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Maximal displacement in a branching random walk
through interfaces

Bastien Mallein∗†

June 12, 2017

Abstract
In this article, we study a branching random walk in an environment which depends on the

time. This time-inhomogeneous environment consists of a sequence of macroscopic time intervals, in
each of which the law of reproduction remains constant. We prove that the asymptotic behaviour
of the maximal displacement in this process consists of a first ballistic order, given by the solution
of an optimization problem under constraints, a negative logarithmic correction, plus stochastically
bounded fluctuations.

1 Introduction
The theory of branching processes grew from the seminal work of Galton and Watson to model the
dynamic of family names. The Galton-Watson branching process corresponds to a population in which
each individual in the generation n independently produces a random number of children, with the same
distribution. This process is constructed by recurrence as follows: given (ξn,k, n ∈ N, k ∈ N) an i.i.d.
array of integer-valued random variables, we write

Z0 = 1 and ∀n ∈ N, Zn =
Zn−1∑
j=1

ξn,j .

For (n, j) ∈ N2, ξn,j is the number of children of the jth individual alive at generation n− 1.
A natural development of this model consists of mapping every individual in this Galton-Watson

process with a position on the real line. The initial ancestor –i.e. the one individual alive at time 0– is
positioned at the origin, and the relative position of one individual with respect to its parent is sampled
according to an i.i.d. random variable on R. This process is called branching random walk. In greater
generality, the displacement of a child does not have to be independent of the displacement of its siblings,
or of the number of siblings it has. In this case, the relative position of the children of an individual with
respect to their parent forms a point process on R, which characterizes the reproduction of the individual.

In this article, we take interest in time-inhomogeneous branching random walks, in which the repro-
duction law of individuals depends on the time. Such a time-inhomogeneous branching random walk on
R is a process which starts with one individual located at the origin at time 0, and evolves as follows:
at each time k ∈ N, every individual currently in the process dies, giving birth to a certain number of
children, which are positioned around their parent according to independent versions of a point process,
whose law may depend on the generation of the parent.
∗LPMA, Univ. P. et M. Curie (Paris 6). Research partially supported by the ANR project MEMEMO.
†DMA, École Normale Supérieure (Paris).
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When the law of the point process does not depend on the generation of the individual, and satisfies
some integrability conditions, the asymptotic of the maximal displacement is fully known. In the ’70s,
Hammersley [14], Kingman [18] and Biggins [6] proved this maximal value grows at linear speed almost
surely. Hu and Shi [16] exhibited a logarithmic correction in probability, with almost sure fluctuations;
while Addario-Berry and Reed [2] showed the tightness of the maximal displacement, shifted around its
median. More recently, Aidékon [3] proved the fluctuations converge in law to a random shift of a Gumbel
variable.

Fang and Zeitouni [12] introduced a time-inhomogeneous branching random walks of length n ∈ N,
defined as follows. At each step, individuals split independently into two children, which move around
their parent according to independent Gaussian random variables. During the first n

2 units of time, the
Gaussian random variables have variance σ2

1 , while they have variance σ2
2 after time n

2 . The behaviour
of this process depends on the sign of σ2

2 − σ2
1 . The asymptotic of the maximal displacement is once

again composed by a first ballistic order, a second logarithmic term and fluctuations of order 1; but the
logarithmic correction term exhibits a phase transition as σ2

2 grows bigger than σ2
1 .

This result can be extended to more general time-inhomogeneous environments. In this article, we
do not assume the displacement of the children to be Gaussian, or independent of the displacement of
its siblings. Moreover, we can assume the reproduction law to change more than once in the process.
Let P > 0 be an integer, 0 = α0 < α1 < · · · < αP = 1 be a partition of [0, 1] and (Lp, 1 ≤ p ≤ P ) be
a family of laws of point processes. We study a time-inhomogeneous branching random walk in which
the reproduction law of individuals is equal to Lp between time nαp−1 and nαp. More precisely, given
n ∈ N to be the length of the process, we consider a process starting from one individual alive at time 0
at position 0; such that at each individual alive at generation k ∈ [nαp−1, nαp) reproduces according to
an independent point process with law Lp. We call this process branching random walk through a series
of interfaces, as the way individuals reproduce sharply changes at some given times. We prove that in
this process, the asymptotic of the maximal displacement is again a first ballistic order plus logarithmic
corrections and fluctuations of order 1, under suitable integrability conditions. The value of logarithmic
correction is influenced by the path followed by the individual that reaches the maximal position at time
n.

In this article, c, C are two positive constants, respectively small enough and large enough, which
may change from line to line, and depend only on the law of the random variables we consider. For
a given sequence of random variables (Xn, n ≥ 1), we write Xn = OP(1) if the sequence is tensed, i.e.
limK→+∞ supn≥1 P(|Xn| ≥ K) = 0. Moreover, we always assume the convention max ∅ = −∞ and
min ∅ = +∞, and for u ∈ R, we write u+ = max(u, 0), and log+(u) = (log u)+. Finally, Cb is the set of
continuous bounded functions on R.

In the rest of the introduction, we introduce in Section 1.1 some additional notation on trees, point
processes and branching random walks, to give a formal definition of our model in Section 1.1.4. In
Section 1.2, we detail the heuristic that can be used to conjecture the value of the first two orders of
the asymptotic of Mn, before stating our main result in Section 1.2.5. The rest of the article is devoted
to the proof of this result, using the spinal decomposition of the branching random walk, bounds on
the probability for a –time-inhomogeneous– random walk to make an excursion, and some Lagrange
multipliers analysis.

1.1 Definition of the model and notation
1.1.1 Plane rooted marked trees

Following the Ulam-Harris notations for trees, we write

U∗ =
⋃
n∈N

Nn and U = U∗ ∪ {∅}
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the set of finite sequences of integers, with the convention N0 = {∅}, where ∅ is the sequence of length 0,
which encodes the root of the trees we consider.

Let u = (u(1), . . . u(n)) ∈ U∗, then u represents the u(n)th child of the u(n − 1)th child of ... of
the u(1)th child of the initial individual ∅. We write |u| = n the generation to which u belongs, with
convention |∅| = 0. For any 1 ≤ k ≤ n, we set uk = (u(1), . . . u(k)), and u0 = ∅. We define the application

π : U∗ −→ U
(u(1), . . . u(n)) 7−→ u|u|−1 = (u(1), . . . u(n− 1))

which associates to a vertex u its parent πu. Note that ∅ is the only vertex with no parent. For u, v ∈ U ,
we write u < v if there exists k < |v| such that u = vk, or in other words, if u is an ancestor of v.
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Figure 1: A plane rooted marked tree (T, V )

A plane rooted tree T is a subset of U which satisfies the three following properties:

(T1) the root ∅ ∈ T ;

(T2) if u ∈ T and u 6= ∅ then πu ∈ T ;

(T3) if (u(1), . . . u(n)) ∈ T and v ≤ u(n), then (u(1), . . . u(n− 1), v) ∈ T.

For example, a Galton-Watson tree can be constructed as follows: given a family (ξu, u ∈ U) of i.i.d.
random variables, we define

T = {u ∈ U : ∀k < |u|, u(k) ≤ ξ(uk−1)} ,

which is indeed a tree. Observe that in this settings, if u ∈ T then ξ(u) is the number of children of u.
We call height of T the quantity maxu∈T |u|. All the trees we consider in this article are of finite

height. The set {u ∈ T : |u| = n} is referred to as the nth generation of T, often abbreviated as {|u| = n}.
For a given u ∈ T, we write Ω(u) = {v ∈ T : πv = u} the set of children of u.

A plane rooted marked tree is a pair (T, V ), where T is a plane rooted marked tree and V : T→ R.
In the context of branching random walks, we refer to V (u) as to the position of individual u. The set of
plane rooted marked trees is written T .

3



1.1.2 Point processes

A point process L is a random variable taking values in the set of finite or infinite sequences of real
numbers. Once again, the empty sequence is written ∅. The point processes we consider in this article
admit a maximum and have no accumulation point. Therefore, we write L = (`1, . . . , `N ), where `1 ≥
`2 ≥ · · · is the set of points in L, with the convention `+∞ = −∞ and N is a random variable taking
values in Z+ ∪ {+∞}, which represents the total number of points in L. We write L the law of L.
Using the same vocabulary as in Galton-Watson processes, we say that L never gets extinct and has
supercritical offspring if

P(L = ∅) = P(N = 0) = 0 and E

(∑
`∈L

1
)

= E(N) > 1. (1.1)

For any θ ≥ 0, we write κ(θ) = logE
[∑

`∈L e
θ`
]

the log-Laplace transform of L, and for all a ∈ R,
κ∗(a) = supθ>0 [θa− κ(θ)] its Fenchel-Legendre transform. Let f : R+ → R∪{+∞} be a convex function,
and f∗ its transform. If f∗ is differentiable at point x then

f∗(x) = (f∗)′(x)x− f ((f∗)′(x)) . (1.2)

1.1.3 Branching random walk in time-inhomogeneous environment

A branching random walk is a random variable taking values in T the set of rooted marked trees. Let
n ∈ N and (L1, . . . ,Ln) be a family of point processes laws, which we call the environment of the
branching random walk. The law of the time-inhomogeneous branching random walk (T, V ) of length n
with environment (L1, . . .Ln) is characterized by the three following properties

(BRWtie1) V (∅) = 0;

(BRWtie2) {(V (v)− V (u), v ∈ Ω(u))u ∈ T} is a family of independent point processes;

(BRWtie3) (V (v)− V (u), v ∈ Ω(u)) has law L|u|+1, where Ln+1 = δ∅.

This branching random walk can be constructed as follows. We consider a family of independent point
processes {Lu, u ∈ U , |u| ≤ n− 1}, where Lu has law L|u|+1. For any u ∈ U with |u| < n, we write
Lu = (`u1 , . . . `uN(u)). The plane rooted tree which represents the genealogy of the population is

T = {u ∈ U : |u| ≤ n, ∀k ≤ |u| − 1, u(k + 1) ≤ N(uk)} .

We observe that T is a –time-inhomogeneous– Galton-Watson tree, with reproduction law at generation
k given by the number of points in a point process of law Lk. We set V (∅) = 0 and, for u ∈ T with
|u| = k,

V (u) := V (πu) + `πuu(k) =
k−1∑
j=0

`
uj
u(j+1).

For u ∈ T, we often call path or trajectory of u the sequence (V (u0), V (u1), . . . V (u)) of positions of
the ancestors of u. Finally, we write Mn = max|u|=n V (u) the maximal displacement in the branching
random walk at generation n.
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1.1.4 Branching random walk through a series of interfaces

In this article, we take interest in branching random walks through interfaces. In this model, the time-
inhomogeneous environment consists of a series of macroscopic stages. We set P ∈ N the number of such
stages, 0 = α0 < α1 < · · · < αP = 1 the times at which the interfaces occur, and (Lp, p ≤ P ) a P -uple of
laws of point processes.

For n ∈ N and p ≤ P , we write α(n)
p = bnαpc. The branching random walk through a series of interfaces

–BRWis for short– of length n is a branching random walk in time-inhomogeneous environment, in which
individuals alive at generation k reproduce according to the law Lp for all α(n)

p−1 ≤ k < α
(n)
p . We write

(T(n), V (n)) such a branching random walk. When the value of n is clear in the context, we often omit
the superscripts to make the notations lighter.

The law of (T(n), V (n)) is characterized by the three following properties

(BRWis1) V (n)(∅) = 0 ;

(BRWis2)
{(
V (n)(v)− V (n)(u), v ∈ Ω(u)

)
u ∈ T(n)} is a family of independent point processes ;

(BRWis3)
(
V (n)(v)− V (n)(u), v ∈ Ω(u)

)
has law Lp if nαp−1 ≤ |u| < nαp and is empty otherwise.

Remark 1.1. By splitting the first time-interval of the BRWis into three pieces, we always assume that
the number P of stages we consider is greater than or equal to 3 in the rest of the article. In particular,
the results we obtain here hold for time-homogeneous branching random walks.

1.2 Assumptions and main result
We fix an integer P , a sequence 0 = α0 < α1 < · · · < αP = 1 and a family (Lp, p ≤ P ) of points
processes laws. We write κp the log-Laplace transform of Lp, and κ∗p its Fenchel-Legendre transform. We
introduce some well-known branching random walk estimates, and use them to build heuristics for the
comportment of the BRWis, before stating the main result of this article.

1.2.1 Some well-known estimates for a time-homogeneous branching random walk

We list some classical branching random walk results, that can be found in [8]. Let p ≤ P , we consider
a time-homogeneous branching random walk (Tp, Vp), in which individuals reproduce according to law
Lp. We write Mp,n = max|u|=n Vp(u) its maximal displacement at time n. If there exists θ > 0 such that
κp(θ) < +∞, we set

vp = inf
θ>0

κp(θ)
θ

= sup{a ∈ R : κ∗(a) ≤ 0}. (1.3)

As limn→+∞
Mp,n

n = vp a.s, vp is called the speed of the branching random walk. Under the assumption

∀p ≤ P,∃θp ∈ R+ : θpκ′p(θp)− κp(θp) = 0, (1.4)

we have vp = κ′p(θp). Moreover, the function κ∗p is linked to the density of individuals present in the nth

generation. As proved in [7], we have{
∀a < vp, limn→+∞

1
n log

∑
|u|=n 1{Vp(u)≥na} = −κ∗p(a) a.s.

∀a > vp, limn→+∞
1
n logP [∃|u| = n : Vp(u) ≥ na] = −κ∗p(a).

(1.5)

With high probability, there is no individual above vp, and there is an exponentially large number of
individuals above n(vp− ε). More precisely, by equation (1.5), e−nκ∗(a) is either an approximation of the
number of individuals alive at time n in a neighbourhood of na, or of the probability to observe at least
one individual around na at time n, depending on the sign of κ∗(a).
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1.2.2 Heuristics for the maximal displacement

We now consider the BRWis (T, V ). Given a = (ap, p ≤ P ) ∈ RP –in the rest of the article, we write in
bold letters real P -uples– we take interest in the number of individuals alive at time n such that for any
p < P , their ancestor at time α(n)

p were close to n
∑p
k=1 ak(α(n)

k − α(n)
k−1). For every such individual, we

say that it “follows the path driven by a”.
Using (1.5), we know there are e−α

(n)
1 κ∗1(a1) individuals alive at time α(n)

1 around α(n)
1 a1 if κ∗1(a1) < 0,

and none otherwise. Each individual starts an independent branching random walk from α
(n)
1 a1. Applying

the law of large numbers, we expect e−α
(n)
1 κ∗1(a1)−(α(n)

2 −α(n)
1 )κ∗2(a2) descendants at time α(n)

2 at position
α

(n)
1 a1 + (α(n)

2 − α(n)
1 )a2. More generally, we write

K∗ :
RP → RP

a 7→
(∑p

q=1(αq − αq−1)κ∗1(aq), p ≤ P
)
.

For any p ≤ P , we expect e−nK∗(a)p individuals who followed the path driven by a until time α(n)
p .

Let a ∈ RP , if for all p ≤ P , K∗(a)p ≤ 0, we expect at time n about e−nK∗(a)P individuals who
followed the path driven by a. In particular, this means that there is at least one individual above∑P
p=1(αp − αp−1)ap. On the other hand, if there exists p0 ≤ P such that K∗(a)p0 > 0, then with high

probability, no individual alive at time α(n)
p0 followed this path.

α
(n)
1 α

(n)
2 α

(n)
3

Frontier of the BRWis
Interfaces
Path driven by (vp, p ≤ P )
A non-followed path
The optimal path

generation

position

0

Figure 2: Different path of interest in the BRWis.

We write R =
{

a ∈ RP : ∀p ≤ P,K∗(a)p ≤ 0
}

. Following the heuristic, we expect to find individuals
alive in the process at time n around position nu if and only if u =

∑
(αp−αp−1)ap for some a ∈ R. We

set

vis = sup
a∈R

P∑
p=1

(αp − αp−1)ap (1.6)

which we prove to be the speed of the BRWis.

1.2.3 The optimization problem

According to this heuristic, if the BRWis verifies

∃a ∈ R : vis =
P∑
p=1

(αp − αp−1)ap, (1.7)
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then the path followed by the rightmost individual until time n is driven by the optimal solution a. Under
the additional assumption

∀p ≤ P,∀a ∈ R, κ∗p is differentiable at point a or κ∗p(a) = +∞, (1.8)

this optimal solution satisfies some interesting properties. To guarantee existence and/or uniqueness of
the solutions of (1.7), we need to introduce additional integrability assumptions, such as

∀p ≤ P, κp(0) ∈ (0,+∞) and κ′p(0) exists. (1.9)

Proposition 1.2. If point processes L1, . . .LP verify (1.1), under assumption (1.8), a ∈ R is a solution
of (1.7) if and only if, writing θp =

(
κ∗p
)′ (ap), we have

1. θ is non-decreasing and positive ;

2. if K∗(a)p < 0, then θp+1 = θp ;

3. K∗(a)P = 0.

Under the conditions (1.4) and (1.8), there exists at most one solution to (1.7).
Under the conditions (1.8) and (1.9), there exists at least one solution to (1.7).

The proof of this result, which is a direct application of the theory of Lagrange multipliers, is postponed
to Appendix B. Despite the fact that this would be a natural candidate, the path driven by v :=
(v1, . . . , vP ) is not always the optimal solution. For example, if there exists p ≤ P−1 such that θp > θp+1,
Proposition 1.2 proves that v is not the solution. Loosely speaking, in this case, the path of the rightmost
individual at time n does not stay close to the boundary of the branching random walk at all time.
Remark 1.3. On the other hand, under assumptions (1.4) and (1.8), if θ is positive and non-decreasing,
then v is indeed the optimal solution. In this case, v satisfies the first assumption of Proposition 1.2,
and the two others are an easy consequence of K∗(v)p = 0 for any p ≤ P . This situation corresponds, in
Gaussian settings, to branching random walks with decreasing variance. In this situation, the rightmost
individual at time n stays at any time k < n within range O(n1/2) from the frontier of the BRWis.

1.2.4 On the logarithmic correction

We discuss the heuristic for the logarithmic correction of the BRWis. For a time-homogeneous branch-
ing random walk with reproduction law Lp, under assumption (1.4) and some additional integrability
estimates, we have

M (p)
n = nvp −

3
2θp

logn+OP(1),

and the second order can be directly related, as it is underlined in [5], to the following estimate for a
random walk with finite variance,

logP [Sn ≤ E(Sn) + 1, Sj ≥ E(Sj), j ≤ n] ∼n→+∞ −
3
2 logn.

In effect, the path followed by the rightmost individual at time n made an excursion below the frontier
of the branching random walk.

A similar condition holds for BRWis, the path leading to the rightmost individual at time n stays
below the frontier of the branching random walk at any time k ≤ n. Note that if K∗(a)p = 0, then the
optimal path is at distance o(n) from the frontier of the branching random walk. Moreover, for any p

such that θp+1 > θp, we prove the ancestor at time α(n)
p of the rightmost individual at time n was within
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distance O(1) of the frontier. The logarithmic correction is a sum of terms related to the difficulty for a
random walk to stay below the boundary of the branching random walk, and hit at time n this boundary.

From now on, a stands for the optimal solution of (1.6), and θp = (κ∗p)′(ap). We denote the number
of different values taken by θ by T = #{θp, p ≤ P} and set φ1 < φ2 < · · · < φT the distinct values
taken by θ, listed in the increasing order. For any t ≤ T , we set ft = min{p ≤ P : θp = φt} and
lt = max{p ≤ P : θp = φt}. Observe that for any p ∈ [ft, lt], we have θp = φt. We write

λ =
T∑
t=1

1
2φt

[
1{K∗(a)ft=0} + 1 + 1{K∗(a)lt−1=0}

]
(1.10)

with the convention K∗(a)0 = 0. Condition K∗(a)ft = 0 means that between times α(n)
ft−1 and α

(n)
ft

, the
optimal path stays close to the frontier of the BRWis, which has a cost of order 1

2 logn by the ballot
theorem (see Section 3). Moreover, each time the value of θ changes, the optimal path is localized in a
window of width O(1), which has cost 1

2 logn by the local limit theorem. We prove that under some good
integrability conditions Mn ≈ nv − λ logn. We observe that λ ≥ 1

2φ1
> 0. If P = T = 1, then λ = 3

2φ1
,

which is consistent with the results of Hu–Shi and Addario-Berry–Reed.

1.2.5 The asymptotic of the maximal displacement in the BRWis

We recall that a is the solution of (1.7). We write

B = {p ≤ P : K∗(a)p−1 = K∗(a)p = 0} , (1.11)

such that for any k ∈ ∪p∈B [α(n)
p−1, α

(n)
p ], the path leading to the the rightmost individual is within distance

o(n) from the frontier of the branching random walk. For any p ≤ P , we introduce the random variable

Xp =
∑
`∈Lp

eθp` and X̃p =
∑
`∈Lp

`eθp`, (1.12)

and we assume the following integrability conditions for the point processes:

sup
p≤P

E

∑
`∈Lp

`2eθp`

 < +∞, (1.13)

sup
p∈B

E
[
Xp

(
log+ X̃p

)2
]

+ sup
p∈Bc

E
[
Xp log+Xp

]
< +∞ (1.14)

The following theorem is the main result of the article.

Theorem 1.4. If L1, · · · Lp satisfy (1.1), under assumptions (1.7), (1.8), (1.13) and (1.14), we have

Mn = nvis − λ logn+OP(1).

The rest of the article is organized as follows. In Section 2, we introduce the spinal decomposition,
that links the additive moments of the branching random walk with random walk estimates. In Section
3, we compute upper and lower bounds for the probability for a time-inhomogeneous random walk to
make an excursion above a given curve. In Section 4, we give a tight estimate of the tail of Mn, which is
enough to prove Theorem 1.4, using a standard cutting argument. We discuss in Section 5 consequences
of this result for a branching random walk with one interface.
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2 Spinal decomposition of the time-inhomogeneous branching
random walk

This section is devoted to the proof of a time-inhomogeneous version of the well-known spinal decomposi-
tion of the branching random walk. This result consists of two ways of describing a size-biased version of
the law of the branching random walk. The spinal decomposition has been introduced to study Galton-
Watson processes in [22]. This result is adapted for the first time in [21] to the branching random walk
settings.

2.1 The size-biased law of the branching random walk
Let n ≥ 1 and (Lk, k ≤ n) be a sequence of point processes laws which forms the environment of a
time-inhomogeneous branching random walk (T, V ). For all x ∈ R we set Px the law on T of the marked
tree (T, V + x), and Ex the corresponding expectation.

We write κk(θ) for the log-Laplace transform of Lk and we assume there exists θ > 0 such that
for any k ≤ n we have κk(θ) < +∞. Let Wn =

∑
|u|=n exp

(
θV (u)−

∑n
j=1 κj(θ)

)
. We observe that

Wn > 0,Px − a.s. and Ex(Wn) = ex. We define the law

Px = e−θxWn · Px. (2.1)

The spinal decomposition consists of an alternative construction of the law Pa, as the projection of a law
on the set of planar rooted marked trees with spine, which we define below.

2.2 A law on plane rooted marked trees with spine
Let (T, V ) ∈ T be a tree of height n, and w ∈ {u ∈ T : |u| = n} an individual alive at the nth generation.
The triplet (T, V, w) is a plane rooted marked tree with spine of length n. The spine of a tree is a
distinguished path of length n linking the root and the nth generation. The set of marked trees with
spine of height n is written T̂n. On this set, we define the three following filtrations,

∀k ≤ n, F̂k = σ (u, V (u), u ∈ T, |u| ≤ k) ∨ σ(wj , j ≤ k) and F̂ = F̂n
∀k ≤ n,Fk = σ (u, V (u) : u ∈ T, |u| ≤ k) and F = Fn
∀k ≤ n,Gk = σ (wj , V (wj) : j ≤ k) ∨ σ (u, V (u), u ∈ Ω(wj), j < k) and G = Gn.

The filtration F is the information of the marked tree, obtained by forgetting the spine, G is the sigma-
field of the knowledge of the spine and its children only, and F̂ = F ∨ G is the natural filtration of the
branching random walk with spine.

We now introduce a law P̂x on T̂n. For any k ≤ n, we write L̂k =
(∑

`∈L e
θ`−κk(θ)) · Lk, a law of

a point process with Radon-Nikodým derivative with respect to Lk, and we write L̂k = (̂̀k(j), j ≤ Nk)
an independent point processes of law L̂k. Conditionally on (L̂k, k ≤ n), we choose, for every k ≤ n,
w(k) ≤ Nk independently at random, such that

P
(
w(k) = h

∣∣∣L̂k, k ≤ n) = 1{h≤Nk}
eθ`k(h)∑

j≤Nk e
θ`k(j) .

We denote by wn ∈ U the sequence (w(1), . . . w(n)).
Let {Lu, u ∈ U , |u| ≤ n} be a family of independent point processes such that Lwk = L̂k+1, and if

u 6= w|u|, then Lu has law L|u|+1. For any u ∈ U such that |u| ≤ n, we write Lu = (`u1 , . . . `uN(u)). We
construct the random tree

T = {u ∈ U : |u| ≤ n, ∀1 ≤ k ≤ |u|, u(k) ≤ N(uk−1)} ,

9



time

position

0

w4

(a) Information in F̂ .

time

position

0

(b) Information in F .

time

position

0

w4

(c) Information in G.

Figure 3: The graph of a plane rooted marked tree with spine; and the filtrations of T̂ .

and function V : u ∈ T 7→
∑|u|
k=1 `

uk−1
u(k) . For any x ∈ R, the law of (T, x+ V,wn) ∈ T̂n is written P̂x, and

the corresponding expectation is Êx.
The marked tree with spine (T, x + V,wn) is called branching random walk with spine, and can be

constructed as a process in the following manner. It starts with a unique individual positioned at x at
time 0, which is the ancestral spine w0. At each time k < n, every individual alive at generation k dies.
Each of these individuals gives birth to children, which are positioned around their parent according to
an independent point process. If the parent is wk, then the law of this point process is L̂k, otherwise it is
Lk. Individual wk+1 is then chosen at random among the children u of wk, with probability proportional
to eθV (u). At time n, individuals die without children.

In the rest of the article, we write Px,k for the law of the time-inhomogeneous branching random walk
of length n − k starting from x with environment (Lk+1, . . .Ln). We observe that conditionally on Gk,
the branching random walks of the descendants of the children of wk are independent, and the branching
random walk of the children of u ∈ Ω(wk) has law PV (u),k+1.

Figure 4: Construction of P̂

•
w0

•
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•
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•

P·,1

•
w1

•

P·,2

•

P·,2

•
w2

•

P·,3

•

P·,3

•
w3
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2.3 The spinal decomposition
The following result links the laws P̂x and Px and is the time-inhomogeneous version of the spinal
decomposition.

Proposition 2.1 (Spinal decomposition). For any x ∈ R, we have

Px = P̂x
∣∣∣
F
. (2.2)

Moreover, for any |u| = n, we have

P̂x(wn = u|F) =
exp (θV (u)−

∑n
k=1 κk(θ))

Wn
. (2.3)

Proof. Let n ∈ N and x ∈ R, we introduce the (non-probability) measure P∗x on T̂n, in which every
possible choice of spine has mass 1. More precisely, for any measurable function f : T̂n → R+, we have∫
fdP∗x = Ex

[∑
|w|=n f(T, V, w)

]
. We compute by recurrence on k ≤ n the Radon-Nikodým derivative

of P̂x with respect to P∗x, to prove

dP̂x
dP∗x

∣∣∣∣∣
F̂k

= exp

θ(V (wk)− x)−
k∑
j=1

κj(θ)

 . (2.4)

Observe that for k = 1, (2.4) follows from the definition of L̂1 and w(1). Writing L1 a point process of
law L1 and f a non-negative F̂1 measurable function,

E
[
f(L̂1, w(1))

]
= E

[
N1∑
k=1

f(L̂1, k) eθ`1(k)∑Nk
j=1 e

θ`1(j)

]
= E

[
Nk∑
k=1

f(L1, k)eθ`1(k)−κ1(θ)

]
.

We now assume (2.4) true for some k < n, and we observe that

dP̂x
dP∗x

∣∣∣∣∣
F̂k+1

= dP̂x
dP∗x

∣∣∣∣∣
F̂k

×

 ∑
u∈Ω(wk)

eθ(V (u)−V (wk))−κk+1(θ)

 e−V (wk+1)−V (wk)∑
u∈Ω(wk) e

θ(V (u)−V (wk))−κk+1(θ)

= exp

θ(V (wk)− x)−
k∑
j=1

κj(θ)

 eθ(V (wk+1)−V (wk))−κk+1(θ),

which proves (2.4).
As a consequence, for any f : T → R+ measurable, we have

Êx [f(T, V )] =
∫
T̂n
e
θ(V (w)−x)−

∑n

j=1
κj(θ)f(T, V )dP∗x(T, V, w)

= Ex

f(T, V )
∑
|w|=n

e
θ(V (w)−x)−

∑n

j=1
κj(θ)

 = e−θx Ex [Wnf(T, V )]

11



therefore
d̂Px
∣∣
F

dPx = dPx
dPx = e−θxWn which proves (2.2). Consequently, for any f : T → R+ and u ∈ U with

|u| = n, we have

Êx
[
f(T, V )1{w=u}

]
=
∫
T̂n
e
θ(V (w)−x)−

∑n

j=1
κj(θ)f(T, V )1{w=u}dP∗x(T, V, w)

= Ex

f(T, V )
∑
|v|=n

e
θ(V (v)−x)−

∑n

j=1
κj(θ)1{v=u}


= Ex

[
f(T, V )eθ(V (u)−x)−

∑n

j=1
κj(θ)1{u∈T}

]

= Êx

eθ(V (u)−x)−
∑n

j=1
κj(θ)

e−θxWn
f(T, V )1{u∈T}


= Êx

eθV (u)−
∑n

j=1
κj(θ)

Wn
f(T, V )1{u∈T}

 .

A direct consequence of this result, is the well-known many-to-one lemma. This equation, known at
least from the early work of Peyrière [25] has been used in many forms over the last decades, and we
introduce here its time-inhomogeneous version.
Lemma 2.2 (Many-to-one). We define an independent sequence of random variables (Xk, k ≤ n) that
verifies

∀k ≤ n,∀x ∈ R,P [Xk ≤ x] = E

[∑
`∈Lk

1{`≤x})eθ`−κk(θ)

]
.

We write Sk = S0 +
∑k
j=1Xj for k ≤ n, where Px(S0 = x) = 1. For all x ∈ R, k ≤ n and measurable

non-negative function f , we have

Ex

∑
|u|=k

f(V (u1), . . . V (uk))

 = eθx Ex
[
e
−θSk+

∑k

j=1
κj(θ)f(S1, . . . Sk)

]
. (2.5)

Proof. Let f be a measurable non-negative function and x ∈ R, we have, by Proposition 2.1

Ex

∑
|u|=k

f(V (u1), . . . V (uk))

 = Ex

 eθx
Wk

∑
|u|=k

f(V (u1), . . . V (uk))


= Êx

 eθx
Wk

∑
|u|=k

f(V (u1), . . . V (uk))


= Êx

[
e
−θ(V (wk)−x)+

∑k

j=1
κj(θ)f(V (w1), . . . V (wk))

]
.

We conclude noting that (V (w1), . . . , V (wn)) under P̂x and (S1, . . . Sn) under Px have the same law.

The many-to-one lemma and the spinal decomposition enable to compute additive moments of branch-
ing random walks, by using random walk estimates. These estimates are introduced in the next section,
and extended to include time-inhomogeneous versions.
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3 Some random walk estimates
3.1 Classical random walk estimates
We collect here well-known random walk estimates. We use these to compute the probability for a
random walk with an interface to make an excursion above a given curve. The proofs, rather technical,
are postponed to the Appendix A.

(a) Theorem 3.1 (b) Theorem 3.2 (c) Theorem 3.3

(d) Theorem 3.4 and Lemma 3.6 (e) Hsu–Robbins Theorem 3.5 (f) Lemmas 3.7, 3.8 and 3.9

Figure 5: Illustrations of the events controlled in Section 3.1

We denote by (Tn, n ≥ 0) a one-dimensional centred random walk, with finite variance σ2. The events
we bound are illustrated in Figure 3.1. We begin with a consequence of Stone’s local limit theorem, which
bounds the probability for a random walk to end up in an interval of finite size.

Theorem 3.1 (Stone [26]). There exists C > 0 such that for all a ≥ 0 and h ≥ 0

lim sup
n→+∞

n1/2 sup
|y|≥an1/2

P(Tn ∈ [y, y + h]) ≤ C(1 + h)e−
a2

2σ2 .

Moreover, there exists H > 0 such that for all a < b ∈ R

lim inf
n→+∞

n1/2 inf
y∈[an1/2,bn1/2]

P(Tn ∈ [y, y +H]) > 0.

Similar result is obtained by Caravenna and Chaumont, for a random walk conditioned to stay positive.

Theorem 3.2 (Caravenna–Chaumont [10]). Let (rn) be a positive sequence such that rn = O(n1/2).
There exists C > 0 such that for all a ≥ 0 and h ≥ 0,

lim sup
n→+∞

n1/2 sup
y∈[0,rn]

sup
x≥an1/2

P(Tn ∈ [x, x+ h]|Tj ≥ −y, j ≤ n) ≤ C(1 + h)ae−
a2

2σ2 .
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Moreover, there exists H > 0 such that for all a < b ∈ R+,

lim inf
n→+∞

n1/2 inf
y∈[0,rn]

inf
x∈[an1/2,bn1/2]

P(Tn ∈ [x, x+H]|Tj ≥ −y, j ≤ n) > 0.

Up to a transformation T 7→ T/(2H), which correspond to shrink the space by a factor 1
2H , we assume

in the rest of this article that random walks we consider are such that the lower bounds of Theorems 3.1
and 3.2 both hold with H = 1.

The next result, often called in the literature the “ballot theorem”, give upper and lower bounds for
the probability for a random walk to stay above zero. This result is stated in [19], see also [1] for a review
article on ballot theorems.

Theorem 3.3 (Kozlov [19]). There exists C > 0 such that for all n ≥ 1 and y ≥ 0,

P(Tj ≥ −y, j ≤ n) ≤ C(1 + y)n−1/2.

Moreover, there exists c > 0 such that for all y ∈ [0, n1/2]

P(Tj ≥ −y, j ≤ n) ≥ c(1 + y)n−1/2.

A modification of this theorem, Theorem 3.2 of Pemantle and Peres in [24], expresses the probability
for a random walk to stay above some a boundary which moves “strictly slower than n1/2”.

Theorem 3.4 (Pemantle–Peres [24]). Let f : N → N be an increasing positive function. The condition∑
n≥0

fn
n3/2 < +∞ is necessary and sufficient for the existence of an integer nf such that

sup
n∈N

n1/2P(Tj ≥ −fj , nf ≤ j ≤ n) < +∞.

To bound the probability for a random walk to stay above a linear boundary, we introduce the Hsu–
Robbins theorem, bounding the expected number of times a random walk is above a linear boundary.

Theorem 3.5 (Hsu–Robbins [15]). For any ε > 0, we have
∑
n≥0 P(Tn ≤ −nε) < +∞.

We extend Theorems 3.3 and 3.4, to obtain a quantitative upper bound for the probability of a random
walk to stay above a slowly moving boundary

Lemma 3.6. Let (fn) ∈ Rn. If there exists α ∈ [0, 1/2) and A > 0 such that for any n ∈ N, |fn| ≤ Anα
then there exists C > 0 such that for all y ≥ 0 and n ≥ 1, we have

P(Tj ≥ −y − fj , j ≤ n) ≤ C(1 + y)n−1/2.

In an earlier version of this article, we gave a wrong proof for this fact, as pointed out to us by Ming
Fang. We present a corrected version, in the appendix. The proof uses results from [11].

The next lemma is also proved in Appendix A.1. The following upper bound of the probability for a
random walk to make an excursion holds.

Lemma 3.7. There exists C > 0 such that for all p, q ∈ N, x, h ≥ 0 and y ∈ R, we have

P(Tp+q ∈ [y + h, y + h+ 1], Tj ≥ −x1{j≤p} + y1{p<j≤p+q}, j ≤ p+ q)

≤ C 1 + x

p1/2
1

max(p, q)1/2
1 + h

q1/2 .
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We sum up Theorems 3.3 and 3.4 and Lemmas 3.6 and 3.7 to obtain a general upper bound for
the probability for a time-inhomogeneous random walk to make an excursion. Let p, q, r ∈ N, we write
n = p+q+r, (Xk)k∈N and (X̃k)k∈N two independent families of i.i.d. random variables, with mean 0 and
finite variance, and (Yn)n≥0 a family of independent random variables. We define the time-inhomogeneous
random walk (Sk, k ≤ n) as follows:

Sk =
min{k,p}∑
j=1

Xj +
min{k−p,q}∑

j=1
Yj +

min{k−p−q,r}∑
j=1

X̃j .

Let A ∈ R, and x, y ∈ R+, h ∈ R, we denote by

ΓA,1(x, y, h) = {s ∈ Rn : ∀k ≤ p, sk ≥ −x}

the set of trajectories staying above −x during the initial steps, and by

ΓA,3(x, y, h) = {s ∈ Rn : ∀k ∈ [n− r, n], sk ≥ y +A log n
n−k+1}.

Lemma 3.8. For any A ∈ R and F ⊂ {1, 3}, there exists C > 0 such that for all p, q, r ∈ N, x, y ∈ R+
and h ∈ R, we have

P

Sn +A logn ∈ [y + h, y + h+ 1], (Sk, k ≤ n) ∈
⋂
f∈F

ΓA,f (x, y, h)


≤ C 1 + y1F (1)

p1F (1)/2
1

max(p, r)1/2
1 + h+1F (3)
r1F (3)/2 .

This lemma is proved in Appendix A.2.
We finish this list of results with a lower bound of an event similar to the one studied in the previous

lemma. We consider µ(1), . . . µ(P ) centred probability measures on R with finite variance. The process S
is defined as the sum of independent random variables such that for all k ∈ [α(n)

p−1, α
(n)
p ), Sk+1 − Sk has

law µ(p). For F ⊂ {1, 3} and x, y, δ ∈ R+, we write

ΥF (x, y, δ) =

s ∈ Rn :
∀k ≤ α(n)

1 , sk ≥ −x1{1∈F} − δk1{1 6∈F}
∀k ∈ (α(n)

1 , αnP−1], sk ≥ 0
∀k ∈ (αnP−1, n], sk ≥ y1{3∈F} − δ(n− k)1{3 6∈F}

 .

The next lemma bounds from below the probability for a random walk through a series of interfaces to
be in Υ. This lemma is proved in Appendix A.3.

Lemma 3.9. There exists c > 0 such that for all n ≥ 1 large enough, F ⊂ {1, 3}, x ∈ [0, n1/2],
y ∈ [−n1/2, n1/2] and δ > 0

P(Sn ≤ y + 1, S ∈ ΥF (x, y, δ)) ≥ c1 + x1F (1)
n1F (1)/2

1
n1/2

1
n1F (3)/2

3.2 Extension to enriched random walks
We extend here some of the results of the previous section to a random walk enriched with other random
variables, which only depend on the last step of the random walk. We denote by ((Xn, ξn), n ≥ 0) an
i.i.d. sequence of random variables taking values in R2, such that E(X1) = 0 and E(X2

1 ) < +∞. We set
Tn = T0 +X1 + · · ·+Xn, where Px(T0 = x) = 1. The process (Tn, ξn, n ≥ 0) is an useful toy-model for
the study of the spinal decomposition of the branching random walk, defined in Section 2.2. We begin
with a lemma similar to Theorem 3.3.
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Lemma 3.10. We suppose that E(X1) = 0, E(X2
1 ) < +∞ and E((ξ1)2

+) < +∞. There exists C > 0 that
does not depend on the law of ξ1 such that for any n ∈ N and x ≥ 0, we have

Px [Tj ≥ 0, j ≤ n, ∃k ≤ n : Tk ≤ ξk] ≤ C 1 + x

n1/2

[
P(ξ1 ≥ 0) + E((ξ1)2

+)
]
.

Proof. Let n ∈ N and x ≥ 0. We observe that

Px [Tj ≥ 0, j ≤ n,∃k ≤ n : Tk ≤ ξk] ≤
n∑
k=1

Px [Tk ≤ ξk, Tj ≥ 0, j ≤ n]︸ ︷︷ ︸
πk

.

Applying the Markov property at time k, we obtain

πk ≤ Ex
[
1{Tk≤ξk}1{Tj≥0,j≤k}PTk (Tj ≥ 0, j ≤ n− k)

]
.

By use of Theorem 3.3, for all z ∈ R, we have

Pz [Tj ≥ 0, j ≤ n− k] ≤ C(1 + z)(n− k + 1)−1/21{z≥0}.

Thus, writing (X, ξ) for a copy of (X1, ξ1) independent of (Tn, ξn, n ≥ 0), we have

πk ≤ C(n− k + 1)−1/2 Ex
[
1{ξk≥0}(1 + ξk)1{Tk≤ξk}1{Tj≥0,j≤k}

]
≤ C(n− k + 1)−1/2 Ex

[
1{ξ≥0}(1 + ξ+)1{Tk−1≤ξ++X−}1{Tj≥0,j≤(k−1)}

]
We bound this quantity by conditioning on the value ζ = ξ+ +X− ≥ 0, we obtain

Px(Tk ≤ ζ, Tj ≥ 0, j ≤ k) ≤
{
C (1+x)(1+ζ2)

(k+1)3/2 if ζ2 ≤ k, by Lemma 3.7
C 1+x

(k+1)1/2 otherwise,byTheorem3.3

Summing all these estimates, we obtain

n−1∑
k=0

Px [Tk ≤ ζ, Tj ≥ 0, j ≤ k]
(n− k + 1)1/2 ≤C(1 + x)

min(ζ2,n−1)∑
k=0

1
(n− k + 1)1/2(k + 1)1/2

+ C(1 + x)(1 + ζ2)
n−1∑
k=ζ2

1
(k + 1)3/2(n− k + 1)1/2

≤C(1 + x)(1 + ζ)n−1/2.

As a consequence,

n∑
k=1

πk ≤ C
1 + x

n1/2 E
[
1{ξ≥0}(1 +X− + ξ+)(1 + ξ+)

]
≤ C 1 + x

n1/2

[
1 + E

(
X2
−
)] [

P(ξ ≥ 0) + E
(
ξ2
+
)]

by Cauchy-Schwarz estimate, which ends the proof.

We continue by reprising Lemma 3.7.
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Lemma 3.11. We assume that E(X1) = 0, E(X2
1 ) < +∞ and E((ξ1)2

+) < +∞. For any t ∈ (0, 1), there
exists C > 0 that does not depend of the law of ξ1, such that for all n ∈ N, x, h ≥ 0 and y ∈ R, we have

Px
[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>tn}, j ≤ n, ∃k ≤ n : Tk ≤ ξk + y1{k>tn}

]
≤ C (1 + x)(1 + h)

n3/2

[
P(ξ1 ≥ 0) + E((ξ1)2

+)
]
.

Proof. Let n ∈ N, x, h ≥ 0 and y ∈ R. We denote by p = btnc and by

τ = inf{k ≥ 0 : Tk ≤ ξk + y1{k>p}}.

We observe that

Px
[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>tn}, j ≤ n, τ ≤ n

]
≤ Px

(
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, τ ≤ p

)
+ Px

(
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, p < τ ≤ n

)
. (3.1)

We first take interest in the event {τ ≤ p}. Applying the Markov property at time p, we obtain

Px
[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, τ ≤ p

]
= Ex

[
1{Tj≥0,j≤p}1{τ≤p}φ(Tp)

]
, (3.2)

writing φ(z) = Pz [Tn−p − y − h ∈ [0, 1], Tj ≥ y, j ≤ n− p], for z ∈ R. Applying Lemma 3.8, we have
supz∈R φ(z) ≤ C(1 + h)n−1. Therefore

Px
(
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, τ ≤ p

)
≤ C 1 + h

n
Px [Tj ≥ 0, j ≤ p,∃k ≤ p : Tk ≤ ξk]

≤ C (1 + x)(1 + h)
n3/2

[
P(ξ1 > 0) + E

(
(ξ1)2

+
)]

by use of Lemma 3.10.
We now take care of {τ > p}. We have

Px
[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, j ≤ n, p ≤ τ ≤ n

]
≤ Px

[
Tn − y − h ∈ [0, 1], Tn − Tn−j ≤ y + h+ 1− y1{n−j<p}
∃k ≤ n− p : Tn−k ≤ ξn−k + y

]
≤ Px

[
Tn − T0 − y − h+ x ∈ [0, 1], Tn − Tn−j ≤ h+ 1 + y1{j≥n−p}
∃k ≤ n− p : Tn − Tn−k ≥ y + h− (ξn−k + y)

]
.

We denote by T̂j = Tn − Tn−j and ξ̂j = ξn−j , we have

Px
[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, j ≤ n, p ≤ τ ≤ n

]
≤Px

[
T̂n − y − h+ x ∈ [0, 1], T̂j ≤ h+ 1− y1{j≥n−p},∃k ≤ n− p : T̂k ≥ y + h− (ξ̂k + y)

]
.

We observe that (T̂j , ξ̂j , j ≤ n) has the same law as (Tj , ξj , j ≤ n) under P0, as a consequence

Px
[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, j ≤ n, p ≤ τ ≤ n

]
≤P0

[
Tn − h− y + x ∈ [0, 1], Tj ≤ h+ 1− y1{j≥n−p},∃k ≤ n− p : Tk ≥ h− ξk

]
≤P−h−1

[
Tn − y + x ∈ [−1, 0], Tj ≤ −y1{j≤n−p}∃k ≤ n− p : Tk ≥ −ξk − 1

]
.
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This quantity is bounded in (3.2), replacing (T, ξ) by (−T, ξ), and exchanging the roles of x and h, thus
similar computations lead to

Px
[
Tn − y − h ∈ [0, 1], Tj ≥ y1{j>p}, j ≤ n, p < τ ≤ n

]
≤ C (1 + x)(1 + h)

(n+ 1)3/2

[
P(ξ ≥ 0) + E(ξ2

+)
]

(3.3)

which ends the proof.

We end with an analogue of the Hsu–Robbins theorem.

Lemma 3.12. We suppose that E(X1) = 0, E(X2
1 ) < +∞ and E((ξ1)+) < +∞. Let ε > 0, there exists

C > 0 that does not depend on the law of ξ1 such that for all x, z ≥ 0 and n ∈ N

Px [Tj ≥ −εj, j ≤ n, ∃k ≤ n : Tk ≤ −εk + ξk] ≤ C
[
E [(ξ + z)+]

ε

]
+ Ez

∑
n≥0

1{Tn≤−nε/2}

 .
Proof. By union bound, we have

Px [Tj ≥ −εj, j ≤ n, ∃k ≤ n : Tk ≤ −εk + ξk] ≤
n∑
k=1

Px(Tk ≤ −εk + ξk).

Moreover Px(Tk ≤ −εk + ξk) ≤ Px(Tk ≤ z − εk/2) + P(ξk ≥ εk/2 + z), thus

Px
[
Tj ≥ −εj, j ≤ n
∃k ≤ n : Tk ≤ −εk + ξk

]
≤

n∑
k=1

Px [Tk ≤ −εj/2− z] +
n∑
k=1

P(ξk ≥ εk/2− z)

≤ Ex+z

[+∞∑
k=1

1{Tj≤−εj/2}

]
+ 2E((ξ + z)+)

ε
.

Remark 3.13. By dominated convergence theorem and Theorem 3.5,

lim
z→+∞

Ez[
∑
n≥0

1{Tn≤−nε/2}] = 0,

thus to obtain a good bound in Lemma 3.12, it is useful to choose z very large.

4 Bounds on the tail of the maximal displacement
Let (T, V ) be a BRWis of length n. We recall that (Lp, p ≤ P ) is a family of point processes, and
0 = α0 < α1 < · · · < αP = 1 a sequence of real numbers. Up to replacing these sequences with
(L1,L1,L1,L2, . . .LP ) and 0 = α0 < α1/3 < 2α1/3 < α1 < α2 < . . . < αP = 1, we assume that P ≥ 3.
For p ≤ P and θ > 0, we write κp(θ) = logE

[∑
`∈Lp e

θ`
]

the log-Laplace transform of Lp. We write Mn

the maximal displacement at time n of the BRWis. The main goal of this section is to prove the following
estimate.
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Theorem 4.1. Under the assumptions (1.7), (1.8) and (1.13), there exists C > 0 such that for all n ∈ N
and y ≥ 0,

P(Mn ≥ nvis − λ logn+ y) ≤ C(1 + y1B(1))e−θ1y.

where vis and λ are defined respectively by (1.6) and (1.10). Moreover, under the additional assumption
(1.14), there exists c > 0 such that for any n ∈ N large enough and y ∈ [0, n1/2], we have

P(Mn ≥ nvis − λ logn+ y) ≥ c(1 + y1B(1))e−θ1y.

To prove this result, we use the decomposition of the BRWis obtained thanks to Proposition 1.2.
According to this result, if a is the solution of (1.7), and θp = (κ∗p)′(ap), the sequence θ is non-decreasing,
and takes a finite number T of values. We prove Theorem 4.1 by induction on T . In the next section,
we prove Theorem 4.1 for a BRWis such that T = 1. In Section 4.2, we prove the induction hypothesis.
Section 4.3 derives Theorem 1.4 from Theorem 4.1.

4.1 The case of a mono-parameter branching random walk
We consider in a first time a BRWis (T, V ) satisfying additional assumptions that guarantee the sequence
θ to be constant. We write,

∀φ ∈ R+,∀p ≤ P, Ep(φ) =
p∑
q=1

(αq − αq−1)(φκ′q(φ)− κq(φ)).

We assume there exists θ > 0 such that

∀p ≤ P,Ep(θ) ≤ 0 and EP (θ) = 0. (4.1)

We write ap = κ′p(θ) and B = {p ≤ P : Ep(θ) = Ep−1(θ) = 0}. By (1.2) and (4.1), a ∈ R, and by
Proposition 1.2, a is the solution of (1.7). With these notations, we have

vis =
P∑
p=1

(αp − αp−1)ap and λ = 1
2θ (1 + 1B(1) + 1B(P )) . (4.2)

Theorem 4.2. Under assumptions (1.13) and (4.1), there exists C > 0 such that for any n ∈ N and
y ≥ 0, we have

P(Mn ≥ nvis − λ logn+ y) ≤ C(1 + y1B(1))e−θy.

Moreover, under the additional assumption (1.14), there exists c > 0 such that for any n ∈ N large enough
and y ∈ [0,

√
n],

P(Mn ≥ nvis − λ logn+ y) ≥ c(1 + y1B(1))e−θy.

We write mn = nvis − λ logn the expected position of Mn. To obtain the upper bound, we prove in
a first time that with high probability, if the optimal path stays close to the boundary of the branching
random walk during the first or the last time interval, then there is no individual above this boundary at
any time. In a second time, we bound from above and from below the number of individuals who stayed
below the boundary, and end at time n close to mn.

We introduce

K
(n)
k =

P∑
p=1

k∑
j=1

κp(θ)1{j∈[α(n)
p−1,α

(n)
p )} and a

(n)
k =

P∑
p=1

k∑
j=1

ap1{j∈[α(n)
p−1,α

(n)
p )}.
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Using Equation (1.2), we observe that

θa
(n)
k −K(n)

k =
P∑
p=1

κ∗p(ap)
k∑
j=1

1{j∈[α(n)
p−1,α

(n)
p )}, (4.3)

thus, writing φt =
∫ t

0
∑P
p=1 κ

∗
p(ap)1{s∈[αp−1,αp)}ds, we have

sup
n≥0

sup
k≤n

∣∣∣θa(n)
k −K(n)

k − nφ k
n

∣∣∣ < +∞. (4.4)

4.1.1 A frontier for the branching random walk

We prove in a first time that if 1 ∈ B, then with high probability, there is no individual to the right of
a1k at any time k ≤ α(n)

1 .

Lemma 4.3. Under assumption (4.1), if 1 ∈ B, then for all y ≥ 0 and n ∈ N,

P(∃u ∈ T, |u| ≤ α(n)
1 : V (u) ≥ a1|u|+ y) ≤ e−θy.

Proof. Let y ≥ 0 and n ≥ 1. For k ≤ α(n)
1 , we write

Z
(n)
k =

∑
|u|=k

1{V (u)≥a1k+y}1{V (uj)≤a1j+y,j≤k}

the number of individuals for the first time at time k above the curve a1 ·+y. By use of (2.5), we have

E(Z(n)
k ) = E

[
e−θSk+kκ1(θ)1{Sk≥ka1+y}1{Sj≤ja1+y,j<k}

]
,

where S is a random walk with mean E
[∑

`∈L1
`eθ`−κ1(θ)] = κ′1(θ) = a1 and finite variance. Moreover,

as 1 ∈ B, we have E1 = θa1 − κ1(θ) = 0 and

E(Z(n)
k ) ≤ e−θyP(Sk ≥ ka1 + y, Sj ≤ ja1 + y, j < k).

As a consequence, by Markov inequality, we have

P(∃u ∈ T, |u| ≤ α(n)
1 : V (u) ≥ a1|u|+ y) ≤

α
(n)
1∑
k=1

E(Z(n)
k )

≤ e−θy
n∑
k=1

P(Sk ≥ ka1 + y, Sj ≤ ja1 + y, j < k) ≤ e−θyP(∃k ≤ n : Sk ≥ ka1 + y).

We compute, if P ∈ B, the probability that there exists at some time k ≥ α
(n)
P−1 an individual above

some well-chosen curve. To do so, we denote by r(n)
k = aP (k − n) + 3

2θ log(n− k + 1). We add a piece of
notation to describe the frontier of the branching random walk. We write

F (n) =
⋃

p∈B∩{1,P}

[
α

(n)
p−1, α

(n)
p

]
, F

(n)
k = F (n) ∩ [0, k]

and f
(n)
j = a1j1{j≤α(n)

1 } + (mn + r
(n)
j )1{j≥α(n)

P−1}
for any j ∈ F (n). The following estimate holds.
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Lemma 4.4. Under assumptions (1.13) and (4.1), if P ∈ B, there exists C > 0 such that for all y ≥ 0
and n ∈ N,

P
[
∃|u| > α

(n)
P−1 : V (u) ≥ mn + r

(n)
k + y

]
≤ C(1 + y1B(1))e−θy.

Proof. We assume in a first time that 1 6∈ B. We have λ = 1
θ and

P
[
∃|u| > α

(n)
P−1 : V (u) ≥ mn + r

(n)
k + y

]
≤E

 ∑
|u|≥α(n)

P−1

1{V (u)≥mn+r(n)
|u|+y}

1{V (uj)≤mn+r(n)
j

+y,α(n)
P−1≤j<k}


≤

n∑
k=α(n)

P−1

E
[
e−θSk+K(n)

k 1{Sk≥mn+r(n)
k

+y,Sj≤mn+r(n)
j

+y,α(n)
P−1≤j<k}

]

≤C
n∑

k=α(n)
P−1

nθλe−θy

(n− k + 1)3/2P
(
Sk ≥ mn + r

(n)
k + y, Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j < k

)
, (4.5)

by (2.5) and (4.4). By conditioning with respect to Sk − Sk−1, we have

P
(
Sk ≥ mn + r

(n)
k + y, Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j < k

)
= E [φk(Sk − Sk−1 − a1)] ,

writing for x ∈ R,

φk(x) = P(Sk−1 ≥ mn + r
(n)
k + y − x, Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j ≤ k − 1)

=
+∞∑
h=0

P

(
Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j ≤ k − 1

Sk−1 −mn − r(n)
k − y − h ∈ [h, h+ 1)

)

≤
bxc∑
h=0

C
1 + h

n1/2(k − α(n)
P−1)1/2

≤ C (1 + x+)2

n1/2(k − α(n)
P−1)1/2

,

by Lemma 3.8. We have

P
(
Sk ≥ mn + r

(n)
k + y, Sj ≤ mn + r

(n)
j + y, α

(n)
P−1 ≤ j < k

)
≤ C

n1/2(k − α(n)
P−1)1/2

,

as a consequence (4.5) becomes

P
[
∃|u| > α

(n)
P−1 : V (u) ≥ mn + r

(n)
k + y

]
≤

n∑
k=α(n)

P−1

Ce−θy
n1/2

(k − α(n)
P−1 + 1)1/2(n− k + 1)3/2

≤ Ce−θy.

In a second time, if 1 ∈ B, then λ = 3
2θ . We have

P
[
∃|u| > α

(n)
P−1 : V (u) ≥ mn + r

(n)
k + y

]
≤ P

[
∃|u| ≤ α(n)

1 : V (u) ≥ a1|u|+ y
]

+ P
[
∃|u| ≥ α(n)

P−1 : V (u) ≥ f (n)
k + y, V (uj) ≤ f (n)

j + y, j ∈ F (n)
k−1

]
.
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Lemma 4.3 bounds the first part of this inequality. By (2.5), for k ≥ α(n)
P−1 we have

E

∑
|u|=k

1{V (u)≥f(n)
k

+y}1{V (uj)≤f(n)
j

+y,j∈F (n)
k−1}


≤ E

[
e−θSk+K(n)

k 1{Sk≥f(n)
k

+y}1{Sj≤f(n)
j

+y,j∈F (n)
k−1}

]
≤ C nθλ

(n− k + 1)3/2 e
−θyP(Sk ≥ f (n)

k + y, Sj ≤ f (n)
j + y, j ∈ F (n)

k−1)

≤ C(1 + y)e−θy n3/2

(k − α(n)
P−1 + 1)3/2(n− k + 1)3/2

,

using again Lemma 3.8, and conditioning with respect to the last step of the random walk. By Markov
inequality, we have

P
[
∃|u| ≥ α(n)

P−1 : V (u) ≥ f (n)
k + y, V (uj) ≤ f (n)

j + y, j ∈ F (n)
k−1

]
≤ C(1 + y)e−θy

n∑
k=α(n)

P−1

n3/2

(k − α(n)
P−1 + 1)3/2(n− k + 1)3/2

≤ C(1 + y)e−θy,

ending the proof.

These two lemmas imply that with high probability, there is no individual above f (n) + y at any
time in F (n). To complete the proof of the upper bound for the tail distribution of Mn, we compute the
number of individuals who, travelling below that boundary, are at time n in a neighbourhood of mn. We
write

X(n)(y, h) =
∑
|u|=n

1{V (u)−mn−y∈[−h,−h+1]}1{V (uj)≤f(n)
j

+y,j∈F (n)}.

Lemma 4.5. Under assumptions (1.13) and (4.1), there exists C > 0 such that for all n ≥ 1, y ∈ R+
and h ∈ R, we have

E(X(n)(y, h)) ≤ C(1 + y1B(1))(1 + h+1B(P ))e−θ(y−h).

Proof. Note that if P ∈ B and h < −1, then X(n)(y, h) = 0. Otherwise, using Equation (2.5), we have

E(X(n)(y, h)) = E
[
e−θSn+K(n)

n 1{Sn−mn−y∈[−h,−h+1]}1{Sj≤f(n)
j

+y,j∈F (n)}

]
≤ Cnθλe−θ(y−h)P

(
Sn −mn − y ∈ [−h,−h+ 1], Sj ≤ f (n)

j + y, j ∈ F (n)
)

by Equation 4.4. Applying Lemma 3.8, we obtain

P
(
Sn − f (n)

n − y ∈ [−h,−h+ 1], Sj ≤ f (n)
j + y, j ∈ F (n)

)
≤ C (1 + y1B(1))(1 + h+1B(P ))

(n+ 1)(1+1B(1)+1B(P ))/2 .

These lemmas can be used to obtain a tight upper bound for P(Mn ≥ nvis − λ logn+ y).

Corollary 4.6. Under assumptions (1.13) and (4.1), there exists C > 0 such that for all y ≥ 0 and
n ∈ N, we have

P(Mn ≥ nvis − λ logn+ y) ≤ C(1 + y1B(1))e−θy.
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Proof. Let y ≥ 0 and n ∈ N, we have

P(Mn ≥ nvis − λ logn+ y) ≤ P
(
∃|u| ∈ F (n) : V (u) ≥ f (n)

|u| + y
)

+
+∞∑
h=0

E
(
X(n)(y,−h)

)
.

Using Lemmas 4.3 and 4.4, we have P(∃|u| ∈ F (n) : V (u) ≥ f
(n)
|u| + y) ≤ C(1 + y1B(1))e−θy. Applying

Lemma 4.5, we obtain

+∞∑
h=0

E(X(n)(y,−h)) ≤ C(1 + y1B(1))e−θy
+∞∑
h=0

e−θh ≤ C(1 + y1B(1))e−θy.

4.1.2 Lower bound through a second order computation

To bound from below P(Mn ≥ mn + y), we bound from below the probability there exists an individual
alive at time n, which stayed an any time k ≤ n below some curve g(n) defined below and is at time n
above mn. We write B(n) = ∪p∈B(α(n)

p−1, α
(n)
p ] the set of times such that the optimal path is close to the

frontier of the BRWis. We choose δ > 0 small enough such that 3θδ < minp∈Bc −Ep(θ). For all n ≥ 1,
p ≤ P and k ∈ (α(n)

p−1, α
(n)
p ] we define

g
(n)
k = 1 +


a

(n)
k − 1{p=P}λ logn if Ep(θ) = Ep−1(θ) = 0
a

(n)
k + (k − α(n)

p−1)δ if Ep−1(θ) = 0, Ep(θ) < 0
a

(n)
k + (α(n)

p − k)δ if Ep(θ) = 0, Ep−1(θ) < 0
a

(n)
k + δn otherwise.

With this definition, using (4.4), we have,

θg
(n)
k −K(n)

k ≤ C +


−1{p=P}θλ logn Ep(θ) = Ep−1(θ) = 0
−δ(k − α(n)

p−1) if Ep−1(θ) = 0, Ep(θ) < 0
−δ(α(n)

p+1 − k)− 1{p=P}θλ logn if Ep−1(θ) < 0, Ep(θ) = 0
−δn if Ep−1(θ) > 0, Ep(θ) > 0.

(4.6)

We prove in the rest of the section that the set

An(y) =
{
u ∈ T : V (u) ≥ mn + y, V (uj) ≤ g(n)

j + y, j ≤ n
}

is non-empty. To do so, we restrict this set to individuals with a constraint on their reproduction. For
u ∈ T, we denote by

ξ(u) =
∑

u′∈Ω(u)

(
1 + (V (u′)− V (u))+1{|u|∈B(n)+1}

)
eθ(V (u′)−V (u))

a quantity closely related to the spread of the offspring of u. We write, for z > 0 and p ≤ P

Bn(z) =
{
u ∈ T : |u| = n, ξ(uj) ≤ ze−

θ
2

[
V (uj)−g(n)

j

]
, j < n

}
,
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and we consider the set Gn(y, z) = An(y) ∩ Bn(z). We compute the first two moments of

Yn(y, z) =
∑
|u|=n

1{u∈Gn(y,z)},

to bound from below P(Yn(y, z) ≥ 1), using the Cauchy-Schwarz inequality. We begin with an upper
bound of the second moment of Yn.

Lemma 4.7. Under assumptions (1.13) and (4.1), there exists C > 0 such that for all y ≥ 0, z > 0 and
n ∈ N, we have

E(Yn(y, z)2) ≤ Cz(1 + y1B(1))e−θy.

Proof. Applying Lemma 2.1, we have

E(Yn(y, z)2) = E
[

1
Wn

Yn(y, z)2
]

= Ê

 1
Wn

∑
|u|=n

1{u∈Gn(y,z)}Yn(y, z)


= Ê

[
e−θV (wn)+K(n)

n 1{wn∈Gn(y,z)}Yn(y, z)
]
.

Using the fact that wn ∈ An(y) ⊂ Gn(y, z), we have

E(Yn(y, z)2) ≤ Cnθλe−θyÊ
[
Yn(y, z)1{wn∈Gn(y,z)}

]
.

We decompose Yn(y, z) along the spine, to obtain

Yn(y, z) ≤ 1{wn∈Gn(y,z)} +
n−1∑
k=0

∑
u∈Ω(wk)

Yn(u, y),

where, for u ∈ T and y ≥ 0, we write Yn(u, y) =
∑
|u′|=n,u′>u 1{u′∈An(y)}. Let k < n. We recall that

conditionally on Gn, the branching random walks of the descendants of distinct children u, v ∈ Ω(wk)
are independent. Moreover, the branching random walk starting from an individual u ∈ Ω(wk) has law
PV (u),k+1. As a consequence, for y ≥ 0, k < n and u ∈ Ω(wk),

Ê [Yn(u, y)|Gn] = EV (u),k+1

 ∑
|u′|=n−k−1

1{V (u′)≥mn+y}1{V (u′
j
)≤g(n)

k+j+1+y,j≤n−k}

 .
We use (2.5) and (4.4) to obtain

Ê [Yn(u, y)|Gn] ≤ Cnλθe−θyeθV (u)−K(n)
k+1PV (u),k+1

(
Sj ≤ g(n)

j+k+1 + y, j ≤ n− k − 1
Sn−k−1 ≥ mn + y

)
.

We now apply Lemma 3.8. For all p ≤ P and k ∈ [α(n)
p−1, α

(n)
p ), we have

PV (u),k+1(Sn−k−1 ≥ mn + y, Sj ≤ g(n)
j+k+1 + y, j ≤ n− k − 1)

≤


C

1+(g(n)
k+1+y−V (u))+1B(p)

(α(n)
p −k+1)1B(p)/2n(1+1B(p))/2 if p < P − 1

C
1+(g(n)

k+1+y−V (u))+1B(P )
(n−k+1)1/2+1B(P ) if p = P.

(4.7)
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Let p ≤ P and k ∈ [α(n)
p−1, α

(n)
p ), we compute the quantity

hk := Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)

(1 + (g(n)
k+1 + y − V (u))+1B(p))eθV (u)−g(n)

k+1

 .
Using (4.3), the definition of ξ(wk) and the fact x 7→ x+ is Lipschitz, we have

hk ≤ CÊ
[
eθ(V (wk)−g(n)

k
)(1 + (g(n)

k + y − V (wk)+)ξ(wk)1{wn∈Gn(y,z)}

]
≤ CzÊ

[
e
θ
2 (V (wk)−g(n)

k
)(1 + (g(n)

k + y − V (wk)+)ξ(wk)1{wn∈An(y,z)}

]
as wn ∈ Bn(z). Decomposing this expectation with respect tot the value taken by V (wk), we obtain

hk ≤ Czeθy
+∞∑
i=0

(1 + i)e−θi/2P
[
Sj ≤ g(n)

j + y, j ∈ B(n)

Sn ≥ mn + y, Sk − g(n)
k − y ∈ [−i− 1,−i]

]
.

We apply the Markov property at time k and Lemma 3.8 to obtain, if p ∈ B

hk ≤


Cz (1+y)eθy

k3/2(α(n)
1 −k+1)1/2

n1/2

nθλ
if p = 1

Cz (1+y1B(1))eθy

(k−α(n)
p−1)1/2(α(n)

p −k+1)1/2n1/2
1
nθλ

if 1 < p < P

Cz (1+y1B(1))eθy

(k−α(n)
P−1+1)1/2(n−k+1)3/2

1
nθλ

if p = P.

(4.8)

In the same way, if p 6∈ B, we have

hk ≤


Czeθy 1

k1/2
1
nθλ

if k < α
(n)
1

Czeθy 1+y1B(1)
n1/2

1
nθλ

if α
(n)
1 ≤ k < α

(n)
P−1

Czeθy 1+y1B(1)
(n−k+1)1/2

1
nθλ

otherwise,
(4.9)

applying again Lemma 3.8.
For p ≤ P we denote by

Hp :=
α(n)
p −1∑

k=α(n)
p−1

Ê

1{wn∈Gn(y,z)}
∑

u∈Ω(wk)

Yn(u, y)

 ≤ C α(n)
p −1∑

k=α(n)
p−1

hke
θg

(n)
k+1−K

(n)
k+1 .

Using (4.3), and summing the estimates (4.7), (4.8) and (4.9), we have Hp ≤ Cz(1 + y1B(1))e−θy for any
p ≤ P . To conclude this proof, we observe that

E(Yn(y, z)2) ≤
P∑
p=1

Hp + Cnθλe−θyP(wn ∈ Gn(y, z)) ≤ Cz(1 + y1B(1))e−θy,

as Lemma 3.8 implies P(wn ∈ Gn(y, z)) ≤ C(1 + y1B(1))n−θλ.

We now prove the following result, a lower bound on the first moment of Yn(y,B).

Lemma 4.8. Under assumptions (1.13), (1.14) and (4.1), there exists c > 0 and z > 0 such that for any
n ≥ 0 and y ∈ [0,

√
n], we have E(Yn(y, z)) ≥ c(1 + 1B(1)y)e−θy.
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Proof. Using Lemma 2.1, we have

E(Yn(y, z)) = Ê
[
e−θV (wn)+K(n)

n 1{wn∈Gn(y,z)}

]
≥ cnθλe−θyP̂(wn ∈ Gn(y, z)).

We observe that P̂(wn ∈ Gn(y, z)) = P̂(wn ∈ An(y))− P̂(wn ∈ An(y) ∩ Bn(z)c). By Lemma 3.9, for any
n ≥ 1 and y ∈ [0,

√
n]

P̂(wn ∈ An(y)) = P(Sn ≥ mn + y, Sj ≤ g(n)
j + y, j ≤ n) ≥ c(1 + y1B(1))n−θλ.

Therefore, we only need to bound from above P̂(wn ∈ An(y) ∩ Bn(z)c) for z > 0 large enough.
We denote by τ (n)(z) = inf

{
k ≤ n : ξ(wk) ≥ z exp

(
− θ2

[
V (wk)− g(n)

k

])}
, and for any p ≤ P , we set

πp = P̂
(
wn ∈ An(y), τ (n)(z) ∈ (α(n)

p−1, α
(n)
p ]
)

. We introduce the random variables

(ξp,∆p)
(d)= (V (wk+1 − V (wk), ξ(wk)) for k ∈ [α(n)

p−1, α
(n)
p ).

Let (ξpn,∆p
n) be i.i.d random variables with the same law as (ξp,∆p), we write T pn = ∆p

1 + · · ·+ ∆p
n. For

p ∈ B, we introduce

χp : z 7−→ Ê
[(

1 +
(
log+(ξp)−∆p − log z

)
+

)2
1{ξp≥z}

]
,

and for p ∈ Bc,

χ̃p : z 7−→ Ê

[(
log+(ξp)−∆p − log z/2

)
+

δ

]

+

E
[∑+∞

k=0 1{Tp
k
≥(δk+log z)/2}

]
if Ep(θ) < 0

E
[∑+∞

k=0 1{Tp
k
≤−(δk+log z)/2}

]
if Ep(θ) = 0, Ep−1(θ) < 0.

First, if p = 1, we apply the Markov property at time α(n)
1 and Lemma 3.8 to obtain

π1 ≤ C
1

n(1+1B(P ))/2P
(
T 1
j ≤ g

(n)
j + y, j ≤ α(n)

1 ,∃k ≤ α(n)
1 : ξ1

k ≥ ze−θ/2(T 1
k−g

(n)
k

)
)
.

As a consequence, if 1 ∈ B, we apply Lemma 3.10 to obtain π1 ≤ C 1+y
nθλ

χ1(z) ; and if 1 6∈ B, then E1 < 0
so, applying Lemma 3.12 we have π1 ≤ C 1

nθλ
χ̃1(z).

We now suppose that 1 < p < P . Applying the Markov property at times α(n)
p and α

(n)
p−1, we have

πp ≤
C

n(1+1B(P ))/2 Ê
[
1{V (wj)≤g(n)

j
+y,j≤α(n)

p−1}
φp

(
V (w

α
(n)
p−1

)
)]
, (4.10)

where we write, for s ∈ R

φp(s) = Ps
[
T pj ≤ g

(n)
α

(n)
p−1+j

+ y, j ≤ α(n)
p − α(n)

p−1, τ
(n)(z) ∈ (α(n)

p−1, α
(n)
p ]
]
.

If p ∈ B, applying Lemma 3.10, we have φp(s) ≤ 1+y+s
n1/2 χp(z), and, by Theorem 3.2,

sup
n∈N

1
n1/2 E

[∣∣∣∣Sα(n)
p−1
− a(n)

α
(n)
p−1

∣∣∣∣∣∣∣∣Sj ≤ g(n)
j + y, j ≤ α(n)

p−1

]
< +∞.
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By Lemma 3.8, as y ≤
√
n, we have πp ≤ C(1+y1B(1))

nθλ
χp(z).

In the same way, if p 6∈ B, we use Lemma 3.12 –as well as time-reversal when Ep(θ) = 0 and
Ep−1(θ) < 0– to have φp(s) ≤ χ̃p(z), which, thanks to (4.10) leads to πp ≤ 1+y1B(1)

nθλ
χ̃p(z).

If P ∈ B, we apply the Markov property and Lemma 3.11 to obtain

πP ≤ C E

1 + (S
α

(n)
P−1
− a(n)

α
(n)
P−1

+ y)+

n3/2 1{Sj≤g(n)
j

+y,j≤α(n)
P−1}

 ≤ C 1 + y1B(1)
nθλ

χP (z).

If P 6∈ B, we use the time-reversal, then Lemma 3.12 to obtain

πP ≤ Cχ̃P (z) sup
h∈R

P
[
S
α

(n)
p−1
∈ [h, h+ 1], Sj ≤ g(n)

j + y, j ≤ α(n)
P−1

]
≤ C 1 + y1B(1)

nθλ
χ̃P (z).

We conclude there exists C > 0 such that

P̂(wn ∈ A(n)(y) ∩ B(n)(z)c) ≤ C 1 + y1B(1)
nθλ

∑
p∈B

χp(z) +
∑
p∈Bc

χ̃p(z)

 .
If p ∈ B, by (1.14) and (1.13), E((log ξp − ∆p)2) < +∞. In the same way, if p 6∈ B, using (1.14) and
(1.13) again, we have E((log ξp −∆p)+) < +∞. Applying the dominated convergence theorem, we have
limz→+∞

∑
p∈B χp(z) +

∑
p∈Bc χp(z) = 0. Consequently, there exists z ≥ 0 large enough such that

P̂(wn ∈ A(n)(y) ∩ B(n)(z)c) ≤ c/2(1 + y1B(1))n−θλ. Therefore

P̂(wn ∈ A(n)(y) ∩ B(n)(z)) ≥ P̂(wn ∈ A(n)(y))− P̂(wn ∈ A(n)(y) ∩ B(n)(z)c)
≥ c(1 + y1B(1))n−θλ/2,

which ends the proof.

Using these two lemmas, we obtain a lower bound on Mn.

Lower bound in Theorem 4.2. By Lemma 4.8, there exist c > 0 and z > 0 such that for any n ≥ 1 and
y ∈ [0,

√
n], we have E(Yn(y, z)) ≥ c(1 + y1B(1))e−θy. Thus, using Lemma 4.7 and the Cauchy-Schwarz

inequality, we have

P(Yn(y, z) ≥ 1) ≥ E(Yn(y, z))2

E(Yn(y, z)2) ≥
(
c(1 + y1B(1))e−θy

)2
Cz(1 + y1B(1))e−θy

≥ c(1 + y1B(1))e−θy.

4.2 Extension to the multi-parameter branching random walk
In this section, we extend Theorem 4.2 to BRWis such that θ is non-constant, reasoning by induction on
the number T of different values taken by the sequence.

Proof of Theorem 4.1. We observe first that if T = 1, then the branching random walk satisfies all the
hypotheses of Theorem 4.2, with optimal path a, and parameter θ = φ1, by Proposition 1.2. The
initiation of the recurrence is then given by Theorem 4.2. Therefore, we only need to prove the induction
hypothesis.
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Let T ∈ N, we assume that for all BRWis such that #{θp, p ≤ P} < T , Theorem 4.1 holds. For n ∈ N,
we now consider a BRWis (T(n), V (n)) of length n. We write a the optimal solution of Proposition 1.2,
and θp = κ′p(ap). We assume that T = #{θp, p ≤ P}, and write φ1 < φ2 < · · · < φT these values, listed
in the increasing order. For any t ≤ T , let ft = min{p ≤ P : θp = φt} and lt = max{p ≤ P : θp = φt}.
Finally, we write vis and λ the speed and correction as defined in (1.6) and (1.10), and mn = nvis−λ logn
the expected position of the maximal displacement Mn. We now divide this BRWis into two parts, before
and after the first time αl1 such that θl1+1 > θl1 .

We write l = l1, v1 =
∑l
p=1(αp − αp−1)ap and λ1 = 1

2φ1
(1 + 1B(1) + 1B(l)). We denote by

T(n)
1 = {u ∈ T : |u| ≤ αln} the tree cut at generation n1 = bαlnc. By Proposition 1.2, we observe

that (T(n)
1 , V

(n)
|T(n)

1
) is a BRWis which satisfies the hypotheses of Theorem 4.2, with parameter θ := φ1.

Therefore, if we write m1
n = v1n− λ1 logn and M1

n = max|u|=n1 V (u), there exist c, C > 0 such that for
all n ∈ N large enough and y ∈ [0, n1/2], we have

c(1 + y1{κ∗1(a1)=0})e−φ1y ≤ P(M1
n ≥ m1

n + y) ≤ C(1 + y1{κ∗1(a1)=0})e−φ1y.

We now consider a branching random walk (T (n)
tail , V

(n)
tail ) of law Pn1,0, which has the law of the branching

random walk of the descendants of any individual alive at time n1. We write ntail = n − n1 the length
of this BRWis, vtail = v − v1, λtail = λ − λ1 and mtail

n = vtailn − λtail logn. We observe easily, by
Proposition 1.2 again, that this marked tree is a BRWis, and its optimal path is the path driven by
(al+1, . . . , aP ). Moreover, #{θp, l < p ≤ P} = T − 1 < T . Therefore, by the induction hypothesis,
writing M tail

n = max|u|=ntail V
tail(u), there exist c, C > 0 such that for all n ∈ N large enough and

y ∈ [0, n1/2], we have
ce−φ2y ≤ P(M tail

n ≥ mtail
n + y) ≤ C(1 + y)e−φ2y.

To obtain the lower bound of Theorem 4.1, we observe that if M1
n ≥ m1

n + y, and if one of the
descendants of the rightmost individual at time n1 makes a displacement greater than mtail

n , then Mn ≥
mn + y. Therefore

P(Mn ≥ nvis − λ logn+ y) ≥ c(1 + y1B(1))e−φ1l

for n ∈ N large enough and y ∈ [0, n1/2]. To obtain an upper bound for P(Mn ≥ mn + y), we decompose
the nth generation of the branching random walk with respect to the position of their ancestors alive at
time n1. We write

X(n)(y, h) =
∑
|u|=n1

1{V (uj)≤f
(n1)
j

+y,j∈C(n1)
1 }1{V (u)−m1

n−y∈[−h−1,−h]},

and, by union bound and the Markov property, we have

P(Mn ≥ mn + y)

≤P(∃|u| ∈ C(n1)
1 : V (x) ≥ f (n1)

k + r
(n)
k + y) +

+∞∑
h=0

E(X(n)(y, h))P(M tail
n ≥ mtail

n + h).

As a consequence, applying Lemma 4.5 and the upper bound of Theorem 4.2,

P(Mn ≥ mn + y) ≤ C(1 + y1{κ∗1(a1)=0})e−φ1y

[
1 +

+∞∑
h=0

(1 + h)e(φ1−φ2)h

]
≤ C(1 + y1{κ∗1(a1)=0})e−φ1y,

which gives the correct upper bound.
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4.3 Proof of Theorem 1.4
Using Theorem 4.1, we are able to obtain Theorem 1.4. To do so, we need to strengthen the estimate
P(Mn ≥ nvis − λ logn) > c > 0 in something like

lim
y→−∞

lim inf
n→+∞

P(Mn ≥ nvis − λ logn) = 1.

To do so, we will use a standard cutting argument. We use the fact that with high probability, there will
be a large number of individuals alive at a fixed generation k, each of which having positive probability to
make a descendant at generation n with a displacement greater than mn. Using the law of large numbers,
this will be enough to conclude.

Proof of Theorem 1.4. Let (T, V ) be a BRWis of length n, satisfying all hypotheses of Theorem 1.4. To
prove that the sequence (Mn −mn) is tight, we need to prove that

lim
K→+∞

sup
n∈N

P(|Mn −mn| ≥ K) = 0.

By Theorem 4.1, there exists C > 0 such that

sup
n∈N

P(Mn ≥ mn +K) ≤ C(1 +K)e−φ1K ,

therefore the upper bound is easy to obtain.
We now turn to the lower bound. Applying Theorem 4.1, there exists c1 > 0 such that

inf
n∈N

P(Mn ≥ mn) ≥ c1.

Let L1 be a point process of law L1. By (1.1), there exists h > 0 and N ∈ N such that

m = E

[
max

(
N,
∑
`∈L1

1{`≥−h}

)]
> 1.

We write µ the law of max
(
N,
∑
`∈L1

1{`≥−h}
)
, and (Zn, n ≥ 0) a Galton-Watson process with repro-

duction law µ. We can easily couple (Zn) and a branching random walk (T1, V1) with reproduction law
L1 in such a way that for all n ∈ N,

∑
|u|=n 1{V1(u)≥−nh} ≥ Zn. By standard Galton-Watson processes

theory, there exists c2 > 0 and δ > 0 such that infk∈N P(Zk ≥ δmk) > c2.
Let ε > 0 and R > 0 be such that (1 − c1)R ≤ ε. We now choose k ∈ N such that δmk ≥ R. For

any n ∈ N, we write un = (1, . . . 1) ∈ U . By (1.1), for all n ∈ N we have un ∈ T. We write τ the first
time n such that un has a sibling at distance smaller than h, and this child has at least R descendants
alive at time n + k whose relative position is less that −kh. According to the previous computations,
τ is stochastically dominated by a Geometric random variable. Therefore, it exists τ0 ∈ N such that
P(τ > τ0) < ε.

Therefore, with probability at least 1− 2ε, there are at least R individuals alive at some time before
τ0 + k, all of which are above infj≤τ0 V (uj) − kh. Each of these individuals u starts an independent
BRWis with law Pk,V (u), thus, using Theorem 4.1, there exists y > 0 such that, for all n ≥ 1 large enough

P(M
n+ k+τ0

α1
≥ mn − y) ≥ 1− 4ε

which ends the proof of the lower bound.
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5 Phase-transition in the branching random walk with one in-
terface

We consider in this section a BRWis with a single interface (T, V ), or in other words, such that P = 2.
The process studied by Fang and Zeitouni in [12] can be described this way.Let L1 and L2 be two point
processes, verifying (1.1), and α1 ∈ (0, 1). We assume (1.4), i.e. there exist θ1, θ2 such that for all
i ∈ {1, 2},

θiκ
′
i(θi)− κi(θi) = 0.

We also suppose there exists θ > 0 such that κ1 and κ2 are differentiable at point θ and

θ(α1κ
′
1(θ) + (1− α1)κ′2(θ))− (α1κ1(θ) + (1− α1)κ2(θ)) = 0. (5.1)

For all i ∈ {1, 2}, κi is a convex function on {θ > 0 : κi(θ) < +∞}, which is twice differentiable on the
interior of this set. As a consequence, θκ′i(θ)− κi(θ) is a decreasing function. Thus, θ is always between
θ1 and θ2. We write

vfast = α1κ
′
1(θ) + (1− α1)κ′2(θ) and vslow = α1κ

′
1(θ1) + (1− α1)κ′2(θ2). (5.2)

Note that vslow is the sum of the speeds of a branching random walk with reproduction L1 of length nα1,
with one with reproduction L2 of length nα2.

(a) Regime θ1 > θ2 (b) Regime θ1 = θ2 (c) Regime θ1 < θ2

Figure 6: Regimes in the branching random walk with interface.

Applying Theorem 1.4 and using Proposition 1.2, we observe that, under (1.13) and (1.14), one of the
following alternative is true.

• If θ1 > θ2, then θ ∈ (θ2, θ1), vslow < vfast and

Mn = nvfast −
1
2θ logn+OP(1),

in which case the optimal path is at time α1n at distance O(n) from the frontier of the branching
random walk. The rightmost individual at time n is at distance O(n) from the rightmost child of
the rightmost individual alive at time α1n (case 6(a)).

• If θ1 = θ2, then θ = θ1 = θ2, vslow = vfast and

Mn = nvfast −
3
2θ logn+OP(1),

and the process behaves similarly to time-homogeneous branching random walk, the path leading
to the rightmost individual at time n stays at any time within distance O(

√
n) from the frontier of

the branching random walk (case 6(b)).
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• If θ1 < θ2, then vslow < vfast and

Mn = nvslow −
[

3
2θ1

+ 3
2θ2

]
logn+OP(1),

in other words, the logarithmic corrections add up, and the rightmost individual at time n descend
from one of the rightmost individuals alive at time α1n (case 6(c)).

θ1

λ

θ2

•

vfast vslow

Figure 7: Black and grey areas are the set of possible values for the logarithmic correction λ, given θ1
and θ2; as θ1 grows bigger than θ2, logarithmic correction exhibit a sharp phase transition.

We observe, using Lagrange theorem –see Appendix B– that

vfast = sup {α1a1 + (1− α1)a2 : α1κ
∗
1(a1) + (1− α1)κ∗2(a2) ≤ 0} ,

vslow = sup {α1a1 + (1− α1)a2 : α1κ
∗
1(a1) ≤ 0, α1κ

∗
1(a1) + (1− α1)κ∗2(a2) ≤ 0} .

Therefore, a branching random walk goes at speed vslow if the condition κ∗1(a1) ≤ 0 matters to solve
(1.7). If this is the case, the “theoretical optimal path” would cross the frontier of the branching random
walk, thus no individual could follow it. But under these circumstances, the closer the individual is to the
frontier at time α1n, the better the probability that they are the ancestors of the rightmost individual
at time n. Otherwise, at time α1n, there is a large number of individuals around α1a1n, each of which
having small probability to be the rightmost individual, thus the logarithmic correction is the same as
the one obtained computing the maximal displacement of a large number of independent random walks.

Although the speed vis varies continuously as θ1 grows bigger than θ2, the logarithmic correction λ
exhibits a phase transition. We represent in Figure 7 the set of possible values taken by λ for different
values of θ1 and θ2. The frontier of this set does not depend on the value of α1, the position of the
interface.

A Time-inhomogeneous random walk estimates
In this section, we prove the random walk estimates we defined in Section 3.

A.1 Proof of Lemmas 3.6 and 3.7
We recall that T is a centred random walk with finite variance. We first prove Lemma 3.6: there exists
C > 0 such that P(Tj ≥ −y −Ajα, j ≤ n) ≤ C(1 + y)n−1/2.
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Proof of Lemma 3.6. Let α ∈ [0, 1/2), A > 0 and (fn) ∈ RN such that for all n ∈ N, |fn| ≤ Anα. For all
y ≥ 0, we have

P(Tj ≥ −y − fj , j ≤ n) ≤ P(Tj ≥ −y −Ajα, j ≤ n),

thus we now bound this later probability. More precisely, for y ≥ 0, we denote by

τy = inf{n ≥ 0 : Tn ≤ −y −Ajα},

and we take interest in P(τy ≥ n).
For a ∈ R\{0}, we set

Ha =
{

inf{n ≥ 0 : Tn ≥ a} if a > 0
inf{n ≥ 0 : Tn ≤ a} if a < 0.

By Theorem 3.3, there exists K > 0 such that for all a ∈ R, P(Ha ≥ n) ≤ K(1 + |a|)n−1/2. As a result,
for all y ≥ nα, we have

P(τy ≥ n) ≤ P(H−(A+1)nα ≥ n) ≤ K((A+ 1)nα + 1)n−1/2 ≤ K(A+ 1)(1 + y)n−1/2, (A.1)

hence it is enough to consider the case y ≤ nα.
Let γ ∈ (2α, 1), we observe that the following decomposition holds

P(τy ≥ n) ≤ P(Hnα ≤ min(τy, nγ), τy ≥ n) + P(nγ < min(Hnα , τy)), (A.2)

and we bound these two parts separately.
We first observe that for all y ≤ nα, we have

P(nγ < min(Hnα , τy)) ≤ P(nγ < min(Hnα , H−(A+1)nα)) ≤ P(max
j≤nγ

|Tj | ≤ (A+ 1)nα).

As a result, using Mogul’skĭı small deviations estimates [23], we have

lim sup
n→+∞

n2α−γ log sup
y≤nα

P(nγ < min(Hnα , τy)) ≤ − π2σ2

8(A+ 1)2 < 0,

in particular there exists K1 > 0 such that for all y ≤ nα,

P(nγ < min(Hnα , τy)) ≤ K1(1 + y)n−1/2. (A.3)

We now bound the other term of Equation A.2. Applying the Markov property at time Hnα , for all
n large enough, we have

P(Hnα ≤ min(τy, nγ), τy ≥ n) ≤
(

1{Hnα<min(τy,nγ)}PTHnα (τy ≥ n− nγ)
)

≤ E
(

1{Hnα<τy}PTHnα (H−(A+1)nα > n/2)
)

≤ E
(

1{Hnα<τy}K
(1 + (A+ 1)nα + THnα )

(n/2)1/2

)
≤ 2K(A+ 3)n−1/2 E

(
1{Hnα<τy}THnα

)
using Theorem 3.3 and the fact that THnα ≥ nα ≥ 1 a.s. Moreover, as (Tn) is a martingale, applying the
optional stopping theorem we have

0 = E(THnα∧τy ) = E(THnα1{Hnα<τy}) + E(Tτy1{τy<Hnα}),
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therefore
E(THnα1{Hnα<τy}) = E

(
−Tτy1{τy<Hnα}

)
≤ E

(
−Tτy

)
:= ψ(y).

Using [11, Theorem 7], ψ(y) < +∞ for all y ≥ 0. We conclude there exists K2 > 0 such that for all n ∈ N
and y ∈ [0, nα],

P(Hnα ≤ min(τy, nγ), τy ≥ n) ≤ K2ψ(y)n−1/2.

To conclude the proof, it is enough to observe that ψ increases at most at a linear rate.
Let y, y′ ≥ 0, as j 7→ −Ajα is decreasing, we observe that

ψ(y + y′) = −E(Tτy+y′ ) = −E(Tτy + Tτy+y′ − Tτy )
≤ −E(Tτy )− E(Tτy′ ) = ψ(y) + ψ(y′).

As ψ is sub-additive, there exists L > 0 such that ψ(y) ≤ (L+ 1)y for all y ≥ 0. Coming back to (A.2),
we conclude there exists C > 0 such that for all n ∈ N and y ≤ nα,

P(τy ≥ n) ≤ C(1 + y)n−1/2.

We now prove Lemma 3.7: there exists C > 0 such that for all p, q ∈ N, x, h ≥ 0 and y ∈ R, we have

P
(
Tj ≥ −x1{j≤p} + y1{p<j≤p+q}, j ≤ p+ q
Tp+q ∈ [y + h, y + h+ 1]

)
≤ C 1 + x

p1/2
1

max(p, q)1/2
1 + h

q1/2 .

Proof of Lemma 3.7. We denote by p′ = bp/2c, q′ = bq/2c and by p′′ = p− p′, q′′ = q− q′. Applying the
Markov property at time p′, we have

P
(
Tp+q − y − h ∈ [0, 1], Tj ≥ −x1{j≤p} + y1{p<j≤p+q}, j ≤ p+ q

)
≤ P (Tj ≥ −x, j ≤ p′) sup

z≥−x
P (Tp′′+q + z − y − h ∈ [0, 1], Tj + z ≥ y, p′′ < j ≤ p′′ + q) .

We set T̂k = Tp′′+q − Tp′′+q−k, which , once again, has same law as T . For all z ∈ R, we have

P (Tp′′+q − z − h ∈ [0, 1], Tj ≥ z, p′′ < j ≤ p′′ + q)

≤ P
(
T̂p′′+q ∈ [z + h, z + h+ 1], T̂j ≤ h+ 1, j ≤ q

)
.

Applying again the Markov property at time q′, we deduce that

P
(
Tp+q ∈ [y + h, y + h+ 1], Tj ≥ −x1{j≤p} + y1{p<j≤p+q}, j ≤ p+ q

)
≤ P (Tj ≥ −x, j ≤ p′)︸ ︷︷ ︸

1+x
p1/2

×P (Tj ≤ h+ 1, j ≤ q′)︸ ︷︷ ︸
1+h
q1/2

× sup
z∈R

P (Tp′′+q′′ ∈ [z, z + 1])︸ ︷︷ ︸
1

max(p,q)1/2

,

using Theorems 3.1 and 3.3.

A.2 Proof of Lemma 3.8
We recall here the notations of Lemma 3.8. Let p, q, r ∈ N, set n = p+ q + r. The time-inhomogeneous
random walk S consists of p steps of independent centred random walk with finite variance, q steps of
independent random variables, then r steps of another centred random walk with finite variance. Let
A ∈ R, and x, y ∈ R+, h ∈ R, we write

ΓA,1(x, y, h) = {s ∈ Rn : ∀k ≤ p, sk ≥ −x}

ΓA,3(x, y, h) =
{
s ∈ Rn : ∀k ∈ [n− r, n], sk ≥ y +A log n

n−k+1

}
.
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Proof of Lemma 3.8. Let A > 0, p, q, r ∈ N, y ≥ 0 and h ∈ R. Without loss of generality, we can assume
that both p and r are even (by changing q in q + 1 or q + 2).

If F = ∅, Lemma 3.8 is an easy consequence of Theorem 3.1.
If F = {1}, applying the Markov property at time p/2, we obtain

P
[
Sn +A logn ∈ [y + h, y + h+ 1], (Sk, k ≤ n) ∈ ΓA,1(x, y, h)

]
≤ P (Sj ≥ −x, j ≤ p/2) sup

z∈R
P
(
Sn − Sp/2 ∈ [z, z + 1]

)
≤ C 1 + x

p1/2
1

max(p, r)1/2 ,

using Theorems 3.4 and 3.1 respectivelly. If F = {3}, we apply the time-reversal, let Ŝj = Sn − Sn−j .
We have

P
[
Sn +A logn− y − h ∈ [0, 1], Sj ≥ y +A log n

n−j+1 , n− r ≤ j ≤ n
]

≤ P
[
Ŝn +A logn− y − h ∈ [0, 1], Ŝj ≤ h+ 1−A log(j + 1), j ≤ r

]
≤ C 1 + h+

r1/2
1

max(p, r)1/2 ,

by the same arguments as above.
Finally, if F = {1, 3}, applying Markov property at time p/2, and time-reversal

P
[
(Sk, k ≤ n) ∈ ΓA,1(x, y, h) ∩ ΓA,3(x, y, h)

]
≤ P [Sj ≥ −x, j ≤ p/2] sup

z∈R
P
[
Ŝn−p/2 ∈ [z, z + 1], Ŝj ≤ h+ 1−A log(j + 1), j ≤ r

]
.

As a consequence, using once again the same arguments

P
[
(Sk, k ≤ n) ∈ ΓA,1(x, y, h) ∩ ΓA,3(x, y, h)

]
≤ C 1 + x

p1/2
1

max(p, r)1/2
1 + h+

r1/2 .

A.3 Proof of Lemma 3.9
We consider a collection of independent random variables (Xp

n, n ≥ 0, p ≤ P ), with, for all p ≤ P ,
(Xp

n, n ≥ 0) an i.i.d. sequence of real-valued centred random variables with finite variance. Let n ≥ 1,
we write, for k ≤ n, Sk =

∑P
p=1

∑k
j=1Xj1{j∈(α(n)

p−1,α
(n)
p ]}. For F ⊂ {1, 3} and x, y, δ ∈ R+, we write

ΥF (x, y, δ) =
{
s ∈ Rn : sk ≥ −x1{1∈F} − δk1{1 6∈F}, k ≤ α

(n)
1 , sk ≥ 0, k ∈ (α(n)

1 , α
(n)
P−1]

sk ≥ y1{3∈F} − δ(n− k)1{3 6∈F}, k ∈ (α(n)
p−1, n]

}
.

There exists c > 0 such that for any F ⊂ {1, 3}, x ∈ [0, n1/2], y ∈ [−n1/2, n1/2] and δ > 0

P
[
Sn ≤ y + 1, S ∈ ΥF (x, y, δ)

]
≥ c1 + x1F (1)

n1F (1)/2
1

n1/2
1

n1F (3)/2 .

Proof of Lemma 3.9. Let n ≥ 1, x, |y| ∈ [0, n1/2] and δ > 0. We denote by

ΩF (δ, y) =
{
s ∈ Rn−α

(n)
1 : ∀k ≤ α

(n)
P−1 − α

(n)
1 , sk ≥ 0

∀k ∈ (α(n)
p−1, n], sk ≥ y1{3∈F} − δ(n− k)1{3 6∈F}

}
.
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Applying the Markov property at time α(n)
1 , we have

P
[
Sn ≤ y + 1, S ∈ ΥF (x, y, δ)

]
= E

[
1{Sj≥−x1{1∈F}−δk1{16∈F}}Pα(n)

1 ,Sα
(n)
1

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)]
.

On the one hand, if 1 ∈ F , we have

P
[
Sn ≤ y + 1, S ∈ ΥF (x, y, δ)

]
≥ P

(
Sj ≥ −x, Sα(n)

1
∈ [3n1/2, 4n1/2]

)
× inf
u∈[3n1/2,4n1/2]

P
α

(n)
1 ,u

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)
.

Using Theorems 3.2 and 3.3, we have

P
(
Sj ≥ −x, Sα(n)

1
∈ [3n1/2, 4n1/2]

)
≥ c(1 + x)

n1/2 .

On the other hand, if 1 6∈ F , for all h > 3

P
[
Sn ≤ y + 1, S ∈ ΥF (x, y, δ)

]
≥ P

(
Sj ≥ −δk,

∣∣∣Sα(n)
1

∣∣∣ ∈ [3n1/2, hn1/2]
)

× inf
u∈[3n1/2,hn1/2]

P
α

(n)
1 ,u

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)
.

By Theorem 3.5, we have P(∀n ∈ N, Sn ≥ −δn) > 0. Thus, writing λ(n) =
⌊
α

(n)
1 /2

⌋
, by central limit

theorem, there exists c > 0 and h > 0 such that for all n ≥ 1 large enough

P
(
Sj ≥ −δj, j ≤ λ(n), Sλ(n) ∈ [−h

√
n, h
√
n]
)
≥ c.

Moreover, by Donsker theorem

lim inf
n→+∞

inf
|z|≤h

√
n
Pz
(
Sj ≥ −2h

√
n, Sλ(n) ∈ [3

√
n, 4
√
n]
)
> 0.

As a consequence, we have

P
(
Sj ≥ −x1{1∈F} − δk1{1 6∈F}, Sα(n)

1
∈ [3n1/2, 4n1/2]

)
≥ c(1 + x1F (1))

n1F (1)/2 .

We now apply time-reversal, for k ≤ n, let Ŝk = Sn − Sn−k, we observe that

inf
z∈[3n1/2,4n1/2]

P
α

(n)
1 ,z

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)
≥ inf
u∈[2n1/2,5n1/2]

P

[
Ŝ
n−α(n)

1
∈ [u, u+ 1], Ŝj ≥ −δn1{3 6∈F}, j ≤ n− α

(n)
P−1

Ŝj ≥ n1/2, j ≤ n− α(n)
1

]
.
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We write Sk = Ŝ
n−α(n)

P−1+k − Ŝn−α(n)
P−1

, we apply again the Markov property at time n− α(n)
P−1

inf
z∈[3n1/2,4n1/2]

P
α

(n)
1 ,z

(
S
n−α(n)

1
≤ y + 1, S ∈ ΩF (δ, y)

)
≥ c

n1F (3)/2 inf
z∈[0,10n1/2]

P

[
min

j≤α(n)
P−1−α

(n)
1

Sj ≥ −n1/2, S
α

(n)
P−1−α

(n)
1
∈ [z, z + 1]

]
,

using the same tools as above. Finally

P

[
min

j≤α(n)
P−1−α

(n)
1

Sj ≥ −n1/2, S
α

(n)
P−1−α

(n)
1
∈ [z, z + 1]

]
≥ c

n1/2 ,

using Theorem 3.2 and the fact that infn∈N P
[
min

j≤α(n)
P−1−α

(n)
1
Sj ≥ −n1/2

]
> 0, by Donsker’s theorem.

B Lagrange multipliers for the optimization problem
In this section, for any h,k ∈ RP , we write h.k =

∑P
p=1 hpkp the usual scalar product in RP . Moreover,

if f : RP → R is differentiable at point h, we write ∇f(h) = (∂1f(h), . . . ∂P f(h)) the gradient of f .
We study in this section the optimization problem consisting of finding a ∈ R such that

P∑
p=1

(αp − αp−1) ap = sup
{

P∑
p=1

(αp − αp−1) bp : b ∈ R
}
. (B.1)

Equation (B.1) is a problem of optimization under constraint the a ∈ R. To obtain a solution, we use an
existence of Lagrange multipliers theorem. The version we use here is stated in [20], for Banach spaces.

Theorem B.1 (Existence of Lagrange multipliers). Let P,Q ∈ N. We denote by U an open subset of
RP , J a differentiable function U → R and g = (g1, . . . gQ) a differentiable function U → RQ. Let R be
a convex cone in RQ i.e. a subset such that ∀x, y ∈ R,∀λ, µ ∈ R+, λx+ µy ∈ R.

If a ∈ RP verifies g(a) ∈ R and

J(a) = sup {J(b),b ∈ Rp : g(b) ∈ R} ,

and if the differential of g at point a is a surjection, then there exist non-negative Lagrange multipliers
λ1, . . . λQ verifying the following properties.

(L1) For all h ∈ RP , ∇J(a).h =
∑Q
q=1 λq(∇gq(a).h).

(L2) For all h ∈ R,
∑Q
q=1 λqhq ≤ 0;

(L3)
∑Q
q=1 λqgq(a) = 0.

Using this theorem, we prove Proposition 1.2. We start by proving that if a satisfies some specific
properties, then a is the solution to (B.1).

Lemma B.2. Under assumptions (1.1) and (1.8), a ∈ R is a solution of (B.1) if and only if, writing
θp =

(
κ∗p
)′ (ap), we have
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(P1) θ is non-decreasing and positive ;

(P2) if K∗(a)p < 0, then θp+1 = θp ;

(P3) K∗(a)P = 0.

Proof. For b ∈ RP , we denote by

J(b) =
P∑
p=1

(αp − αp−1)bp, R = {k ∈ RP : kp ≤ 0, p ≤ P},

and we write, θp(b) = (κ∗p)′(bp).
We assume in a first time that a ∈ R is a solution of (B.1), in which case

J(a) = sup
{
J(b),b ∈ RP : K∗(b) ∈ R

}
. (B.2)

The function J is linear thus differentiable, and assumption (1.8) implies that K∗ is differentiable at
point a. For h ∈ RP , we have ∇J(a).h =

∑P
p=1(αp − αp−1)hp, and ∇K∗(a)p.h = (αp − αp−1)θp(a)hp.

To prove that K∗ has a surjective differential, it is enough to prove that for all p ≤ P , θp(a) 6= 0. Let
p ≤ P be the smallest value such that θp(a) = 0. Observe that in this case, κ∗p(ap) < 0 by (1.1), thus we
can increase a little ap and stay inR as soon as we decrease a little ap−1 –or aP if p = 1, in which case same
proof would work with few modifications. For ε > 0 and q ≤ P , we write aεq = aq−ε1{q=p−1}+ε2/31{q=p}.
We observe that, for all ε > 0 small enough,

K∗(aε)p−1 = K∗(aε)p−2 + (αp−1 − αp−2)κ∗p−1(ap−1 − ε)
≤ K∗(a)p−2 + (αp−1 − αp−2)κ∗p−1(ap−1)− (αp−1 − αp−2)θp−1(a)ε+O(ε2)
≤ K∗(a)p−1 − (αp−1 − αp−2)θp−1(a)ε+O(ε2)

and

K∗(aε)p ≤ K∗(a)p−1 + (αp − αp−1)κ∗p(ap + ε2/3)
≤ K∗(a)p−1 − (αp−1 − αp−2)θp−1(a)ε+ (αp − αp−1)κ∗p(ap) +O(ε4/3)
≤ K∗(a)p − (αp−1 − αp−2)θp−1(a)ε+O(ε4/3),

thus, for ε > 0 small enough, aε ∈ R and
∑P
p=1(αp−αp−1)aεp >

∑P
p=1(αp−αp−1)ap, which is inconsistent

with the fact that a is the optimal solution of (B.1).
Therefore, by Theorem B.1, there exist non-negative λ1, . . . λP such that

(L1) ∀h ∈ RP , ∇J(a).h =
∑P
p=1 λp∇K∗(a)p.h;

(L2) ∀h ∈ R,
∑P
p=1 λphp ≤ 0;

(L3)
∑P
p=1 λpK

∗(a)p = 0.

We observe that Condition (L1) can be rewritten ∀p ≤ P, λpθp(a) = 1, therefore θp(a) = 1
λp

. More-
over, Condition (L2) applied to the vector hp ∈ R defined by hpj = −1{j=p} + 1{j=p+1} implies that λ is
non-increasing, thus θ is non-decreasing; which gives (P1). Finally, we rewrite Condition (L3) as follows,
by discrete integration by part

0 =
P∑
p=1

λpK
∗(a)p = λPK

∗(a)P︸ ︷︷ ︸
≤0

−
P−1∑
p=1

(λp+1 − λp)K∗(a)p︸ ︷︷ ︸
≥0

,
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therefore Condition (P3) (K∗(a)P = 0) is verified; and if λp+1 6= λp, then K∗(a)p = 0, which implies
(P2).

We now suppose that a ∈ R verifies Conditions (P1), (P2) and (P3) and we prove that for all b ∈ R,

P∑
p=1

(αp − αp−1)ap ≥
P∑
p=1

(αp − αp−1)bp. (B.3)

To do so, we use the fact that functions κ∗p are convex and differentiable at point a, therefore, for all
x ∈ R, κ∗p(x) ≥ κ∗p(ap) + θp(x− ap). As a consequence, we have

P∑
p=1

(αp − αp−1)(ap − bp) ≥
P∑
p=1

κ∗p(ap)− κ∗p(bp)
θp

(αp − αp−1)

≥ (K∗(a)P −K∗(b)P ) 1
θP
−
P−1∑
p=1

(
1

θp+1
− 1
θp

)
(K∗(a)p −K∗(b)p)

by discrete integration by part. By the specific properties of a, we have

K∗(a)P
1
θP
−
P−1∑
p=1

(
1

θp+1
− 1
θp

)
K∗(a)p = 0,

thus
P∑
p=1

(αp − αp−1)(ap − bp) ≥ −
K∗(b)P
θP

+
P−1∑
p=1

(
1

θp+1
− 1
θp

)
K∗(b)p ≥ 0, as θ is non-decreasing an

K∗(b) non-positive. Optimizing (B.3) over b ∈ R gives us

P∑
p=1

(αp − αp−1)ap ≥ vis

which ends the proof.

We now prove the uniqueness of the solution of (B.1).

Lemma B.3. If for all p ≤ P , κp is finite on an open subset of [0,+∞), then there is at most one
solution to (B.1).

Proof. The uniqueness of the solution in an easy consequence of the strict convexity of (κ∗p, p ≤ P ). Let
a and b be two different solutions to (B.1), there exists a largest p ≤ P such that ap 6= bp. Writing
c = a+b

2 , for any q ≥ p, we have K∗(c)q < K∗(a)q+K∗(b)q
2 ≤ 0. Thus, by continuity of K∗, c is in the

interior of R, then we can increase a little cp, and the path driven by (c+ ε1{.=p}) goes farther than both
a and b, which is a contradiction.

Finally, we prove the existence of such a solution when the mean number of children of an individual
in the BRWis is finite.

Lemma B.4. Under the assumptions (1.8) and (1.9), there exists at least a solution to (B.1).

Proof. If κp(0) < +∞, then infR κ∗p = −κp(0) and the minimum is reached at κ′p(0). As κ∗p are bounded
from below, for all p ≤ P there exists xp ≥ 0 such that

(αp − αp−1)κ∗p(xp) +
∑
q 6=p

(αq − αq−1) inf
R
κ∗q > 0.
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Therefore, writing X = R∩
∏
p≤P [κ′p(0), xp], we have

sup
b∈R

∑
(αp − αp−1)bp = sup

b∈X

∑
(αp − αp−1)bp.

But, X being compact, this supremum is in fact a maximum. There exists a ∈ X such that
∑

(αp −
αp−1)ap = sup

b∈R

∑
(αp − αp−1)bp which ends the proof.

C Notation
• Point processes

– Lp: law of a point process;
– Lp: point process with law Lp;
– κp: log-Laplace transform of Lp;
– κ∗p: Fenchel-Legendre transform of Lp;
– Xp: defined in 1.12;

– vp = infθ>0
κp(θ)
θ : speed of branching random walk with reproduction law Lp;

– θp critical parameter such that θpvp − κp(θp) = 0;

• Generic marked tree

– T: genealogical tree of the process;
– u ∈ T: individual in the process;
– V (u): position of the individual u;
– |u|: generation at which u belongs;
– uk: ancestor at generation k of u;
– ∅: initial ancestor of the process;
– if u 6= ∅, πu: parent of u;
– Ω(u): set of the children of u;
– Mn = max|u|=n V (u) maximal displacement at the nth generation in (T, V ).

• Branching random walk through a series of interfaces

– P : number of distinct phases in the process;
– 0 = α0 < α1 < . . . < αP = 1: position of the interfaces;

– α
(n)
p = bnαpc: position of the pth interface for the BRWis of length n;

– a
(n)
k =

∑P
p=1

∑k
j=1 1{j∈(α(n)

p−1,α
(n)
p ]} path driven by a := (a1, . . . ap) ∈ RP ;

– u “follows path a(n)” if ∀k ≤ |u|, |V (uk)− a(n)
k | ≤ n1/2;

– K∗(a)p =
∑p
q=1(αq − αq−1)aq: rate function associated to the BRWis;

– R =
{

a ∈ RP : ∀p ≤ P,K∗(a)p ≤ 0
}

: set of a ∈ RP such that a(n) is followed until time n by
at least one individual with positive probability.
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• The optimal path

– vis = maxb∈R
∑P
p=1(αp − αp−1)bp: speed of the BRWis;

– a ∈ R such that
∑P
p=1(αp − αp−1)ap = vis: optimal speed profile;

– θp = (κ∗p)′(ap);
– T = #{θp, p ≤ P}: number of different values taken by θ;
– φ1 < φ2 < · · · < φT : different values taken by θ;
– ft = min{k ≤ P : θk = φt} and lt = max{k ≤ P : θk = φt};

– λ =
∑T
t=1

1
2φt

[
1{K∗(a)ft=0} + 1 + 1{K∗(a)lt−1=0}

]
: logarithmic correction;

– B = {p ≤ P : K∗(a)p−1 = K∗(a)p = 0}: phases such that the optimal path is close to the
boundary of the BRWis;

• Spinal decomposition

– Wn =
∑
|u|=n e

θV (u)−
∑n

k=1
κk(θ): the additive martingale with parameter θ;

– Pk,x: law of the time-inhomogeneous branching random walk with environment (Lk,Lk+1, . . .);
– Pk,x = Wn · Pk,x: size-biased law of Pk,x;

– P̂k,x: law of the branching random walk with spine;
– w: spine of the branching random walk;
– Fn = σ(u, V (u), |u| ≤ n): filtration of the branching random walk;
– Gn = σ(wk, V (wk), k ≤ n) ∨ σ(u, V (u), u ∈ Ω(wk), k < n): filtration of the spine;

– F̂n = Fn ∨ Gn: filtration of the branching random walk with spine;
– Spinal decomposition: Proposition 2.1;
– Many-to-one lemma: Lemma 2.2.

• Random walks

– (Tn): random walk with finite variance;
– (Sn): random walk through a series of interfaces, its law under Pk,x is the same as the law of

(V (wj), j ≤ n− k) under P̂k,x.

– Time-reversal: replace S by the random walk (Ŝn = Sn − Sn−k, k ≤ n).

• Branching random walk estimates

– mn = nvis − λ logn;
– Ep(φ) =

∑p
q=1(αq − αq−1)(φκ′p(φ)− κq(φ));

– K
(n)
k =

∑P
p=1 κp(θ)

∑k
j=1 1{j∈(α(n)

p−1,α
(n)
p ]};

– r
(n)
k = aP (k − n) + 3

2θ log(n− k + 1);

– B(n) =
⋃
p∈B(α(n)

p−1, α
(n)
p ] and F (n) =

⋃
p∈B∩{1,P}[α

(n)
p−1, α

(n)
p ];

– f
(n)
j = a1j1{j≤α(n)

1 } +
(
mn + r

(n)
k

)
1{j≥α(n)

P−1}
;
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– X(n)(y, h) =
∑
|u|=n 1{V (u)−mn−y∈[−h,−h+1]}1{V (uj)≤f(n)

j
+y,j∈F (n)};

– for δ > 0 such that 3θδ < minp∈Bc −Ep(θ),

g
(n)
k = 1 +


a

(n)
k − 1{p=P}λ logn if Ep(θ) = Ep−1(θ) = 0
a

(n)
k + (k − α(n)

p−1)δ if Ep−1(θ) = 0, Ep(θ) < 0
a

(n)
k + (α(n)

p − k)δ if Ep(θ) = 0, Ep−1(θ) < 0
a

(n)
k + δn otherwise;

– An(y) =
{
|u| = n : V (u) ≥ mn + y, V (uj) ≤ g(n)

j + y, j ≤ n
}

;

– ξ(u) =
∑
u′∈Ω(u)(1 + (V (u′)− V (u))+1{|u|∈B(n)})eθ(V (u′)−V (u));

– Bn(z) =
{
|u| = n : ξ(uj) ≤ ze−

θ
2
[
V (uj)−g(n)

j

]}
;

– Gn(y, z) = An(y) ∩ Bn(z) and Yn(y, z) = #Gn(y, z)
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[10] Francesco Caravenna and Löıc Chaumont. An invariance principle for random walk bridges condi-
tioned to stay positive. Electron. J. Probab., 18:no. 60, 32, 2013.

[11] Denis Denisov, Alexander Sakhanenko and Vitali Wachtel First-passage times for random walks
with non-identically distributed increments. arXiv:1611.00493, 2016.

[12] Ming Fang and Ofer Zeitouni. Branching random walks in time inhomogeneous environments. Elec-
tron. J. Probab., 17:no. 67, 18, 2012.

[13] Ming Fang and Ofer Zeitouni. Slowdown for time inhomogeneous branching Brownian motion. J.
Stat. Phys., 149(1):1–9, 2012.

[14] J.M. Hammersley. Postulates for subadditive processes Ann. Probab. 2, 652–680, 1974.

[15] P. L. Hsu and Herbert Robbins. Complete convergence and the law of large numbers. Proc. Nat.
Acad. Sci. U. S. A., 33:25–31, 1947.

[16] Yueyun Hu and Zhan Shi. Minimal position and critical martingale convergence in branching random
walks, and directed polymers on disordered trees. Ann. Probab., 37(2):742–789, 2009.

[17] J.-P. Kahane and J. Peyrière. Sur certaines martingales de Benoit Mandelbrot. Advances in Math.,
22(2):131–145, 1976.

[18] J. F. C. Kingman. The first birth problem for an age-dependent branching process. Ann. Probability,
3(5):790–801, 1975.

[19] M. V. Kozlov. The asymptotic behavior of the probability of non-extinction of critical branching
processes in a random environment. Teor. Verojatnost. i Primenen., 21(4):813–825, 1976.

[20] S. Kurcyusz. On the existence and non-existence Lagrange multipliers in Banach spaces. J. Opti-
mization Theory Appl., 20(1):81–110, 1976.

[21] Russell Lyons. A simple path to Biggins’ martingale convergence for branching random walk. In
Classical and modern branching processes (Minneapolis, MN, 1994), volume 84 of IMA Vol. Math.
Appl., pages 217–221. Springer, New York, 1997.

[22] Russell Lyons, Robin Pemantle, and Yuval Peres. Conceptual proofs of L logL criteria for mean
behavior of branching processes. Ann. Probab., 23(3):1125–1138, 1995.
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