G x → m i=1 L 1,i x i , . . . , m i=1 L q,i x i . ( 26 
)
It follows from (24) that, for every (x, y) ∈ H × G,

Lx | y = q j=1 α -1 j m i=1 L j,i x i y j = q j=1 α -1 j m i=1 x i | L * j,i y j = m i=1 x i q j=1 α -1 j L * j,i y j , (27) 
from which we deduce that the adjoint of L is

L * : G → H y → q j=1 α -1 j L * j,1 y j , . . . , q j=1 α -1 j L * j,m y j . ( 28 
)
We then get from (21

) that L • L * = Id . Hence, Lemma 3.2 implies that f = g • L ∈ Γ 0 (H) and that prox g•L = Id +L * • (prox g -Id ) • L. (29) 
In addition, it follows from (25) and (24) that, for every y ∈ G, prox g y = (prox α 1 ϕ 1 y 1 , . . . , prox αqϕq y q ). (

Altogether, (26), ( 28), [START_REF] Kang | Generalized multichannel image deconvolution approach and its applications[END_REF], and (30) yield ( 22)- [START_REF] Daubechies | Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising[END_REF].

Corollary 3.7 Let ϕ ∈ Γ 0 (G) and, for every i ∈ {1, . . . , m}, let

L i ∈ B (H i , G). Set f : H → ]-∞, +∞] x → ϕ m i=1 L i x i (31) 
and suppose that there exists α ∈ ]0, +∞[ such that

m i=1 L i • L * i = α Id . ( 32 
)
Then f ∈ Γ 0 (H) and, for every x ∈ H, prox f x = (p 1 , . . . , p m ) where, for every i ∈ {1, . . . , m},

p i = x i + α -1 L * i prox αϕ m k=1 L k x k -α -1 L * i m k=1 L k x k . (33) 
Proof 3.8 Set q = 1 in Proposition 3.5.

Proposition 3.9 Suppose that G has finite dimension K, let (φ k ) 1≤k≤K be functions in Γ 0 (R), and let (e k ) 1≤k≤K be an orthonormal basis of G. For every i ∈ {1, . . . , m}, let L i ∈ B (H i , G) and suppose that there exists {α k } 1≤k≤K ⊂ ]0, +∞[ such that

(∀y ∈ G) m i=1 L i L * i y = K k=1 α k y | e k e k . (34) 
Set

f : H → ]-∞, +∞] : x → K k=1 φ k m j=1 L j x j e k (35) 
and, for every k ∈ {1 . . . , K},

π k = 1 α k prox α k φ k m j=1 L j x j e k . ( 36 
)
Then f ∈ Γ 0 (H) and, for every x ∈ H, prox f x = (p i ) 1≤i≤m where, for every i ∈ {1, . . . , m},

p i = x i + L * i K k=1 π k - 1 α k m j=1 L j x j | e k e k . ( 37 
)
Proof 3.10 For every j ∈ {1, . . . , K}, set G j = R, ϕ j = φ j , and

(∀i ∈ {1, . . . , m}) L j,i : H i → G j : x → L i x | e j , (38) 
hence L * j,i : G j → H i : ξ → ξ L * i e j . (39) 
Thus, for every j and k in {1, . . . , K} and every ξ ∈ R, we derive from (34) that

m i=1 L j,i L * k,i ξ = m i=1 L j,i ξ L * i e k = ξ m i=1 (L i L * i )e k | e j = ξ K l=1 α l e k | e l e l e j = ξ K l=1 α l e k | e l e l | e j . (40) 
Therefore, for every j ∈ {1, . . . , K}, (21) is satisfied. In turn, Proposition 3.5 with q = K guarantees that f ∈ Γ 0 (H), and (23) reduces to (37).

Multicomponent proximal algorithms

We present several algorithms for solving Problem 1.1 under various assumptions on the functions involved. Most of these algorithms are tolerant to errors in the computation of proximal points and gradients. To quantify the amount of error which is tolerated, it will be convenient to use the following notation: given two sequences (x n ) n∈N and (y n ) n∈N in H,

(∀n ∈ N) x n ≈ y n ⇔ n∈N x n -y n < +∞. (41) 

Forward-backward splitting

Problem 4.1 In Problem 1.1, suppose that p = 2 and that f 2 is differentiable on H with a β-Lipschitz continuous gradient for some β ∈ ]0, +∞[. Hence, the problem is to minimize

x 1 ∈H 1 ,..., xm∈Hm f 1 (x 1 , . . . , x m ) + f 2 (x 1 , . . . , x m ), (42) 
under the assumption that solutions exist.

The particular case when f 1 is a separable sum and f 2 involves a linear mixture of the variables was investigated in [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF]. The following result addresses the general case; it implicitly assumes that the proximity operator of f 1 can be computed to within a quantifiable error. Theorem 4.1 Let (x 1,n ) n∈N , . . . , (x m,n ) n∈N be sequences generated by the following routine.

Initialization     ε ∈ ]0, min{1, 1/β}[ For i = 1, . . . , m ⌊ x i,0 ∈ H i For n = 0, 1, . . .           (y i,n ) 1≤i≤m ≈ ∇f 2 (x i,n ) 1≤i≤m γ n ∈ [ε, (2/β) -ε] (u i,n ) 1≤i≤m ≈ prox γnf 1 (x i,n -γ n y i,n ) 1≤i≤m λ n ∈ [ε, 1] For i = 1, . . . , m ⌊ x i,n+1 = x i,n + λ n (u i,n -x i,n )
Then, for every i ∈ {1, . . . , m}, (x i,n ) n∈N converges weakly to a point (i) Multicomponent version of variants of the above forward-backward algorithm such as the Nesterov-like first-order methods [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF][START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF] can be obtained by similar reformulations in H. However, for these methods, convergence of the iterates ((x i,n ) 1≤i≤m ) n∈N to a solution to Problem 4.1 is not guaranteed, even in a finite-dimensional setting.

x i ∈ H i . Moreover, (x i ) 1≤i≤m is a solution to Problem 4.1.
(ii) Strong convergence conditions in Theorem 4.1 can be derived from [21, Theorem 3.4(iv)].

Douglas-Rachford splitting

In this section, we relax the assumption of smoothness on f 2 and assume that its proximity operator is implementable to within a quantifiable error.

Problem 4.2 In Problem 1.1, suppose that p = 2 and that

0 ∈ sri(dom f 1 -dom f 2 ). (43) 
Hence, the problem is to minimize

x 1 ∈H 1 ,..., xm∈Hm f 1 (x 1 , . . . , x m ) + f 2 (x 1 , . . . , x m ), (44) 
under the assumption that solutions exist.

Theorem 4.4 Let (x 1,n ) n∈N , . . . , (x m,n ) n∈N be sequences generated by the following routine.

Initialization       ε ∈ ]0, 1[ γ ∈ ]0, +∞[ For i = 1, . . . , m ⌊ x i,0 ∈ H i For n = 0, 1, . . .         (y i,n ) 1≤i≤m ≈ prox γf 2 (x i,n ) 1≤i≤m (u i,n ) 1≤i≤m ≈ prox γf 1 (2y i,n -x i,n ) 1≤i≤m λ n ∈ [ε, 2 -ε] For i = 1, . . . , m x i,n+1 = x i,n + λ n (u i,n -y i,n ).
Then, for every i ∈ {1, . . . , m}, (x i,n ) n∈N converges weakly to a point (ii) If H is finite dimensional, the qualification condition (43) reduces to

x i ∈ H i . Moreover, prox γf 2 (x 1 , . . . , x m ) is a solution to Problem 4.2. Furthermore, if H is finite dimensional, the sequence ((y i,n ) 1≤i≤m ) n∈N converges to prox γf 2 (x 1 , . . . , x m ).
(ri dom f 1 ) ∩ (ri dom f 2 ) = ∅. ( 45 
)

Parallel proximal algorithm (PPXA)

The algorithm presented in this section aims at solving Problem 1.1 under minimal technical assumptions. Its cost of implementation depends on the ease of (approximate) computation of the individual proximity operators.

Problem 4.3 In Problem 1.1, suppose that 0 ∈ sri(D -dom f 1 × • • • × dom f p ) (46) 
where D = (x, . . . , x) x ∈ H . The problem is to minimize

x 1 ∈H 1 ,..., xm∈Hm p k=1 f k (x 1 , . . . , x m ), (47) 
under the assumption that solutions exist.

In [START_REF] Afonso | An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[END_REF], a particular instance of Problem 4.3 in finite dimensional spaces is considered. It is approached via the alternating direction method of multipliers. The algorithm used below is an application of the PPXA algorithm proposed in [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF] that allows us to address the general case. Theorem 4.7 Let (x 1,n ) n∈N , . . . , (x m,n ) n∈N be sequences generated by the following routine.

Initialization                   ε ∈ ]0, 1[ γ ∈ ]0, +∞[ {ω k } 1≤k≤p ⊂ ]0, 1] and p k=1 ω k = 1 For i = 1, . . . , m        For k = 1, . . . , p ⌊ y i,k,0 ∈ H i x i,0 = p k=1 ω k y i,k,0 For n = 0, 1, . . .                   For k = 1, . . . , p (u i,k,n ) 1≤i≤m ≈ prox γf k /ω k (y i,k,n ) 1≤i≤m For i = 1, . . . , m            s i,n = p k=1 ω k u i,k,n λ n ∈ [ε, 2 -ε] For k = 1, . . . , p ⌊ y i,k,n+1 = y i,k,n + λ n (2s i,n -x i,n -u i,k,n ) x i,n+1 = x i,n + λ n (s i,n -x i,n )
Then, for every i ∈ {1, . . 

ri dom f k = ∅. ( 48 
)
Then it follows from [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF]Proposition 3.6(vi)] that the qualification condition (46) is satisfied.

Dykstra-like splitting

We consider instances of Problem 1.1 in which f p is a simple quadratic function. 

dom f k = ∅, (49) 
and that

f p : x → (p -1) m i=1 x i -z i 2 /2
, where z ∈ H. Hence, the problem is to minimize

x 1 ∈H 1 ,..., xm∈Hm p-1 k=1 f k (x 1 , . . . , x m ) + p -1 2 m i=1 x i -z i 2 . ( 50 
) Set f = p-1 k=1 f k /(p -1)
. Then it follows from (49) that f ∈ Γ 0 (H). Hence, in view of (3), Problem 4.4 admits a unique solution, namely prox f z. Theorem 4.10 Let (x 1,n ) n∈N , . . . , (x m,n ) n∈N be sequences generated by the following routine.

Initialization       For i = 1, . . . , m     x i,0 = z i For k = 1, . . . , p -1 ⌊ y i,k,0 = x i,0 For n = 0, 1, . . .               For k = 1, . . . , p -1 (u i,k,n ) 1≤i≤m = prox f k (y i,k,n ) 1≤i≤m For i = 1, . . . , m        x i,n+1 = 1 p -1 p-1 k=1 u i,k,n For k = 1, . . . , p -1 ⌊ y i,k,n+1 = x i,n+1 + y i,k,n -u i,k,n . (51)
Then, for every i ∈ {1, . . . , m}, (x i,n ) n∈N converges strongly to a point x i ∈ H i . Moreover, (x 1 , . . . , x m ) is a solution to Problem 4.4. Remark 4.12 Suppose that (49) is replaced by the stronger condition (46) (applied to the functions (f k ) 1≤k≤p-1 ). Then it follows from [START_REF] Combettes | Iterative construction of the resolvent of a sum of maximal monotone operators[END_REF]Theorem 3.3] that the conclusion of the above theorem remains valid if the proximity operators are implemented approximately in (51).

Applications to image decomposition and recovery

In this section, we apply the algorithms proposed in Section 4 to stereoscopic image restoration, multispectral imaging, and image decomposition.

Stereoscopic image restoration

Problem formulation

We consider the problem of restoring a pair of N -pixel stereoscopic images x 1 ∈ R N and x 2 ∈ R N , which correspond to the left and the right views of the same scene. For a given value of the disparity field, the disparity compensation process between the two images is modeled as

x 1 = Dx 2 + v, (52) 
where the matrix D is in R N ×N [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] and where v stands for modeling errors. The observations consist of degraded versions

z 1 = L 1 x 1 + w 1 and z 2 = L 2 x 2 + w 2 (53) 
of x 1 and x 2 , respectively, where the matrices L 1 ∈ R N ×N and L 2 ∈ R N ×N model the data acquisition process, and where w 1 and w 2 are mutually independent Gaussian noise vectors with independent components which are N (0, σ 2 1 )-and N (0, σ 2 2 )-distributed, respectively. In addition, it is assumed that the decompositions of x 1 and x 2 in orthonormal bases (e 1,k ) 1≤k≤N and (e 2,k ) 1≤k≤N , respectively, of R N are sparse. For every k ∈ {1, . . . , N }, functions φ 1,k ∈ Γ 0 (R) and φ 2,k ∈ Γ 0 (R) are used to promote the sparsity of the decompositions [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF][START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]. The following variational formulation is consistent with the above hypotheses and models.

Problem 5.1 Let ϑ ∈ [0, +∞[. The objective is to minimize x 1 ∈R N , x 2 ∈R N N k=1 φ 1,k ( x 1 | e 1,k ) + N k=1 φ 2,k ( x 2 | e 2,k ) + 1 2σ 2 1 L 1 x 1 -z 1 2 + 1 2σ 2 2 L 2 x 2 -z 2 2 + ϑ 2 x 1 -Dx 2 2 . ( 54 
)
We can formulate Problem 5.1 as an instance of Problem 1.1 with H 1 = H 2 = R N and m = 2 functions, namely

f 1 : (x 1 , x 2 ) → N k=1 φ 1,k ( x 1 | e 1,k ) + N k=1 φ 2,k ( x 2 | e 2,k ) (55) 
and

f 2 : (x 1 , x 2 ) → 1 2σ 2 1 L 1 x 1 -z 1 2 + 1 2σ 2 2 L 2 x 2 -z 2 2 + ϑ 2 x 1 -Dx 2 2 . ( 56 
)
Proposition 5.1 Let x 1 and x 2 be arbitrary vectors in R N . Then f 2 is differentiable at (x 1 , x 2 ) and

∇f 2 (x 1 , x 2 ) = 1 σ 2 1 L ⊤ 1 (L 1 x 1 -z 1 ) + ϑ(x 1 -Dx 2 ), 1 σ 2 2 L ⊤ 2 (L 2 x 2 -z 2 ) + ϑD ⊤ (Dx 2 -x 1 ) . (57)
Moreover, ∇f 2 is β-Lipschitz continuous, with 

β = max{σ -2 1 L 1 2 , σ -2 2 L 2 2 } + ϑ(1 + D 2 ). (58 
L = σ -1 1 L 1 [0] [0] σ -1 2 L 2 and M = √ ϑ I -D [0] [0] . (59) 
Then, using matrix notation, we can write

∇f 2 x 1 x 2 = (L ⊤ L + M ⊤ M ) x 1 x 2 -L ⊤ σ -1 1 z 1 σ -1 2 z 2 . ( 60 
)
Hence, a Lipschitz constant of ∇f 2 is L ⊤ L + M ⊤ M , where • denotes the spectral norm. To obtain a tractable bound, we observe that

L ⊤ L + M ⊤ M ≤ L ⊤ L + M ⊤ M = L 2 + M 2 = L 2 + ϑ(1 + D 2 ). ( 61 
) Now set x = x 1 x 2 ⊤ . Then Lx 2 = σ -2 1 L 1 x 1 2 + σ -2 2 L 2 x 2 2 ≤ σ -2 1 L 1 2 x 1 2 + σ -2 2 L 2 2 x 2 2 ≤ max{σ -2 1 L 1 2 , σ -2 2 L 2 2 } x 2 . ( 62 
)
Hence, L 2 ≤ max{σ -2 1 L 1 2 , σ -2 2 L 2 2 } and (61) yields L ⊤ L + M ⊤ M ≤ β.
In view of Proposition 5.1, Problem 5.1 can be solved by the forward-backward algorithm (see Theorem 4.1).

Numerical experiments

Experimental results are displayed in Figure 1 for stereoscopic images of size 256 × 256 (N = 256 2 ). In this example, L 1 and L 2 are periodic convolution operators with motion kernel blur of sizes 7 × 7 and 3 × 3, respectively. This kind of blur was considered in a related context in [START_REF] Pedone | Blur and contrast invariant fast stereo matching[END_REF]. A white Gaussian noise is added corresponding to a blurred signal-to-noise-ratio (BSNR) of 21.6 dB for z 1 and 21.8 dB for z 2 . The observed image z i with i ∈ {1, 2} being degraded by an additive noise with variance σ 2 i , the BSNR is defined as 10 log 10 L i x i 2 /(N σ 2 i ) . In addition, (e 1,k ) 1≤k≤N and (e 2,k ) 1≤k≤N are symmlet wavelet orthonormal bases (length 6) over 2 resolution levels. For every k ∈ {1, . . . , N },

φ 1,k = µ 1,k | • | p 1,k and φ 2,k = µ 2,k | • | p 2,k , where {µ 1,k , µ 2,k } ⊂ ]0, +∞[ and {p 1,k , p 2,k } ⊂ [1, +∞[.
The operators (prox φ 1,k ) 1≤k≤N and (prox φ 2,k ) 1≤k≤N can be calculated explicitly [14, Examples 4.2 and 4.4]. The proximity operator of f 1 can thus be deduced from Proposition 3.3, the separability of this function, and [21, Lemma 2.8 and 2.9]. For every k ∈ {1, . . . , N }, the values of µ 1,k , µ 2,k , p 1,k , and p 2,k are chosen using a maximum likelihood approach in a subband-adaptive manner with p 1,k and p 2,k in {1, 4/3, 3/2, 2}. The value of ϑ is selected so as to maximize the signal-to-noise-ratio (SNR). The SNR between an image y and the original image y is defined as 20 log 10 ( y / yy ). In our experiments we also propose to compare the restored images in terms of structural similarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. The SSIM takes on values from -1 to 1. The value 1 is achieved for two identical images. The disparity map has been estimated by using the method described in [START_REF] Miled | A convex optimization approach for depth estimation under illumination variation[END_REF]. Note that the existence of a solution to Problem 5.1 is secured by the fact that f 1 + f 2 is a coercive function in Γ 0 (R N ⊕ R N ) [21, Propositions 3.1(i) and 5.15(i)]. Thus, Problem 5.1 is a special case of Problem 4.1. In this context, setting λ n ≡ 1, the forward-backward algorithm assumes the following form.

Initialization         σ 1 = σ 2 = 12 ϑ = 0 or ϑ = 1.6 × 10 -3 γ = 1.9/ max{σ -2 1 L 1 2 , σ -2 2 L 2 2 }+ϑ(1 + D 2 ) x 1,0 = z 1 x 2,0 = z 2 For n = 0, 1, . . .              y 1,n = σ -2 1 L ⊤ 1 (L 1 x 1,n -z 1 ) + ϑ(x 1,n -Dx 2,n ) y 2,n = σ -2 2 L ⊤ 2 (L 2 x 2,n -z 2 ) -ϑD ⊤ (x 1,n -Dx 2,n ) x 1,n+1 = N k=1 prox γφ 1,k x 1,n -γy 1,n | e 1,k e 1,k x 2,n+1 = N k=1 prox γφ 2,k x 2,n -γy 2,n | e 2,k e 2,k
When ϑ = 0, there is no coupling between the left and right views (images in the third row of Figure 1). As can be observed in Figure 1, the coupling term leads to a significant improvement of the restoration, especially for the most degraded image (bottom-left image).

Using ϑ = 1.6×10 -3 , we compare the forward-backward algorithm of Theorem 4.1 (implemented with λ n ≡ 1 and γ n ≡ 1.99/β) to a multicomponent version of the Beck-Teboulle algorithm [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] and a multicomponent version of the Nesterov algorithm [START_REF] Nesterov | Primal-dual subgradient methods for convex problems[END_REF]. Although, contrary to the forwardbackward algorithm, the Beck-Teboulle and Nesterov algorithms do not insure convergence of the iterates, they are known to provide a theoretically optimal convergence rate for the objective function. However, in this example, their performance appear to be quite comparable on that score (see Figure 2). 

Multispectral image denoising

Problem formulation

A common multispectral image processing problem is to denoise m images (y i ) 1≤i≤m in R N from noisy observations (z i ) 1≤i≤m given by

(∀i ∈ {1, . . . , m}) z i = y i + w i , (63) 
where (w i ) 1≤i≤m are realizations of mutually independent zero-mean white Gaussian noise processes with respective variances (σ 2 i ) 1≤i≤m . Early methods for multispectral image recovery are described in [START_REF] Hunt | Karhunen-Loève multispectral image restoration, part I: theory[END_REF]. A tutorial on wavelet-based multispectral denoising can be found in [START_REF] Chaux | Wavelet transform for the denoising of multivariate images[END_REF].

To solve this denoising problem, we assume that, for every i ∈ {1, . . . , m}, y i satisfies some constraint represented by a nonempty closed convex set C i ⊂ R N , and that it admits a sparse decomposition in an orthonormal basis (e i,k ) 1≤k≤N of R N . In addition, similarities between the images are promoted by penalizing a distance between their components in some orthonormal basis (b k ) 1≤k≤N of R N . These considerations lead to the variational problem minimize

y 1 ∈C 1 ,..., ym∈Cm m i=1 1 2σ 2 i y i -z i 2 + m i=1 N k=1 µ i,k | y i | e i,k | + m-1 i=1 m j=i+1 ϑ i,j N k=1 | y i -y j | b k | (64)
where, for every i ∈ {1, . . . , m}, { µ i,k } 1≤k≤N ⊂ ]0, +∞[ and { ϑ i,j } i+1≤j≤m ⊂ ]0, +∞[. After appropriate rescaling of the variables, this problem can be reformulated as follows.

Problem 5.2 For every i ∈ {1, . . . , m}, let {µ i,k } 1≤k≤N ⊂ ]0, +∞[ and {ϑ i,j } i+1≤j≤m ⊂ ]0, +∞[.

The objective is to minimize

x 1 ∈R N ,..., xm∈R N p -1 2 m i=1 x i -σ -1 i z i 2 + m i=1 N k=1 µ i,k σ i | x i | e i,k | + m-1 i=1 m j=i+1 ϑ i,j N k=1 | σ i x i -σ j x j | b k | + m i=1 ι C i (σ i x i ). ( 65 
)
To cast this problem in the format of Problem 1.1, let us define

J = (i, j) ∈ N 2 1 ≤ i ≤ m -1, i + 1 ≤ j ≤ m ( 66 
)
and

i : J → 1, . . . , m(m -1)/2 (i, j) → m(i -1) -i(i + 1)/2 + j. (67) 
Moreover, let us set p = m(m -1)/2 + 3 and

                                     (∀(i, j) ∈ J) f i(i,j) : (x 1 , . . . , x m ) → ϑ i,j N k=1 | σ i x i -σ j x j | b k | f p-2 : (x 1 , . . . , x m ) → m i=1 N k=1 µ i,k σ i | x i | e i,k | f p-1 : (x 1 , . . . , x m ) → m i=1 ι C i (σ i x i ) f p : (x 1 , . . . , x m ) → p -1 2 m i=1 x i -σ -1 i z i 2 .
(68)

Note that, for every k ∈ {1, . . . , p -2}, dom

f k = (R N ) m and dom f p-1 = σ -1 1 C 1 × • • • × σ -1 m C m .
Hence, since the sets (C i ) 1≤i≤m are nonempty, (49) holds and Problem 5.2 can be solved by the Dykstra-like algorithm presented in Theorem 4.10, with

H 1 = • • • = H m = R N .
An explicit form of the proximity operators of the functions (f k ) 1≤k≤m(m-1)/2 can be deduced from Proposition 3.9. Indeed, for every (i, j) ∈ J, we can set in this proposition

H 1 = • • • = H m = G = R N , (∀k ∈ {1, . . . , N }) and φ k = ϑ i,j | • |, and define the matrices (L ℓ ) 1≤ℓ≤m in R N ×N as (∀ℓ ∈ {1, . . . , m}) L ℓ =      σ ℓ I , if ℓ = i; -σ ℓ I , if ℓ = j; 0 otherwise. ( 69 
)
Finally, the proximity operator of f p-2 can be derived from Proposition 3.3 combined with the separability of this function, [21, Lemma 2.8 and 2.9], and [START_REF] Chaux | A variational formulation for framebased inverse problems[END_REF]Example 4.2]. The proximity operator of f p-1 is provided in Example 3.1. (chosen subband-adaptive by a maximum likelihood approach), and of the coupling parameters ϑ 1,2 , ϑ 1,3 , and ϑ 2,3 are selected so as to maximize the SNR. For every i ∈ {1, . . . , m}, C i = [0, 255] N models the constraint on the range of pixel values. The resulting Dykstra-like algorithm is described below.

Numerical experiments

Initialization             σ 1 = 11 ; σ 2 = 12 ; σ 3 = 13 y 1,1,0 = . . . = y 1,5,0 = x 1,0 = z 1 y 2,1,0 = . . . = y 2,5,0 = x 2,0 = z 2 y 3,1,0 = . . . = y 3,5,0 = x 3,0 = z 3 α 1,2 = σ 2 1 + σ 2 2 α 1,3 = σ 2 1 + σ 2 3 α 2,3 = σ 2 2 + σ 2 3 For n = 0, 1, . . .                                                               u 1,1,n = y 1,1,n + α -1 1,2 σ 1 N k=1 prox α 1,2 ϑ 1,2 |•| σ 1 y 1,1,n -σ 2 y 2,1,n | b k + σ 1 y 1,1,n -σ 2 y 2,1,n | b k b k u 2,1,n = y 2,1,n -α -1 1,2 σ 2 N k=1 prox α 1,2 ϑ 1,2 |•| σ 1 y 1,1,n -σ 2 y 2,1,n | b k + σ 1 y 1,1,n -σ 2 y 2,1,n | b k b k u 3,1,n = y 3,1,n u 1,2,n = y 1,2,n + α -1 1,3 σ 1 N k=1 prox α 1,3 ϑ 1,3 |•| σ 1 y 1,2,n -σ 3 y 3,2,n | b k + σ 1 y 1,2,n -σ 3 y 3,2,n | b k b k u 2,2,n = y 2,2,n u 3,2,n = y 3,2,n -α -1 1,3 σ 3 N k=1 prox α 1,3 ϑ 1,3 |•| σ 1 y 1,2,n -σ 3 y 3,2,n | b k + σ 1 y 1,2,n -σ 3 y 3,2,n | b k b k u 1,3,n = y 1,3,n u 2,3,n = y 2,3,n + α -1 2,3 σ 2 N k=1 prox α 2,3 ϑ 2,3 |•| σ 2 y 2,3,n -σ 3 y 3,3,n | b k + σ 2 y 2,3,n -σ 3 y 3,3,n | b k b k u 3,3,n = y 3,3,n -α -1 2,3 σ 3 N k=1 prox α 2,3 ϑ 2,3 |•| σ 2 y 2,3,n -σ 3 y 3,3,n | b k + σ 2 y 2,3,n -σ 3 y 3,3,n | b k b k u 1,4,n = N k=1 prox µ 1,k σ 1 |•| y 1,4,n | e 1,k e 1,k u 2,4,n = N k=1 prox µ 2,k σ 2 |•| y 2,4,n | e 2,k e 2,k u 3,4,n = N k=1 prox µ 3,k σ 3 |•| y 3,4,n | e 3,k e 3,k u 1,5,n = P C 1 (σ 1 y 1,5,n ) u 2,5,n = P C 2 (σ 2 y 2,5,n ) u 3,5,n = P C 3 (σ 3 y 3,5,n ) x 1,n+1 = (u 1,1,n + u 1,2,n + u 1,3,n + u 1,4,n + u 1,5,n )/5 x 2,n+1 = (u 2,1,n + u 2,2,n + u 2,3,n + u 2,4,n + u 2,5,n )/5 x 3,n+1 = (u 3,1,n + u 3,2,n + u 3,3,n + u 3,4,n + u 3,5,n )/5 For j = 1, . . . , 5     y 1,j,n+1 = x 1,n+1 + y 1,j,n -u 1,j,n y 2,j,n+1 = x 2,n+1 + y 2,j,n -u 2,j,n y 3,j,n+1 = x 3,n+1 + y 3,j,n -u 3,j,n
It can be observed from the images displayed on the second and third columns of Figure 3 that the introduction of the coupling term has a significant influence on denoising performance. Moreover, in our experiments, we observed that better results were obtained when different bases (b k ) 1≤k≤N , (e 1,k ) 1≤k≤N , . . . , (e m,k ) 1≤k≤N were employed.

It turns out that, in this particular problem, an alternative solution method is PPXA (see Theorem 4.7) applied to the minimization of the sum of the m(m -1)/2 + 2 functions f 1 , f 2 , . . . , f p-2 , and f p-1 + f p defined in (68). The proximity operator of the latter is given by [21, Lemma 2.6(i)]. Indeed, the qualification condition (see ( 48)) is satisfied since

dom f 1 = • • • = dom f p-2 = (R N ) m and, (∀i ∈ {1, . . . , m}) int C i = ]0, 255[ = ∅.
The choice of the PPXA parameters has been optimized empirically for speed of convergence and set to λ n ≡ 1.3, γ = 1, and

ω 1 = • • • = ω p-1 = 1/(p -1). In Figure 4, x n -x ∞ / x 0 -x ∞ is plotted as a function of computation time, where (x n ) n∈N = (x 1,n , x 2,n , x 3,n ) n∈N
is the sequence generated by an algorithm and x ∞ is the unique solution to Problem 5.2. In our experiments, 500 iterations were used to produce this solution. 

Structure-texture image decomposition

An important problem in image processing is to decompose an image into elementary structures. In the context of denoising, this decomposition was investigated in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] with a total variation potential. In [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF], a different potential was used to better penalize strongly oscillating components. The resulting variational problem is not straightforward. Numerical methods were proposed in [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Vese | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF] and experiments were performed for image denoising and analysis problems based on a geometrytexture decomposition. Another challenging problem is to extract meaningful components from a blurred and noise-corrupted image. In the presence of additive Gaussian noise, a decomposition into geometry and texture components is proposed in [START_REF] Anthoine | Deux méthodes de déconvolution et séparation simultanées; application à la reconstruction des amas de galaxies[END_REF][START_REF] Daubechies | Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising[END_REF]. The method developed in the present paper, will make it possible to consider general (not necessarily additive and Gaussian) noise models and arbitrary linear degradation operators. We consider a simple geometry-texture decomposition from a degraded observation.

Problem formulation

In this experiment, the observed image z ∈ R N is obtained by multiplying the original image x ∈ R N with a matrix T ∈ R N ×N , which models a blur, and corrupting T x by a Poisson noise with scaling parameter α. It is assumed that T has its entries in [0, +∞[ andeach of its rows is nonzero.

(70)

The inverse problem we address is to obtain the decomposition of x into the sum of a geometry and a texture component, say

x = R 1 (x 1 ) + R 2 (x 2 ), (71) 
where R 1 : R N 1 → R N and R 2 : R N 2 → R N are known operators. The vectors x 1 ∈ R N 1 and x 2 ∈ R N 2 to be estimated parameterize, respectively, the geometry and the texture components.

We consider a simple instance of (71) involving a linear mixture:

N 1 = N , R 1 : x 1 → x 1 , and R 2 : x 2 → F ⊤ x 2
, where F ⊤ ∈ R N ×K is a linear tight frame synthesis operator. In other words, the information regarding the texture component pertains to the coefficients x 2 of its decomposition in the frame. The tightness condition implies that

F ⊤ F = ν Id , for some ν ∈ ]0, +∞[ . (72) 
Thus, the original image is decomposed as

x = x 1 + F ⊤ x 2 . It is known a priori that x ∈ C 1 ∩ C 2 , where C 1 = [0, 255] N (73) 
models the constraint on the range of pixel values, and

C 2 = x ∈ R N x = (η k ) 1≤k≤N , k∈I |η k | 2 ≤ δ , (74) 
for some δ ∈ ]0, +∞[, models an energy constraint on the 2-D DFT x of the original image in some low frequency band I ⊂ {1, . . . , N }. In addition, to limit the total variation [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] of the geometrical component, the potential x → ψ(Hx, V x) is used, with

ψ : (η k ) 1≤k≤N , (ζ k ) 1≤k≤N → χ N k=1 |η k | 2 + |ζ k | 2 , ( 75 
)
where H ∈ R N ×N and V ∈ R N ×N are matrix representations of the horizontal and vertical discrete differentiation operators, respectively, and where χ ∈ ]0, +∞[. Furthermore, to promote sparsity in the frame of the texture component of the image, the potential

h : (η k ) 1≤k≤K → K k=1 τ k |η k | (76) 
is introduced, where {τ k } 1≤k≤K ⊂ ]0, +∞[. Finally, as a data fidelity term well adapted to Poisson noise, we employ the generalized Kullback-Leibler divergence with a scaling parameter α ∈ ]0, +∞[. Upon setting z = (ζ k ) 1≤k≤N , this leads to the function

g : (ξ k ) 1≤k≤N → N k=1 φ k (ξ k ), (77) 
where, for every k ∈ {1, . . . , K},

φ k : R → ]-∞, +∞] ξ →      -ζ k ln(ξ) + αξ, if ζ k ≥ 0 and ξ > 0; 0, if ξ = 0; +∞, otherwise. (78) 
Altogether, the variational problem is to minimize

x 1 ∈R N , x 2 ∈R K x 1 +F ⊤ x 2 ∈C 1 x 1 +F ⊤ x 2 ∈C 2 ψ(Hx 1 , V x 1 ) + h(x 2 ) + g(T x 1 + T F ⊤ x 2 ). ( 79 
)
This problem is a particular case of ( 2) with m = 2, p = 4, and

           f 1 : (x 1 , x 2 ) → ψ(Hx 1 , V x 1 ) + h(x 2 ), f 2 : (x 1 , x 2 ) → g(T x 1 + T F ⊤ x 2 ), f 3 : (x 1 , x 2 ) → ι C 1 (x 1 + F ⊤ x 2 ), f 4 : (x 1 , x 2 ) → ι C 2 (x 1 + F ⊤ x 2 ). (80) 
However, since the operators (prox f i ) 1≤i≤4 are not easily implementable, we cannot apply directly Theorems 4.1, 4.4, or 4.7. To circumvent this difficulty, a strategy is to decompose (79) into an equivalent problem by introducing auxiliary variables.

A first equivalent problem to (79) is minimize

x 1 ,x 2 ,x 3 ,x 4 ,x 5 ,x 6 x 3 =x 1 +F ⊤ x 2 x 3 ∈C 1 ∩C 2 x 4 =T x 3 x 5 =Hx 1 , x 6 =V x 1 ψ(x 5 , x 6 ) + h(x 2 ) + g(x 4 ), (81) 
where we have introduced the auxiliary variables

(x 3 , x 4 , x 5 , x 6 ) ∈ R N ⊕ R N ⊕ R N ⊕ R N . Problem (81
) is a particular case of ( 2) with m = 6, p = 3, and

     f 1 : (x 1 , . . . , x 6 ) → h(x 2 ) + ι C 1 (x 3 ) + g(x 4 ) + ψ(x 5 , x 6 ), f 2 : (x 1 , . . . , x 6 ) → ι C 2 (x 3 ), f 3 : (x 1 , . . . , x 6 ) → ι {0} (x 1 + F ⊤ x 2 -x 3 ) + ι {0} (T x 3 -x 4 ) + ι {0} (Hx 1 -x 5 ) + ι {0} (V x 1 -x 6 ). (82 
) In this formulation, the rôle of f 3 is to impose the constraints x 1 +F ⊤ x 2 = x 3 , T x 3 = x 4 , Hx 1 = x 5 , and V x 1 = x 6 . As seen in Example 3. 

L 1 =     I F ⊤ -I [0] [0] [0] [0] [0] T -I [0] [0] H [0] [0] [0] -I [0] V [0] [0] [0] [0] -I     . (83) 
It follows from ( 82) and (83) that f 3 = ι ker L 1 , where ker L 1 = x ∈ H L 1 x = 0 . Hence, by Example 3.1 and [24, Chapter 8],

prox f 3 = P ker L 1 = I -L ⊤ 1 L 1 L ⊤ 1 -1 L 1 . (84) 
Under the assumption that the matrices T , H, and V are block-circulant with circulant blocks, they are diagonalized by the 2-D DFT. Hence, combining (84), (83), and (72) we deduce that prox f 3 is computable explicitly. On the other hand, it follows from (82), ( 76), ( 73), ( 77), ( 75), (74), and (83

) that      ri dom f 1 = R N × R K × int C 1 × ]0, +∞[ N × R N × R N ri dom f 2 = R N × R K × int C 2 × R N × R N × R N ri dom f 3 = ker L 1 . (85) 
Hence, qualification condition (48) reduces to

(∃ (x 1 , . . . , x 6 ) ∈ ker L 1 ) x 3 ∈ int C 1 ∩ int C 2 x 4 ∈ ]0, +∞[ N , (86) 
which is equivalent to

(∃(x 1 , . . . , x 6 ) ∈ R N × R K × R N × R N × R N × R N )            x 1 + F ⊤ x 2 = x 3 ∈ int C 1 ∩ int C 2 , T x 3 = x 4 ∈ ]0, +∞[ N Hx 1 = x 5 V x 1 = x 6 . (87) 
This condition is satisfied if Another equivalent formulation of (79) is minimize

T (int(C 1 ∩ C 2 )) ∩ ]0, +∞[ N = ∅. (88) Indeed, let y ∈ T (int(C 1 ∩ C 2 )) ∩ ]0, +∞[ N . Then there exists x ∈ int(C 1 ∩ C 2 ) such that T x = y ∈ ]0, +∞[ N . Hence, for every x 2 ∈ R K , if we set x 3 = x, x 4 = y = T x 3 , x 1 = x 3 -F ⊤ x 2 , x 5 =
x 1 ,x 2 ,x 3 ,x 4 ,x 5 ,x 6 ,x 7 x 3 =x 1 +F ⊤ x 2 x 4 =T x 3 x 5 =Hx 1 , x 6 =V x 1 x 7 =x 3 x 3 ∈C 1 , x 7 ∈C 2 ψ(x 5 , x 6 ) + h(x 2 ) + g(x 4 ), (89) 
where the additional auxiliary variable x 7 ∈ R N has been introduced. Problem (89) is a particular case of (2) with m = 7, p = 2, and

     f 1 : (x 1 , . . . , x 7 ) → h(x 2 ) + ι C 1 (x 3 ) + g(x 4 ) + ψ(x 5 , x 6 ) + ι C 2 (x 7 ) f 2 : (x 1 , . . . , x 7 ) → ι {0} (x 1 + F ⊤ x 2 -x 3 ) + ι {0} (T x 3 -x 4 ) + ι {0} (Hx 1 -x 5 ) +ι {0} (V x 1 -x 6 ) + ι {0} (x 3 -x 7 ). (90) 
As previously observed, since the proximity operators of ψ, h, g, ι C 1 , and ι C 2 are easily computable, so is prox f 1 . Furthermore, if we set

L 2 =       I F ⊤ -I [0] [0] [0] [0] [0] [0] T -I [0] [0] [0] H [0] [0] [0] -I [0] [0] V [0] [0] [0] [0] -I [0] [0] [0] I [0] [0] [0] -I       , (91) 
it can be deduced from (90) that the proximity operator of f 2 = ι ker L 2 can be computed like that of ι ker L 1 . We derive from (90), ( 76), ( 73), ( 77), ( 75), (74), and (91) that

ri dom f 1 = R N × R K × int C 1 × ]0, +∞[ N × R N × R N × int C 2 ri dom f 2 = ker L 2 . (92) 
Hence, arguing as above, (45) reduces to (88), which is seen to be satisfied. This shows that (89) can be solved by the Douglas-Rachford algorithm (see Theorem 4.4 and Remark 4.6(ii)).

Numerical experiments

Figure 5 shows the results of the decomposition into geometry and texture components of an electron microscopy image of size 512 × 512 (N = 512 2 ) degraded by a Gaussian blur of size 5 × 5 and Poisson noise with scaling parameter α = 0.5. The parameter χ of (75) and the parameters (τ k ) 1≤k≤K of (76) are selected so as to maximize the SNR. The matrix F is a tight frame version of the dual-tree transform proposed in [START_REF] Chaux | Image analysis using a dual-tree M -band wavelet transform[END_REF] using symmlet of length 6 applied over 3 resolution levels (ν = 2 and K = 2N ). The same discrete gradient matrices H and V as in [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF] are used. We aim at comparing the PPXA and Douglas-Rachford algorithms in the image decomposition problem under consideration. In both algorithms we set λ n ≡ 1.

In this context, setting ω 1 = ω 2 = ω 3 = 1/3, PPXA assumes the following form. γ = 100 (y 1,1,0 , . . . , y 6,1,0 ) = (z, F ⊤ z, z, z, z, z) (y 1,2,0 , . . . , y 6,2,0 ) = (z, F ⊤ z, z, z, z, z) (y 1,3,0 , . . . , y 6,3,0 ) = (z, F ⊤ z, z, z, z, z) For i = 1, . . . , 6

x i,0 = (y i,1,0 + y i,2,0 + y i,3,0 )/3

For n = 0, 1, . . . u i,k,n y i,1,n+1 = y i,1,n + 2s i,nx i,nu i,1,n y i,2,n+1 = y i,2,n + 2s i,nx i,nu i,2,n y i,3,n+1 = y i,3,n + 2s i,nx i,nu i,3,n x i,n+1 = x i,n + s i,nx i,n

                                u 1,1,n = y 1,
On the other hand, the Douglas-Rachford algorithm reduces to the following. Initialization γ = 100 (x 1,0 , . . . , x 7,0 ) = (z, F ⊤ z, z, z, z, z, z)

For n = 0, 1, . . . For i = 1, . . . , 7 ⌊ x i,n+1 = x i,n + u i,ny i,n

                     y 1,n = x 1,
In Figure 6, the value of y ny ∞ / y 0y ∞ for the sequence (y n ) n∈N = (y 1,n , . . . , y 7,n ) n∈N of Theorem 4.4 and x nx ∞ / x 0x ∞ for the sequence (x n ) n∈N = (x 1,n , . . . , x 6,n ) n∈N of Theorem 4.7 (where y ∞ and x ∞ denote the respective limits) are plotted as a function of the computation time in seconds. In our experiments, 1000 iterations were used to produce a solution. 

Conclusion

In this paper, the proximal formalism has been applied to multicomponent signal/image processing. Expressions of new proximity operators in product spaces have been derived. The proposed multicomponent framework has been illustrated through three different applications: stereocospy, multispectral imagery, and decomposition into geometry and texture components. Another field of application in which these techniques could be useful is the processing of color images. The proposed proximal formalism can also be used to derive algorithms for complex signal and image processing by regarding a complex signal as a signal with m = 2 real components, namely its real and imaginary parts.

Proof 4 . 2

 42 Apply[START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] Theorem 3.4(i)] in H and use (3).

Remark 4. 3

 3 

Proof 4 . 5

 45 Apply[START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] Theorem 20] in H and use (3).
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 6i Strong convergence conditions in Theorem 4.4 can be derived from [16, Theorem 2.1(ii)].
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 121152 Figure 1: Stereoscopic image restoration.
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 2 Figure 2: Convergence of the objective function in Problem 5.1 for the forward-backward algorithm (solid line), the Nesterov algorithm (dotted line), and the Beck-Teboulle algorithm (dashed line) versus iteration number.

Figure 3

 3 Figure 3 shows the results obtained on a multispectral image of size 256 × 256 (N = 256 2 ) with 3 channels (m = 3) and pixel values in the range [0, 255]. These images are corrupted by white Gaussian noises with standard deviations σ 1 = 11, σ 2 = 12, and σ 3 = 13 (the corresponding SNR values are indicated in Figure3). On the other hand, (b k ) 1≤k≤N is the Haar orthonormal wavelet basis on 3 resolution levels and, for every i ∈ {1, . . . , m}, (e i,k ) 1≤k≤N are symmlet orthonormal wavelet bases (length 6) on 3 resolution levels. The values of the regularization parameters ((µ i,k ) 1≤i≤3 ) 1≤k≤N (chosen subband-adaptive by a maximum likelihood approach), and of the coupling parameters ϑ 1,2 , ϑ 1,3 , and ϑ 2,3 are selected so as to maximize the SNR. For every i ∈ {1, . . . , m}, C i = [0, 255] N models the constraint on the range of pixel values. The resulting Dykstra-like algorithm is described below.

Figure 4 :

 4 Figure 4: Problem 5.2: Convergence profiles of the Dykstra-like algorithm (solid line) and of PPXA (dashed line) versus computation time in seconds.
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 5 Figure 5: Decomposition and restoration results. 27

Figure 6 :

 6 Figure 6: Convergence profiles of the Douglas-Rachford algorithm (solid line) and PPXA (dashed line) versus computation time in seconds.

  1, prox ι C 1 = P C 1 and prox ι C 2 = P C 2 . On the other hand, the proximity operators of ψ, h, and g can be obtained from [19, Proposition 2.8(i)], [21, Example 2.16], and [17, Example 30], respectively. In turn, since f 1 is separable, its proximity operator follows straightforwardly componentwise. Now set

  Hx 1 , and V x 1 = x 6 , (87) is seen to hold. Since (73) and (74) yield int(C 1 ∩ C 2 ) = ∅, we deduce from (70) that (88) (and hence (48)) is satisfied. Thus, (81) can be solved by PPXA (see Theorem 4.7 and Remark 4.9).

  1,n u 2,1,n = prox 3γh (y 2,1,n ) u 3,1,n = P C 1 (y 3,1,n ) u 4,1,n = prox 3γg (y 4,1,n ) (u 5,1,n , u 6,1,n ) = prox 3γψ (y 5,1,n , y 6,1,n ) (u 1,2,n , u 2,2,n ) = (y 1,2,n , y 2,2,n ) u 3,2,n = P C 2 (y 3,2,n ) (u 4,2,n , u 5,2,n , u 6,2,n ) = (y 4,2,n , y 5,2,n , y 6,2,n ) (u 1,3,n , . . . , u 6,3,n ) = P ker L 1 (y 1,3,n , . . . , y 6,3,n ) For i = 1, . . . , 6

	          	s i,n = (1/3)	3 k=1

  n y 2,n = prox γh (x 2,n ) y 3,n = P C 1 (x 3,n ) y 4,n = prox γg (x 4,n ) (y 5,n , y 6,n ) = prox γψ (x 5,n , x 6,n ) y 7,n = P C 2 (x 7,n ) (u 1,n , . . . , u 7,n ) = P ker L 2 2(y 1,n , . . . , y 7,n ) -(x1,n , . . . , x 7,n )
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