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Introduction

Let {V (u), u ∈ T} be a discrete-time branching random walk (BRW) on the real line R driven by a point process Θ. At generation 0, there is a single particle at the origin from which we generate a point process Θ on R. The particles in Θ together with their positions in R constitute the first generation of the BRW. From the position of each particle at the first generation, we generate an independent copy of Θ. The collection of all particles together with their positions gives the second generation of the BRW, and so on. The genealogy of all particles forms a Galton-Watson tree T (whose root is denoted by ∅). For any particle u ∈ T, we denote by V (u) its position in R and |u| its generation in T. The whole system may die out or survive forever.

1 Plainly Θ = |u|=1 δ {V (u)} . Let ν = Θ(R). Throughout this paper and unless stated otherwise, we shall assume that the BRW is in the boundary case, i.e.

E[ν] ∈ (1, ∞], E |u|=1 e -V (u) = 1, E |u|=1 V (u) e -V (u) = 0. (1.1)
Notice that under (1.1), it is possible that P(ν = ∞) > 0. See Jaffuel [START_REF] Jaffuel | The critical barrier for the survival of the branching random walk with absorption[END_REF] for detailed discussions on how to reduce a general branching random walk to the boundary case.

Denote by M n := min |u|=n V (u) the minimum of the branching random walk in the nth generation (with convention: inf ∅ ≡ ∞). Hammersly [START_REF] Hammersley | Postulates for subadditive processes[END_REF], Kingman [START_REF] Kingman | The first birth problem for an age-dependent branching process[END_REF] and Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching process[END_REF] established the law of large numbers for M n (for any general branching random walk), whereas the second order limits have attracted many recent attentions, see [START_REF] Addario-Berry | Minima in branching random walks[END_REF][START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF][START_REF] Bramson | Tightness for a family of recursion equations[END_REF][START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] and the references therein. In particular, Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] proved the convergence in law of M n - 3 2 log n under (1.1) and some mild conditions.

On the almost sure limits of M n , it was shown in [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] that there is the following phenomena of fluctuation at the logarithmic scale. Assume (1.1). If there exists some δ > 0 such that E[ν 1+δ ] < ∞ and E R (e δx + e -(1+δ)x )Θ(dx) < ∞, then lim sup and S := {T is not finite} denotes the event that the whole system survives. It turns out that much more can be said on the lower limits 1 2 log n of M n : Under (1.1) and the following integrability condition

σ 2 := E |u|=1 (V (u)) 2 e -V (u) < ∞, E ζ((log ζ) + ) 2 + ζ(log ζ) + < ∞, (1.2) 
with ζ := |u|=1 e -V (u) , ζ := |u|=1 (V (u)) + e -V (u) and x + := max(0, x), Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] proved that lim inf n→∞ M n -1 2 log n = -∞, P * -a.s.

Furthermore, by following Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]'s methods, we established ( [START_REF] Hu | The almost sure limits of the minimal position and the additive martingale in a branching random walk[END_REF]) an integral test to describe the lower limits of M n -1 2 log n. As a consequence, we have that under (1.1) and (1.2), lim inf n→∞ 1 log log n M n -1 2 log n = -1, P * -a.s. (1.3) In this paper, we wish to investigate how big M n -3 2 log n can be. The following law of iterated logarithm (LIL) describes the upper limits of M n : Theorem 1.1 Assume (1.1), (1.2) and that E |u|=1 (V (u) + ) 3 e -V (u) < ∞. We suppose that the law of log |u|=1 e -V (u) is non-lattice. Then lim sup n→∞ 1 log log log n (M n -3 2 log n) = 1, P * -a.s.

(1.4)

The integrability of |u|=1 (V (u) + ) 3 e -V (u) is used only in the proof of Lemma 4.2, see Remark 4.3, Section 4.

The assumption of the non-lattice law of log |u|=1 e -V (u) is used only in the proof of Lemma 4.5, see the footnote therein.

Usually, to establish such LIL, the first step would be the study of the moderate deviations:

P * M n - 3 2 log n > λ , when λ = o(log n) and λ, n → ∞.
Denote by p j = P(ν = j), j ≥ 0, the offspring distribution of the Galton-Watson tree T. Concerning the small deviations of the size of T, there exist two cases: either p 0 + p 1 > 0 (namely the Schröder case) or p 0 = p 1 = 0 (namely the Böttcher case), see e.g. Fleischmann and Wachtel [START_REF] Fleischmann | Lower deviation probabilities for supercritical Galton-Watson processes[END_REF][START_REF] Fleischmann | On the left tail asymptotics for the limit law of supercritical Galton-Watson processes in the Böttcher case[END_REF] and the references therein. Basically in the Schröder case, the tree T may grow linearly whereas it always grows exponentially in the Böttcher case. For the branching random walk, we shall prove that the moderate deviations of M n decay exponentially fast or double-exponentially fast depending on the growth rate of T.

Let q := P(T is finite) = P(S c ) ∈ [0, 1) be the extinction probability. We introduce two separate cases:

(the Schröder case) if the following hypotheses hold:

E 1 (ν≥1) q ν-1 |u|=1 e γ V (u) = 1,
for some constant γ > 0, (1.5) and E |u|=1 e aV (u) < ∞, for some a > γ.

(1.6)

(the Böttcher case) if the following hypotheses hold:

p 0 = p 1 = 0, (1.7) sup |u|=1 V (u) ≤ K,
for some constant K > 0.

(1.8) Remark 1.2 (i) When a.s. ν ≥ 1 in the Schröder case, the condition (1.5) just amounts to (iii) In the Böttcher case, we can define a parameter β > 0 by

E 1 (ν=1) |u|=1 e γ V (u) = 1, if q = 0. ( 1 
β := sup{a > 0 : P |u|=1 e -a V (u) ≥ 1 = 1}. (1.10)
Note that β < 1 if we assume (1.1).

The parameters γ and β will naturally appear in the small deviations of a class of Mandelbrot's cascades. Under (1.1) and (1.2), the so-called derivative martingale (with convention: u) , n ≥ 0, converges almost surely to some limit D ∞ which is P * -a.s. positive (see e.g. Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] and Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF]). The nonnegative random variable D ∞ satisfies the following equation in law (Mandelbrot's cascade):

∅ := 0) D n := |u|=n V (u) e -V (
D ∞ law = |u|=1 e -V (u) D (u) ∞ , (1.11) 
where conditioned on {V (u), |u| = 1}, (D

∞ ) |u|=1 are independent copies of D ∞ . The moderate deviations of M n will be naturally related to the small deviations of D ∞ which were already studied in the literature, see e.g. Liu [START_REF] Liu | Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks[END_REF][START_REF] Liu | Asymptotic properties and absolute continuity of laws stable by random weighted mean[END_REF] and the references therein.

We shall work under a more general setting in order that Theorem 1.3 could also be applied to the non-degenerated case of Mandelbrot's cascades. Instead of (1.1), we assume that there exists some constant χ ∈ (0, 1] such that

E |u|=1 e -χV (u) ≤ 1,
and

E[ν] ∈ (1, ∞], (1.12) 
where as before, ν := |u|=1 1.

The condition (1.12) ensures that there exists a non-trivial nonnegative solution Z to the following equation:

Z law = |u|=1 e -V (u) Z (u) , (1.13) 
where conditioned on {V (u), |u| = 1}, (Z (u) ) |u|=1 are independent copies of Z, see Liu [START_REF] Liu | Asymptotic properties and absolute continuity of laws stable by random weighted mean[END_REF], Proposition 1.1.

Denote by

f (x) ≍ g(x) [resp: f (x) ∼ g(x)] as x → x 0 if 0 < lim inf x→x 0 f (x)/g(x) ≤ lim sup x→x 0 f (x)/g(x) < ∞ [resp: lim x→x 0 f (x)/g(x) = 1].
The following result may arise an interest in Mandelbrot's cascades.

Theorem 1.3 Assume (1.12). Let Z ≥ 0 be a non-trivial solution of (1.13).

(The Schröder case) Assume (1.5) and (1.6). Then

P 0 < Z < ε ≍ ε γ , as ε → 0, (1.14)
and E e -tZ 1 (Z>0) ≍ t -γ as t → ∞.

(The Böttcher case) Assume (1.7), (1.8) and that |u|=1 e -χV (u) ≡ 1.

Then

E e -tZ = e -t β+o(1) , t → ∞, (1.15 
)

and P Z < ε = e -ε -β 1-β +o (1) 
, as ε → 0, with β defined in (1.10).

Obviously we can apply Theorem 1.3 to Z := D ∞ with χ = 1. In the Böttcher case, the two conditions (1.12) and |u|=1 e -χV (u) ≡ 1 imply that β < χ, hence β < 1; moreover, essinf |u|=1 e -βV (u) = 1.

Let us mention that (1.14) confirms a prediction in Liu [START_REF] Liu | Asymptotic properties and absolute continuity of laws stable by random weighted mean[END_REF] who already proved that if q = 0, then for any a > 0, E Z -a < ∞ if and only if a < γ. When all V (u), |u| = 1, are equal to some random variable, (1.15) is in agreement with Liu [START_REF] Liu | Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks[END_REF], Theorem 6.1. If furthermore, all V (u) are equal to some constant, then (1.14) and (1.15) give some rough estimates on the limiting law of Galton-Watson processes, see Fleischmann and Wachtel [START_REF] Fleischmann | Lower deviation probabilities for supercritical Galton-Watson processes[END_REF], [START_REF] Fleischmann | On the left tail asymptotics for the limit law of supercritical Galton-Watson processes in the Böttcher case[END_REF] for the precise estimates. We refer to [START_REF] Berestycki | Galton-Watson trees with vanishing martingale limit[END_REF] for further studies of the conditioned Galton-Watson tree itself. For instance, we could seek the asymptotic behaviors of the BRW conditioned on {0 < D ∞ < ε}, as ε → 0, but this problem exceeds the scope of the present paper.

Our moderate deviations result on M n reads as follows:

Theorem 1.4 Assume (1.1), (1.2). Let λ, n → ∞ and λ = o(log n).
(The Schröder case) Assume (1.5) and that (1.6) hold for all a > 0. Then (1.17)

P * M n > 3 2 log n + λ = e -(γ+o(1))λ . ( 1 
The same estimates hold if we replace M n by max n≤k≤2n M k .

We refer to Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], Proposition 4.1 for the precise estimate on P(M n < 3 2 log nλ) as λ ≤ 3 2 log n and λ → ∞. Comparing Theorem 1.1 and Theorem 1.4, we remark that the almost sure behaviors of M n are not related to the moderate deviations of M n . This can be explained as follows: Define for all λ ≥ 0 and u ∈ T,

τ λ (u) := inf{1 ≤ i ≤ |u| : V (u i ) > λ}, (with convention inf ∅ = ∞), (1.18) 
where here and in the sequel, {u 0 = ∅, u 1 , ..., u |u| := u} denotes the shortest path from ∅ to u such that |u i | = i for all 0 ≤ i ≤ |u|. We introduce the stopping lines:

£ λ := {u ∈ T : τ λ (u) = |u|}, λ ≥ 0. (1.19)
Roughly speaking, the almost sure limits of M n (lim sup of M n ) are determined by those of #£ λ , whereas the moderate deviations of M n are by the small deviations of #£ λ . By Nerman [START_REF] Nerman | On the convergence of supercritical general (C-M-J) branching processes[END_REF], P * -almost surely, #£ λ is of order e (1+o(1))λ ; however, to make #£ λ to be as small as possible (and conditioned on {#£ λ > 0}), in the Schröder case, £ λ will be essentially a singleton or a set of few points with exponential costs (see Lemma 5.3), which is no longer possible in the Böttcher case. To relate #£ λ to D ∞ , we shall use the martingale (D n ) at the stopping line £ λ :

D £ λ := u∈£ λ V (u)e -V (u) , (1.20) 
which, as shown in Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF], converges almost surely to D ∞ as λ → ∞.

For u ∈ £ λ , V (u) ≈ λ, hence D £ λ ≈ λ e -λ #£ λ .
Then the problem of small values of #£ λ will be reduced to that of D £ λ and D ∞ as λ → ∞. The hypothesis (1.6) and (1.8) are made to control the possible overshoots. The rest of the paper is organized as follows: In Section 2, we collect some facts on a one-dimensional random walk and on the branching random walk. In Section 3, we study the cascade equation (1.13) and prove Theorem 1.3. In Section 4, we first prove some uniform tightness of M n -3 2 log n (Lemma 4.5) and then Theorem 1.1. Finally, in Section 5, we prove Theorem 1.4 in two separate subsections on the Schröder case and on the Böttcher case.

Throughout the paper, we adopt the usual conventions that ∅ := 0, sup ∅ := 0, ∅ := 1, inf ∅ := ∞; we also denote by (c i , 1 ≤ i ≤ 15) some positive constants, and by C, C ′ and C ′′ (eventually with a subscript) some unimportant positive constants whose values can vary from one paragraph to another one.

Preliminaries

Estimates on a centered real-valued random walk

We collect here some estimates on a real-valued random walk {S k , k ≥ 0}, under P, centered and with finite variance σ 2 > 0. Write P x and E x when S 0 = x. Let S n := min 0≤i≤n S i , ∀ n ≥ 0. The renewal function R(x) related to the random walk S is defined as follows:

R(x) := ∞ k=0 P S k ≥ -x, S k < S k-1 , x ≥ 0, (2.1) 
and R(x) = 0 if x < 0. Moreover (see Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], pp.612),

lim x→∞ R(x) x = c 1 > 0. (2.2)
Lemma 2.1 Let S be a centered random walk with finite and positive variance. There exists some constant c 2 > 0 such that for any b ≥ a ≥ 0, x ≥ 0, n ≥ 1,

P x S n ∈ [a, b], S n ≥ 0 ≤ c 2 (1 + x)(1 + b -a)(1 + b)n -3 2 . (2.3)
For any fixed 0 < r < 1, there exists some c 3 ≡ c 3,r > 0 such that for all b ≥ a ≥ 0, x, y ≥ 0 and n ≥ 1,

P x S n ∈ [y + a, y + b], S n ≥ 0, min rn≤i<n S i ≥ y ≤ c 3 (1 + x)(1 + b -a)(1 + b)n -3 2 , (2.4) P x S n ≥ 0, min rn≤i<n S i > y, S n ≤ y ≤ c 3 (1 + x)n -3 2 . (2.5)
For any a > 0, if E S 2 1 e aS 1 < ∞, then there exists some C a > 0 such that for any b ≥ 0,

P S τ b -b > x ≤ C a e -ax , ∀ x ≥ 0, (2.6) 
where τ b := inf{j ≥ 0 : S j > b}.

Proof of Lemma 2. [START_REF] Doney | Moments of ladder heights in handom walks[END_REF], pp.250), this condition ensures that E S τ 0 e aSτ 0 < ∞. Then in view of Chang ([10], Proposition 4.2), we have that uniformly in b > 0, E e a(Sτ b -b) ≤ C a for some constant C a > 0, which implies (2.6) by Chebychev's inequality.

It remains to check (2.5). Let f (x) := P(S 1 ≤ -x), x ≥ 0. It follows from the Markov property at n -1 that the probability in LHS of (2.5) equals

E x 1 (S n-1 ≥0,min rn≤i<n S i >y) f (S n-1 -y) ≤ ∞ j=0 f (j) P x S n-1 ≥ 0, min rn≤i≤n-1 S i > y, y + j < S n-1 ≤ y + j + 1 ≤ C (1 + x) n -3/2 ∞ j=0 f (j) (2 + j) (by (2.4)) ≤ C ′ (1 + x) n 3/2 ,
yielding (2.5).

Change of measures for the branching random walk

In this subsection, we recall some change of measure formulas in the branching random walk, for the details we refer to [START_REF] Biggins | Measure change in multitype branching[END_REF][START_REF] Chauvin | Growing conditioned trees[END_REF][START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF][START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF][START_REF] Harris | The many-to-few lemma and multiple spines[END_REF][START_REF] Shi | Branching Random Walks[END_REF] and the references therein.

At first let us fix some notations: For |u| = n, we write as before {u 0 := ∅, u 1 , ..., u n-1 , u n = u} the path from the root ∅ to u such that |u i | = i for any 0 ≤ i ≤ n. Define V (u) := max 1≤i≤n V (u i ) and V (u) := min 1≤i≤n V (u i ). For any u, v ∈ T, we use the partial order u < v if u is an ancestor of v and u ≤ v if u < v or u = v. We also denote by Under (1.1), there exists a centered real-valued random walk {S n , n ≥ 0} such that for any n ≥ 1 and any measurable f : R n → R + ,

E |u|=n e -V (u) f (V (u 1 ), ..., V (u n )) = E (f (S 1 , ..., S n )) , (2.7) 
which is often referred as the "many-to-one" formula. Moreover under (1.2), Var(S

1 ) = σ 2 = E |u|=1 (V (u)) 2 e -V (u) ∈ (0, ∞).
We shall use the notation

τ 0 := inf{j ≥ 1 : S j > 0}. (2.8) 
Denote by (F n , n ≥ 0) the natural filtration of the branching random walk. Under (1.1), the process

W n := |u|=n e -V (u) , n ≥ 1, is a (P, (F n ))-martingale.
It is well-known (see [START_REF] Biggins | Measure change in multitype branching[END_REF][START_REF] Chauvin | Growing conditioned trees[END_REF][START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF][START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF][START_REF] Harris | The many-to-few lemma and multiple spines[END_REF][START_REF] Shi | Branching Random Walks[END_REF]) that on some enlarged probability space (more precisely on the space of marked trees enlarged by an infinite ray (w n , n ≥ 0), called spine), we may construct a probability Q such that the following statements (i), (ii) and (iii) hold:

(i) For all n ≥ 1,

dQ dP Fn = W n , and 
Q w n = u F n = 1 W n e -V (u) , ∀|u| = n. (ii) Under Q, the process {V (w n ), n ≥ 0} along the spine (w n ) n≥0 , is distributed as the random walk (S n , n ≥ 0) under P. Moreover, ( u∈℧(w k ) δ {∆V (u)} , ∆V (w k )) k≥1 are i.i.d. under Q, where ∆V (u) := V ( ← u) -V (u) for any u = ∅. (iii) Let G n := σ{u, V (u) : ← u ∈ {w k , 0 ≤ k < n}}, n ≥ 0. Then G ∞ is the σ-algebra generated by the spine. Under Q and conditioned on G ∞ , for all u ∈ {w k , k ≥ 0} but ← u ∈ {w k , k ≥ 0}
the induced branching random walk (V (uv), |v| ≥ 0) are independent and are distributed as P V (u) , where {uv, |v| ≥ 0) is the subtree T u .

We mention that the above change of measure still holds for the stopping line £ λ (see e.g. [START_REF] Aïdékon | The precise tail behavior of the total progeny of a killed branching random walk[END_REF], Proposition 3, for the detailed statement): i.e. replace |u| = n by u ∈ £ λ , F n by F £ λ the σ-filed generated by the BRW up to £ λ , and W n by

W £ λ := u∈£ λ e -V (u) .
(2.9)

For brevity, we shall write Q[X] for the expectation of some random variable X under the probability Q.

Proof of Theorem 1.3

The following result is due to Liu [START_REF] Liu | Asymptotic properties and absolute continuity of laws stable by random weighted mean[END_REF]: [START_REF] Liu | Asymptotic properties and absolute continuity of laws stable by random weighted mean[END_REF]) Assuming (1.5), (1.6) and (1.12). Let Z ≥ 0 be a non-trivial solution of (1.13). For any 0 < ε < γ, there exists some positive constant

Lemma 3.1 (Liu
c 4 = c 4 (ε) such that E e -tZ 1 (Z>0) ≤ c 4 t -γ+ε , ∀ t ≥ 1. (3.1)
Proof of Lemma 3.1. At first we remark that

P Z = 0 = q. (3.2)
In fact, we easily deduce from (1.13) that the probability P(Z = 0) is a solution of x = E[x ν ] which only has two solutions q and 1 for x ∈ [0, 1]. This gives (3.2).

In the case q = 0, namely Z > 0 a.s., γ is defined through (1.9), it is easy to check that P( |u|=1 e -V (u) = 1) > 0, then (3.1) follows exactly from Liu [START_REF] Liu | Asymptotic properties and absolute continuity of laws stable by random weighted mean[END_REF], Theorem 2.4, after a standard Tauberian argument (see Lemma 4.4 in [26]). We only need to check that the case q > 0 can be reduced to the case q = 0.

For brevity, let us denote by {A i , 1 ≤ i ≤ ν} the family {e -V (u) , |u| = 1} [the order of A i is arbitrary]. Then Z satisfies the equation in law

Z law = ν i=1 A i Z i , (3.3) 
with (Z i , i ≥ 1) independent copies of Z, and independent of (A i ) 1≤i≤ν . Let {ξ, ξ i , i ≥ 1} be a family of i.i.d. Bernoulli random variables, independent of everything else, with common law P(ξ = 0) = q = 1 -P(ξ = 1). Let Z be a random variable distributed as Z conditioned on {Z > 0}. Since P(Z > 0) = 1q, we have that

Z law = ξ Z. Then we deduce from (3.3) that Z law = ν i=1 A i ξ i Z i conditioned on { ν i=1 ξ i > 0} ,
where ( Z i , i ≥ 1) are i.i.d. copies of Z, and (ν, A i , 1 ≤ i ≤ ν) and (ξ i , i ≥ 1) are three independent families of random variables. Let { A i , 1 ≤ i ≤ ν) be a family of random variables such that for any nonnegative measurable function f ,

E e -ν i=1 f ( A i ) = E e -ν i=1 ξ i f (A i ) ν i=1 ξ i > 0 . (3.4)
In other words, ν i=1 δ { A i } has the same law as the point process 1≤i≤ν, ξ i =0 δ {A i } conditioning the latter does not vanish everywhere. Elementary calculations show that P( ν i=1 ξ i > 0) = 1 -E[q ν ] = 1q and for any nonnegative measurable function f ,

E ν i=1 f ( A i ) = E ν i=1 ξ i f (A i ) ν i=1 ξ i > 0 = 1 1 -q E ν i=1 ξ i f (A i ) = E ν i=1 f (A i ) . (3.5)
In particular,

E ν i=1 A χ i = E ν i=1 A χ i ≤ 1 and E ν = E ν ∈ (1, ∞]. Moreover, we deduce from (3.4) that ν is distributed as ν i=1 ξ i conditioned on { ν i=1 ξ i > 0}, hence ν ≥ 1 a.s.
It is easy (e.g. by using the Laplace transform) to see that

Z law = ν i=1 A i Z i .
Therefore we can apply the case q = 0 of (3.1) to Z once we have determined the corresponding parameter γ (as in (1.9)) for Z. To this end, let

t ξ = inf{1 ≤ i ≤ ν : ξ i = 1}. Then A 1 = A t ξ if t ξ < ∞. We have E ( A 1 ) -γ 1 ( ν=1) = E A -γ t ξ 1 ( ν i=1 ξ i =1) ν i=1 ξ i > 0 = 1 1 -q E 1 (ν≥1) ν k=1 A -γ k 1 (ξ k =1, ξ i =0, ∀i =k,1≤i≤ν) = E 1 (ν≥1) q ν-1 ν k=1 A -γ k = E   1 (ν≥1) q ν-1 |u|=1 e γV (u)   = 1,
by (1.5). Therefore E e -t Z = O(t -γ+ε ) as t → ∞. The Lemma follows from the fact that P(0 < Z < x) = (1q)P( Z < x) for any x > 0.

Proof of Theorem 1.3: the Schröder case

As shown in the proof of Lemma 3.1, we can assume q = 0 (hence we assume (1.9)) in this proof without any loss of generality. Let Φ(t) := E e -tZ for t ≥ 0. We are going to prove that

Φ(t) ≍ t -γ , t → ∞. (3.6)
To this end, we have by (3.3) that

Φ(t) = E ν i=1 Φ(tA i ) , t ≥ 0. (3.7)
Note also that the condition (1.9) can be re-written as E 1 (ν=1) A -γ 1 = 1. Define g(t) := t γ Φ(t) for all t ≥ 0. Then for any t > 0,

g(t) = t γ Φ(t) ≥ t γ E 1 (ν=1) Φ(tA 1 ) = E 1 (ν=1) A -γ 1 g(tA 1 ) = E g(t A 1 ) , (3.8) 
where A 1 denotes a (positive) random variable whose law is determined by

E f ( A 1 ) := E 1 (ν=1) A -γ 1 f (A 1 )
for any measurable bounded function f . In particular, E log

A 1 = E 1 (ν=1) A -γ 1 log A 1 . Define f (t) := E 1 (ν=1) |u|=1 e t V (u) ≡ E 1 (ν=1) A -t 1 which is finite for t ∈ [-χ, γ], in particular f (-χ) < 1 and f (0) < 1 = f (γ). By the assumption of integrability in Theorem 1.3, E 1 (ν=1) A -γ 1 (-log A 1 ) + < ∞ which implies that f ′ (γ-) exists and equals -E 1 (ν=1) A -γ 1 log A 1 . By convexity, f ′ (γ-) ≥ f (γ)-f (0) γ > 0. Hence E log A 1 = -f ′ (γ-) < 0. (3.9)
Let ( A i ) i≥2 be a sequence of i.i.d. copies of A 1 and define X j := -j i=1 log A i for all j ≥ 1. Let r > 1 and put α r := inf{j ≥ 1 :

X j > log r}, (3.10) 
which is a.s. finite thanks to (3.9). Going back to (3.8), we get that

g(r) ≥ E g(r A 1 )1 (r A 1 <1) + E g(r A 1 )1 (r A 1 ≥1) ≥ E g(r A 1 )1 (r A 1 <1) + E g(r A 1 A 2 )1 (r A 1 ≥1) ,
where to get the last inequality, we have applied (3.8) with t replaced by r A 1 and A 1 replaced by A 2 . Then we obtain that

g(r) ≥ E g(r A 1 )1 (r A 1 <1) + E g(r A 1 A 2 )1 (r A 1 ≥1,r A 1 A 2 <1) + E g(r A 1 A 2 )1 (r A 1 ≥1,r A 1 A 2 ≥1) = E g(r αr i=1 A i )1 (αr ≤2) + E g(r A 1 A 2 )1 (αr>2) .
By induction, we get that for any n ≥ 1,

g(r) ≥ E g(r αr i=1 A i )1 (αr≤n) + E g(r n i=1 A i )1 (αr>n) ≥ E g(r αr i=1 A i )1 (αr≤n) .
Since α r < ∞ a.s., we let n → ∞ and deduce from the monotone convergence theorem that

g(r) ≥ E g(r αr i=1 A i ) = E g(e -Rr ) ,
where R r := X αrlog r > 0 denotes the overshoot of the random walk (X j ) at the level log r. Note that for any 0

< t ≤ 1, g(t) = t γ Φ(t) ≥ Φ(1)t γ , hence g(r) ≥ Φ(1) E e -γRr , ∀ r > 1. (3.11)
By the assumption (1.6), E ((-log A 1 )

+ ) 2 = E 1 (ν=1) |u|=1 (V (u) + ) 2 e γ V (u) < ∞, then by Lorden [28], Theorem 1, sup r≥1 E R r < ∞. Consequently for some positive constant C, g(r) ≥ Φ(1) e -γ E[Rr] ≥ C > 0, ∀ r > 1. Hence Φ(r) ≥ C r -γ , ∀ r > 1, (3.12) 
which implies the lower bound in (3.6).

To prove the upper bound in (3.6), let a > γ be as in (1.6) 

such that E[ ν i=1 A -a i ] ≡ E[ |u|=1 e aV (u) ] < ∞.
Choose (and then fix) 0 < ε < 1 2 min(aγ, γ) small and b := γ+ε 2 < γ. By Lemma 3.1, Φ(t) ≤ c 4 t -b for all t ≥ 1 (with c 4 ≥ 1). Since Φ(t) ≤ 1 for all 0 < t < 1, we obtain immediately that g(t) ≤ c 4 t γ-b , ∀t > 0.

(3.13) By (3.7) and using again the notation A i , i ≥ 1, we get that for any t > 0,

g(t) ≤ t γ E Φ(tA 1 )1 (ν=1) + t γ E 1 (ν≥2) Φ(tA 1 )Φ(tA 2 ) = E g(t A 1 ) + t -γ E 1 (ν≥2) g(tA 1 )g(tA 2 )A -γ 1 A -γ 2 ≤ E g(t A 1 ) + c 2 4 t γ-2b E 1 (ν≥2) A -b 1 A -b 2 (by (3.13)) =: E g(t A 1 ) + C ε t -ε , (3.14) 
with

C ε := c 2 4 E 1 (ν≥2) A -b 1 A -b 2 ≤ c 2 4 E ν i=1 A -2b
i by Cauchy-Schwarz' inequality. Then C ε < ∞ by the assumption (1.6) and the choice that b < a/2.

Let r > 1. As before, we shall iterate (3.14) up to the stopping time α r (cf. (3.10)). We have that

g(r) ≤ C ε r -ε + E g(r A 1 )1 (αr=1) + E 1 (αr>1) C ε (r A 1 ) -ε + g(r A 1 A 2 ) = C ε r -ε + C ε E (r A 1 ) -ε 1 (αr>1) + E g(r 2∧αr i=1 A i ) .
By induction, we get that for any n ≥ 2,

g(r) ≤ C ε r -ε + C ε n-1 k=1 E 1 (αr >k) (r k i=1 A i ) -ε + E g(r n∧αr i=1 A i ) = C ε r -ε + C ε E n∧αr-1 k=1 e ε(X k -log r) + E g(re -Xn∧α r ) , (3.15) 
by using the random walk X j ≡ -j i=1 log A i , j ≥ 1. The random walk (X j ) has positive drift and E[X 2 1 ] = E 1 (ν=1) |u|=1 (V (u)) 2 e γ V (u) < ∞ by the assumption (1.6), then by Lemma 5 in [START_REF] Aïdékon | The precise tail behavior of the total progeny of a killed branching random walk[END_REF],

E αr-1 k=1 e ε(X k -log r) ≤ C ′ ε < ∞,
for some constant C ′ ε independent of r. On the other hand, g(re -Xα r ) ≤ 1 (since re -Xα r ≤ 1), then we obtain that for all r > 1, n ≥ 2,

g(r) ≤ C ε + C ′ ε + 1 + E g(re -Xn )1 (n<αr) ≤ C ′′ ε + c 4 r ε E e -εXn 1 (n<αr) , (3.16) 
where in the last inequality we have used the facts that t := re -Xn ≥ 1 on {n < α r } and that g(t) ≤ c 4 t ε for any t ≥ 1 by Lemma 3.1.

Remark that E e -εX 1 = E ( A 1 ) ε = E 1 (ν=1) (A 1 ) -γ+ε < 1 by convexity. Then E[e -εXn ] → 0 as n → ∞, which in view of (3.16) yield that for any r > 1 (ε being fixed),

g(r) ≤ C ′′ ε , i.e. Φ(r) ≤ C ′′ ε r -γ , ∀r > 1.
This and (3.12) imply (3.6): Φ(r) ≍ r -γ for all r ≥ 1. The small deviation in (1.14) follows from a standard Tauberian argument (see e.g. [START_REF] Liu | Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks[END_REF], Lemma 4.4).

Proof of Theorem 1.3: the Böttcher case

The proof of (1.15) goes in the same spirit as that of (3.6). Let h(t) :=log E e -tZ , t ≥ 0. Note that h is an increasing, concave function and vanishing at zero. Using the notations introduced in (3.3), we get that e -h(t) = E e -ν i=1 h(tA i ) , ∀t ≥ 0.

On an enlarged probability space, we may find a random variable ξ such that

P ξ = i A = A β i ν j=1 A β j , 1 ≤ i ≤ ν, where A := σ{A i , 1 ≤ i ≤ ν, ν}. Then ν i=1 h(tA i ) = ( ν i=1 A β i ) E h(tA ξ ) A β ξ A ,

and by

Jensen's inequality, we have that for any t ≥ 0,

e -ν i=1 h(tA i ) ≤ E exp -( ν i=1 A β i ) h(tA ξ ) A β ξ A .
Write for brevity

B := A ξ , η := 1 A β ξ ( ν i=1 A β i ) > 1, a.s.
[η > 1 because ν ≥ 2 a.s.] Then for any t ≥ 0, we have e -h(t) ≤ E e -η h(tB) .

(3.17)

We shall iterate the inequality (3.17) up to some random times: Let (η i , B i ) i≥1 be an i.i.d. copies of (η, B). Let r > 1 and define Υ r := inf{i ≥ 1 :

i j=1 B j ≤ 1 r }.
Observe that

E log B = E ν i=1 A β i log A i ν i=1 A β i = -E |u|=1 e -βV (u) V (u) |u|=1 e -βV (u) = ψ ′ (β),
where ψ(x) := E log |u|=1 e -xV (u) for 0 ≤ x ≤ χ. Note that ψ is convex on [0, χ], ψ(χ) < log E |u|=1 e -χV (u) ≤ 0, and ψ(β) ≥ 0 since |u|=1 e -βV (u) ≥ 1 by the definition of β. By convexity, ψ ′ (β) ≤ ψ(χ)-ψ(β) χ-β < 0. Then E log B < 0 which implies that Υ r < ∞, a.s. By (3.17), we see that for

e -h(r) ≤ E e -η 1 h(rB 1 ) 1 (rB 1 ≤1) + E e -η 1 h(rB 1 ) 1 (rB 1 >1)
= E e -η 1 h(rB 1 ) 1 (Υr=1) + E e -η 1 h(rB 1 ) 1 (rB 1 >1) .

Applying (3.17) to t = rB 1 , we get that

e -η 1 h(rB 1 ) ≤ E e -η 2 h(rB 1 B 2 ) σ{η 1 , B 1 } η 1 ≤ E e -η 1 η 2 h(rB 1 B 2 ) σ{η 1 , B 1 } , by Jensen's inequality, since η 1 > 1. It follows that E e -η 1 h(rB 1 ) 1 (rB 1 >1) ≤ E 1 (rB 1 >1) e -η 1 η 2 h(rB 1 B 2 ) , hence e -h(r) ≤ E e -η 1 h(rB 1 ) 1 (Υr=1) + E 1 (rB 1 >1) e -η 1 η 2 h(rB 1 B 2 ) = E e -η 1 h(rB 1 ) 1 (Υr=1) + E e -η 1 η 2 h(rB 1 B 2 ) 1 (Υr=2) + E 1 (rB 1 B 2 >1) e -η 1 η 2 h(rB 1 B 2 ) .
Again applying (3.17) to t = rB 1 B 2 and using Jensen's inequality (since

η 1 η 2 > 1), we get that E 1 (rB 1 B 2 >1) e -η 1 η 2 h(rB 1 B 2 ) ≤ E 1 (rB 1 B 2 >1) e -η 1 η 2 η 3 h(rB 1 B 2 B 3 )
, and so on. We get that for any n ≥ 1, e -h(r) ≤ E e -( Υr

i=1 η i ) h(r Υr i=1 B i ) 1 (Υr≤n) + E e -( n i=1 η i ) h(r n i=1 B i ) 1 (Υr>n) =: A (3.18) + C (3.18) . (3.18) 
By (1.8), B ≥ e -K a.s., then 1 r ≥ Υr i=1 B i > 1 r e -K . Notice that by (1.10) the definition of β, ν i=1 A β i ≥ 1 a.s.; Then η ≥ B -β and Υr i=1 η i ≥ r β . It follows that for any n, A (3.18) ≤ e -r β h(e -K ) .

To deal with C (3.18) , we remark that on {Υ r > n}, r n i=1 B i ≥ 1. It follows that

C (3.18) ≤ E e -h(1) n i=1 η i .
Since η i > 1 a.s., n i=1 η i ↑ ∞ as n → ∞, then by the monotone convergence theorem lim sup n→∞ C (3.18) = 0. Letting n → ∞ in (3.18), we obtain that

E e -r Z ≡ e -h(r) ≤ e -h(e -K ) r β , ∀ r > 1, (3.19) 
which is stronger than the upper bound in (1.15).

To prove the lower bound, recalling that essinf ν i=1 A β i = 1 and A i ≥ e -K , we deduce that for any small ε > 0, there are some integer 2 ≤ k ≤ esssup ν, and some real numbers a 1 , ..., a k ∈ (0, 1) such that k i=1 a β i ≥ 1 and k i=1 a β+ε i < 1 and p :=

P A i ≤ a i , ∀1 ≤ i ≤ k, ν = k > 0. Therefore e -h(t) = E e -ν i=1 h(tA i ) ≥ p e -k i=1 h(ta i ) , t ≥ 0.
Let b := log(1/p) > 0 and define a random variable Y ∈ {a 1 , ..., a k } such that for any measurable and nonnegative function f

, E f (Y ) = 1 k k i=1 f (a i ). Therefore, h(t) ≤ b + k E h(tY ) , ∀ t ≥ 0. (3.20)
As in the proof of the upper bound, we shall iterate the above inequality up to some random times: Let (Y j ) j≥1 be an i.i.d. copies of Y . For r > 1, we define

θ := θ r := inf{j ≥ 1 : j i=1 Y i ≤ 1 r }.
Since Y ≤ max 1≤i≤k a i < 1, θ is a bounded random variable. Going back to (3.20), we get that

h(r) ≤ b + k E h(rY 1 )1 (rY 1 ≤1) + k E h(rY 1 )1 (rY 1 >1) ≤ b + k E h(rY 1 )1 (θ=1) + k E 1 (rY 1 >1) (b + k h(rY 1 Y 2 )) = b + k E h(rY 1 )1 (θ=1) + bk P θ > 1 + k 2 E 1 (rY 1 >1) h(rY 1 Y 2 )) .
By induction, we get that for any n ≥ 1,

h(r) ≤ b n j=0 k j P θ > j + E k θ∧n h(r θ∧n i=1 Y i ) =: A (3.21) + C (3.21) .
(3.21)

Elementary computations yield that

A (3.21) = b k -1 E k θ∧(n+1) -1 ≤ b k -1 E k θ .
Recalling θ is bounded hence E k θ < ∞. For C (3.21) , we use the fact that Y i ≤ max 1≤j≤k a j =:

a < 1. Remark that r n i=1 Y i ≤ 1. Then C (3.21) := E k θ h(r θ i=1 Y i )1 (θ≤n) + E k n h(r n i=1 Y i )1 (θ>n) ≤ h(1)E k θ + h(ra n ) E k n 1 (θ>n) ≤ h(1)E k θ + h(ra n ) E k θ .
Since ra n → 0 as n → ∞, we get that [recalling that θ depends on r]

h(r) ≤ (h(1) + b k -1 ) E k θ , ∀ r > 1. (3.22)
To estimate E k θ , let us find λ > 0 such that E Y λ = 1 k . By the law of Y , this is equivalent to k i=1 a λ i = 1. By the choice of (a i ), we have β ≤ λ < β + ε. Then the process n → k n n i=1 Y λ i is a martingale (moreover uniformly integrable on [0, θ]). Hence the optional stopping theorem implies that

1 = E k θ θ i=1 Y λ i ≥ E k θ r -λ min 1≤i≤k a λ i , since θ i=1 Y i ≥ 1 r min 1≤i≤k a i . This and (3.22) give that h(r) ≤ (h(1) + b k -1 ) max 1≤i≤k a -λ i r λ , ∀r > 1,
yielding the lower bound in (1.15) since λ < β + ε. This completes the proof of (1.15). Finally, by using the elementary inequalities: for any ε, t > 0, e -εt P(Z < ε) ≤ E[e -tZ ] ≤ P(Z < ε) + e -εt , we immediately deduce from (1.15) that P(Z < ε) = e -ε -β/(1-β)+o (1) as ε → 0. .

Proof of Theorem 1.1

Let us give some preliminary estimates on the branching random walk: where we recall that for any |u| = n, V (u) := max 1≤i≤n V (u i ). Consequently, for any 0 < λ ≤ c 5 n 1/3 , we have P max

u∈£ λ |u| > n ≤ c 6 e -c 5 n 1/3 . (4.2)
We mention that under an extra integrability condition, i.e. ∃δ > 0 such that

E[ν 1+δ ] < ∞, n -1/3 min |u|=n V (u) → ( 3π 2 σ 2
2 ) 1/3 P * -a.s. (see [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF] and [START_REF] Fang | Consistent minimal displacement of branching random walks[END_REF]) and the probability term in (4.1) is equal to e (c 5 -( 3π 2 σ 2 2 ) 1/3 +o(1))n 1/3 for any 0 < c 5 < ( 3π 2 σ 2

2 ) 1/3 (see [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF], Proposition 2.3). Here, we only assume (1.1) and (1.2), and we do not seek the precise upper bound in (4.1).

Proof of Lemma 4.1. We shall use the following fact (see Shi [START_REF] Shi | Branching Random Walks[END_REF]):

P(inf u∈T V (u) < -λ ≤ e -λ , ∀ λ ≥ 0. (4.3) Consider 0 < c < ( π 2 σ 2 8 ) 1/3 . Then P min |u|=n V (u) < cn 1/3 , inf u∈T V (u) ≥ -cn 1/3 ≤ E |u|=n 1 (max 1≤i≤n |V (u i )|≤cn 1/3 )
= E e Sn 1 (max 1≤i≤n |S i |≤cn 1/3 ) (by (2.7))

≤ e cn 1/3 P max

1≤i≤n |S i | ≤ cn 1/3 = e cn 1/3 e -( π 2 σ 2 8c 2 +o(1))n 1/3 ,
where the last equality follows from Mogulskii [START_REF] Mogulskii | Small deviations in the space of trajectories[END_REF]. This and (4.3) easily yield the Lemma by choosing a sufficiently small constant c.

Recall (1.19). Define for a ∈ (0, ∞] and λ > 0,

£ (a) λ := u ∈ £ λ : V (u) ≤ λ + a . (4.4) 
In particular, £

(∞) λ = £ λ . Recall (1.20). Since the function x → xe -x is decreasing for x ≥ 1, then for any λ > 1, D £ λ ≤ λe -λ #£ λ , which implies that lim inf λ→∞ λe -λ #£ λ ≥ D ∞ > 0.
a.s. on S. 2)], then #£ λ = ∞ hence (4.5) cannot be strengthened into a true limit. We present a similar result for £ (a) λ : Lemma 4.2 Assume (1.1), (1.2) and that E |u|=1 (V (u) + ) 3 e -V (u) < ∞. There exists some a 0 > 0 such that for all large a ≥ a 0 , almost surely on the set of non-extinction S,

0 < lim inf λ→∞ λ e -λ #£ (a) λ ≤ lim sup λ→∞ λ e -λ #£ (a) λ < ∞.
Proof of Lemma 4.2. We only deal with the case when the distribution of Θ is nonlattice, in this case, the limit exists. The lattice case can be treated in a similar way, by applying Gatzouras ([18], Theorem 5.2), a lattice version of Nerman [START_REF] Nerman | On the convergence of supercritical general (C-M-J) branching processes[END_REF]'s result, but the cyclic phenomenon could prevent from the existence of limit. In the non-lattice case, we are going to prove that for any a > 0, almost surely on the set of non-extinction S,

lim λ→∞ λe -λ #£ (a) λ = c 7 (a) D ∞ , (4.6) 
where c 7 (a) := 1 E Sτ 0 E e min(a,Sτ 0 ) -1 , and S • and τ 0 are defined by (2.7) and (2.8) respectively. Obviously, c 7 (a) > 0 for all large a.

To get (4.6), we consider a new point process Θ := u∈£ 0 δ {V (u)} on (0, ∞). Generate a branching random walk ( V (u), u ∈ T) from the point process Θ, in the same way as

(V (u), u ∈ T) do from Θ. Remark that S = {sup u∈T V (u) = ∞} = { T is infinite}, and #£ (a) λ = u∈ T φ u (λ -V (u)), u∈£ λ e -V (u)+λ = u∈ T ψ u (λ -V (u)),
where

φ u (y) := 1 (y≥0) v: ← v =u 1 (y< V (v)-V (u)≤y+a) , ψ u (y) := 1 (y≥0) v: ← v =u e y-( V (v)-V (u)) 1 ( V (v)-V (u)>y) .
Applying Theorem 6.3 in Nerman [START_REF] Nerman | On the convergence of supercritical general (C-M-J) branching processes[END_REF] (with α = 1 there) gives that almost surely on S,

u∈ T φ u (λ -V (u)) u∈ T ψ u (λ -V (u)) → E |u|=1,u∈ T (e -( V (u)-a) + -e -V (u) ) E |u|=1,u∈ T V (u)e -V (u)
.

Remark that E |u|=1,u∈ T (e -( V (u)-a) + -e -V (u) ) = E u∈£ 0 (e -(V (u)-a) + -e -V (u) ) = E e min(a,Sτ 0 ) -1 and E |u|=1,u∈ T V (u)e -V (u) = E u∈£ 0 V (u)e -V (u) = E S τ 0 . Hence on S, a.s., #£ (a) λ u∈£ λ e -V (u)+λ → c 7 (a). (4.7)
On the other hand, almost surely,

D £ λ = λe -λ u∈£ λ e -V (u)+λ + 1 λ η λ → D ∞ , λ → ∞, (4.8) 
where η λ := u∈£ λ (V (u)λ)e -V (u)+λ . By the many-to-one formula and the assumption,

E (S + 1 ) 3 = E |u|=1 (V (u) + ) 3 e -V (u) < ∞. Then by Doney [12], E S 2 τ 0 < ∞. Note that η λ = u∈ T ψ u (λ -V (u)) with ψ u (y) := 1 (y≥0) v: ← v =u e y-( V (v)-V (u)) ( V (v) - V (u) -y)1 ( V (v)-V (u)>y) .
In the same manner we get that almost surely on S,

lim λ→∞ η λ u∈£ λ e -V (u)+λ = c 8 , (4.9) with c 8 := 1 2 E S 2 τ 0 E Sτ 0 > 0. It follows that a.s. on S, u∈£ λ e -V (u)+λ ∼ 1 λ e λ D £ λ ∼ 1 λ e λ D ∞ as λ → ∞.
This combined with (4.7) and (4.8) yield (4.6), as desired.

Remark 4.3 The condition E

|u|=1 (V (u) + ) 3 e -V (u) < ∞ was used in the above proof of Lemma 4.2 only to obtain (4.9) which controls the contribution of η λ in D £ λ . We do not know how to relax this condition.

We consider now some deviations on the minimum M n . If the distribution of Θ is nonlattice, Aïdékon (Proposition 4.1, [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF]) proved that for any A > 0 and for all large n, λ such that A ≤ λ ≤ 3 2 log n -A,

P M n < 3 2 log n -λ = (c 9 + o A (1)) λ e -λ ,
with c 9 some positive constant and o A (1) → 0 as A → ∞ uniformly in n, λ. We shall need in the proof of Theorem 1.1 an estimate which holds uniformly in λ.

Lemma 4.4 (Mallein [START_REF] Mallein | Asymptotic of the maximal displacement in a branching random walk[END_REF], Lemma 4.2) Assume (1.1) and (1.2). There is some constant c 10 > 0 such that

P M n < 3 2 log n -λ ≤ c 10 (1 + λ)e -λ , ∀n ≥ 1, λ ≥ 0.
The tightness of (M n -3 2 log n) n≥1 under (1.1) and (1.2) was implicitly contained in Aïdékon ( [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF]) (see also [START_REF] Bramson | Tightness for a family of recursion equations[END_REF], and see [START_REF] Addario-Berry | Minima in branching random walks[END_REF] for exponential decay under some additional assumptions): Assume (1.1) and (1.2). We have † lim sup

λ→∞ lim sup n→∞ P * M n - 3 2 log n ≥ λ = 0, (4.10)
where as before, P * (•) := P(•|S). We need some tightness uniformly in n: † In fact, by Lemma 3.6 in [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] and using the fact that M n is stochastically smaller than M kill n , we obtain that sup n≥3 P(M n ≥ 3 2 log n) ≤ e -C for some (small) constant C > 0. For any k ≥ 1, denote by Z k := |u|=k 1 the number of individuals at generation k. By the triangular inequality and the branching property at k, we get that for any n

≥ k + 3, P M n ≥ 3 2 log n + λ, S ≤ P ∃|u| = k : V (u) > λ + E 1 (Z k >0) e -CZ k .
Letting λ → ∞ and then k → ∞, we get (4.10). The left tail lim sup n→∞ P M n -3 2 log n < -λ , as λ → ∞, follows from [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], see also Lemma 4.4. 

M k ≥ 3 2 log n + x → 0, as x → ∞.
Proof of Lemma 4.5. Obviously, it is enough to prove the Lemma for a = 2. By Lemma 4.4, there exists some λ 0 > 0 such that for all λ ≥ λ 0 and for all n ≤ k ≤ 3n,

P M 4n-k ≥ 3 2 log n -λ ≥ exp -2c 10 λ e -λ . (4.11)
Let x ≥ 2λ 0 and n ≫ x. Define

κ x ≡ κ x (n) := inf{k ≥ n : M k ≥ 3 2 log n + x}, (inf ∅ = ∞).
Let n ≤ k ≤ 3n. Denote by S k the event that the Galton-Watson tree T survives up to the generation k. Then S k is non-increasing on k. On the set {κ x = k} ∩ S k , V (u) > 3 2 log n + x for any |u| = k. Let 0 < y < xλ 0 . It follows from the branching property that on

{κ x = k} ∩ S k , P M 4n > 3 2 log n + y F k = |u|=k P M 4n-k ≥ 3 2 log n -λ λ=V (u)-y ≥ exp -2c 10 |u|=k (V (u) -y)e -(V (u)-y)
≥ exp -2c 10 e y D k , where we have used (4.11) to get the above first inequality. Therefore for any ε > 0 and n ≤ k ≤ 3n, Since S k ⊂ S n for k ≥ n, (4.12) still holds if we replace S k by S n in the LHS. Taking the sum over n ≤ k ≤ 3n for (4.12) (with S k replaced by S n ), we get that for any ε > 0, 0 < y < x-λ 0 and all n ≥ n 0 ,

P M 4n > 3 2 log n + y, S k , κ x = k ≥ E e -2c
P A (4.13) ∩ max n≤k≤3n M k ≥ 3 2 log n + x ≤ e ε P M 4n > 3 2 log n + y, S n ≤ e ε P M 4n > 3 2 log n + y, S + e ε P(S c ∩ S n ) ≤ ε + e ε P(S c ∩ S n ), (4.14) 
by using (4.10) if we choose a sufficiently large constant y = y(ε) only depending on ε. Since lim n→∞ P(S c ∩ S n ) = 0, then for x > y(ε) + λ 0 and all large n ≥ n 1 (ε),

P A (4.13) ∩ max n≤k≤3n M k ≥ 3 2 log n + x ≤ 2ε. ( 4.15) 
Note the factor 3n in the above estimate and we fix our choice of y ≡ y(ε) in A (4.13) . Now, we shall get rid of the term A (4.13) in (4.15). Let z ∈ (y, xλ 0 ). Recalling the definition of £ z in (1.19). Define

A (4.16) := ∃u ∈ £ z : |u| ≤ x, V (u) ≤ x, sup n 2 ≤j≤3n D (u) j ≤ ε 2c 10 e -y , S (u) , (4.16) 
where (D

(u) j , j ≥ 0), M (u) 
• , S (u) are defined from the subtree T u in the same way as

(D j , j ≥ 0), M • , S do from T. Let n > 2x. The event {max n≤k≤2n M k ≥ 3 2 log n + 2x, S} implies that for some n ≤ k ≤ 2n, for any |v| = k, V (v) ≥ 3 2 log n + 2x. If A (4.16)
= ∅, then we take an arbitrary u ∈ A (4.16) and get that M

(u) k-|u| ≥ 3 2 log n + 2x -V (u) ≥ 3 2 log n + x.
By conditioning on |u|, we get that for z ∈ (y, xλ 0 ) and for all large n ≥ n 2 (x, ε),

P max n≤k≤2n M k ≥ 3 2 log n + 2x, S, A (4.16) = ∅ ≤ max 1≤i≤x P max n-i≤k≤2n-i M k ≥ 3 2 log n + x , sup n 2 ≤j≤3n D j ≤ ε 2c 10 e -y , S ≤ P max 2n 3 ≤k≤2n M k ≥ 3 2 log n + x , sup n 2 ≤j≤3n D j ≤ ε 2c 10 e -y , S ≤ 2ε, (4.17) 
by applying (4.15) to get the last inequality. On the other hand,

P A (4.16) = ∅, S ≤ P ∀u ∈ £ z , sup n 2 ≤j≤3n D (u) j ≥ ε 2c 10 e -y or (S (u) ) c , £ z = ∅ + P max u∈£z max(V (u), |u|) ≥ x = E e -pn(ε,y)#£z 1 (#£z>0) + P max u∈£z max(V (u), |u|) ≥ x , (4.18) 
where the last equality is due to the branching property at £ z , and p n (ε, y) is defined by e -pn(ε,y) := P sup n 2 ≤j≤3n D j ≥ ε 2c 10 e -y or S c . As D n → D ∞ , almost surely on S, we see that lim sup n→∞ e -pn(ε,y) ≤ P D ∞ > ε 2c 10 e -y or S c as n → ∞. By Liu [START_REF] Liu | Asymptotic properties and absolute continuity of laws stable by random weighted mean[END_REF], Theorem 2.6 ‡ , P 0 < D ∞ ≤ ε 2c 10 e -y , S) > 0 hence P D ∞ > ε 2c 10 e -y or S c < 1 and there exists some p(ε, y) > 0 such that for all large n, e -pn(ε,y) ≤ e -p(ε,y) . Assembling (4.17) and (4.18) give that for any z > y,

C (4.19) := lim sup x→∞ lim sup n→∞ P max n≤k≤2n M k ≥ 3 2 log n + 2x, S ≤ E e -p(ε,y)#£z 1 (#£z>0) + 2ε, (4.19) 
Notice that {#£ z > 0} is nonincreasing on z and its limit as z → ∞ equals S. Then

P {#£ z > 0} ∩ S c → 0 as z → ∞. On S, we have from (4.5) that £ z → ∞ as z → ∞ almost surely, hence E e -p(ε,y)#£z 1 (#£z>0) ≤ E e -p(ε,y)#£z 1 S + P {#£ z > 0} ∩ S c → 0 as z → ∞.
Then letting z → ∞, we see that C (4.19) ≤ 2ε. This proves the Lemma since ε can be arbitrarily small.

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Proof of the lower bound in Theorem 1.1. Consider large integer j. Let n j := 2 j and λ j := a log log log n j with some constant 0 < a < 1. Fix α > 0 and put

A j := M n j > 3 2 log n j + λ j .
Recall that if the system dies out at generation n j , then by definition

M n j = ∞. Define M (u) •
from the subtree T u in the same way as M • does from T.

Then A j = {∀ |u| = n j-1 , M (u) n j -n j-1 ≥ 3
2 log n j + λ j -V (u)}, which by the branching property at n j-1 implies that

P A j | F n j-1 = |u|=n j-1 P M n j -n j-1 ≥ 3 2 log n j + λ j -x x=V (u) ,
with the usual convention: ∅ := 1. By the lower limits of M n j-1 (cf. (1.3)), a.s. for all large j, M n j-1 ≥ 1 3 log n j-1 ∼ log 2 3 j, hence x ≡ V (u) ≫ λ j since λ j ∼ a log log j. Applying Lemma 4.4 gives that on {M n j-1 ≥ 1 3 log n j-1 }, for some constant C > 0, for all |u| = n j-1 ,

P M n j -n j-1 < 3 2 log n j + λ j -x x=V (u) ≤ C V (u) e -(V (u)-λ j ) .

It follows that

P A j | F n j-1 ≥ 1 (Mn j-1 ≥ 1 3 log n j-1 ) |u|=n j-1 1 -CV (u) e -(V (u)-λ j ) ≥ 1 (Mn j-1 ≥ 1 3 log n j-1 ) exp -2C |u|=n j-1 V (u) e -(V (u)-λ j ) = 1 (Mn j-1 ≥ 1 3 log n j-1 ) exp -2C e λ j D n j-1 .
Since D n j-1 → D ∞ , a.s., and e λ j ∼ (log j) a with a < 1 , we get that almost surely,

j P A j | F n j-1 = ∞,
which according to Lévy's conditional form of Borel-Cantelli's lemma ( [START_REF] Lévy | Théorie de l'addition des variables aléatoires[END_REF], Corollary 68), implies that

P(A i , i.o.) = 1. Then lim sup n→∞ 1 log log log n (M n - 3 2 log n) ≥ a, a.s.
The lower bound follows by letting a → 1.

Proof of the upper bound in Theorem 1.1. Let δ > 0 be small. Recall (4.4). Let a ≥ a 0 be as in Lemma 4.2 such that a.s. on S, #£

λ ≥ e (1-δ)λ for all large λ. Let b > 0 such that e -b > q ≡ P(S c ). By Lemma 4.5, there exists some constant x 0 > 0 such that

P max n≤k≤4n M k > 3 2 log n + x 0 ≤ e -b , ∀n ≥ n 0 .
Let x 1 := x 0 + a. Consider large integer j and define n j := 2 j , λ j := (1 + 2δ) log log log n j . Define B j := max

n j <k≤n j+1 M k > 3 2 log n j + λ j + x 1 ∩ S.
Then,

P B j , #£ (a) λ j ≥ e (1-δ)λ j , max u∈£ (a) λ j |u| ≤ n j-1 ≤ P ∀u ∈ £ (a)
λ j : max

n j-1 ≤k≤n j+1 M (u) k > 3 2 log n j + x 0 , #£ (a) λ j ≥ e (1-δ)λ j ≤ exp -b e (1-δ)λ j ,
whose sum on j converges [δ being small]. On the other hand, by (4.2), P max u∈£ (a) λ j |u| > n j-1 ≤ c 6 e -c 5 n 1/3 j-1 whose sum again converges. Therefore, j P B j , #£ (a)

λ j ≥ e (1-δ)λ j < ∞. By Borel-Cantelli's lemma, almost surely, for all large j, the event {B j , #£ (a) λ j ≥ e (1-δ)λ j } does not hold; but we have chosen a such that on S, #£ (a) λ j ≥ e (1-δ)λ j for all large j. Hence a.s. on S, for all large j, max n j <k≤n j+1 M k ≤ 3 2 log n j + λ j + x 1 , from which we get that a.s. on S,

lim sup n→∞ 1 log log log n (M n - 3 2 log n) ≤ 1 + 2δ,
yielding the upper bound as δ > 0 can be arbitrarily small.

5 Proof of Theorem 1.4

5.1 The Böttcher case: Proof of (1.17)

Recall (1.19) for the stopping line £ λ .

Lemma 5.1 (The Böttcher case) Under the same assumptions as in Theorem 1.4, for any constant a > 0, we have E e -a#£ λ = e -e (β+o(1))λ , λ → ∞.

(5.1)

Proof of Lemma 5.1. Let us check at first the lower bound in (5.1). Observe that P-almost surely,

D ∞ = u∈£ λ e -V (u) D ∞ (u), (5.2) 
where conditioned on {V (u), u ∈ £ λ }, D ∞ (u) are independent copies of D ∞ . Take K 0 large enough such that E[e -K 0 D∞ ] ≤ e -a , that is possible because D ∞ > 0, P-a.s. Let x = K 0 e λ+K , where K = esssup max |u|=1 V (u) < ∞ is as in (1.8). Therefore

E e -xD∞ = E u∈£ λ E e -xe -y D∞ y=V (u)≤λ+K ≤ E u∈£ λ e -a = E e -a#£ λ .
Hence E e -a#£ λ ≥ E e -xD∞ = e -x β+o(1) = e -e (β+o(1))λ gives the lower bound of (5.1).

For the upper bound of (5.1), we use again (5.2) to see that D ∞ ≤ e -λ u∈£ λ D ∞ (u). Take a constant b > 0 such that E e -bD∞ ≥ e -a . It follows that E e -b e λ D∞ ≥ E e -b u∈£ λ D∞(u) ≥ E e -a#£ λ , since conditioned on £ λ , (D ∞ (u)) u∈£ λ are i.i.d. copies of D ∞ . Then (1.15) implies the upper bound of (5.1).

Proof of (1.17 For any u ∈ T, define as before M (u) j := min v∈Tu,|v|=|u|+j (V (v) -V (u)) for any j ≥ 0. It follows that

P M n > 3 2 log n + λ -c 11 ≥ P ∀u ∈ £ λ , |u| ≤ n 2 , M (u) n-|u| ≥ 3 2 log n -c 11 ≥ E e -c 12 #£ λ 1 (max u∈£ λ |u|≤ n 2 )
≥ E e -c 12 #£ λ -P max

u∈£ λ |u| > n 2
≥ e -e (β+o(1))λc 6 e -c 5 n 1/3 , by Lemma 5.1 and (4.2). The lower bound in (1.17) follows from the assumption that λ = o(log n).

To get the upper bound in (1.17), we use the hypothesis (1.8) and obtain that

P max n≤k≤2n M k > 3 2 log n + λ + c 11 + K ≤ P ∀u ∈ £ λ , max u∈£ λ |u| ≤ n 2 , max n≤k≤2n M (u) k-|u| ≥ 3 2 log n + c 11 + P max u∈£ λ |u| > n 2
≤ E e -c 12 #£ λ + c 6 e -c 5 n 1/3 , by (5.4) and (4.2). The upper bound follows from Lemma 5.1.

5.2

The Schröder case: Proof of (1.16)

In the case q := P(S c ) > 0, we need to estimate the probability that the extinction happens after £ λ :

Lemma 5.2 Assume (1.1), (1.2) and (1.5). Then for any λ > 0,

P {£ λ = ∅} ∩ S c = E q #£ λ 1 (#£ λ >0) ≤ q e -γλ .
Proof of Lemma 5.2. The above equality is an immediate consequence of the branching property at the optional line £ λ (cf. [START_REF] Biggins | Measure change in multitype branching[END_REF]).

To show the above inequality, we recall that ν(u), for any u ∈ T, denotes the number of children of u. Write u < £ λ if there exists some particle v ∈ £ λ such that u < v [i.e. u is an ancestor of v]. Then for the tree up to £ λ , the following equality holds: almost surely,

#£ λ = 1 + ∅≤u<£ λ ν(u) -1 .
(5.5)

Recall (1.5). Define a process

X n := |u|=n n-1 i=0 q ν(u i )-1 1 (ν(u i )≥1) e γV (u) , n ≥ 1,
where as before, u i denotes the ancestor of u at ith generation. It is straightforward to check, by using the branching property, that (X n ) n≥1 is a (nonnegative) martingale with mean 1. Define

X £ λ := u∈£ λ |u|-1 i=0 q ν(u i )-1 1 (ν(u i )≥1) e γV (u) , λ > 0.
According to Biggins and Kyprianou ([8], Lemma 14.1), E X £ λ equals E[X 1 ] times some probability term, hence

E X £ λ ≤ E[X 1 ] = 1.
Notice that for any u ∈ £ λ , ν(u i ) ≥ 1 for all i < |u| and |u|-1

i=0 q ν(u i )-1 1 (ν(u i )≥1) = q 0≤i<|u| (ν(u i )-1) ≥ q #£ λ -1 by (5.5) [recalling q < 1]. Then X £ λ ≥ q #£ λ -1 e γλ on {#£ λ > 0}. The Lemma follows from E[X £ λ ] ≤ 1.
Lemma 5.3 Assume (1.1), (1.2), (1.5) and (1.6). For any δ > 0, there exist an integer m δ ≥ 1 and a constant λ 0 (δ) > 0 such that for all λ ≥ λ 0 (δ),

P 0 < #£ λ ≤ m δ ≥ e -(γ+δ)λ .
Proof of Lemma 5.3: We discuss the case q = 0 and the case q > 0 separately.

(i) First case: q = 0. We shall prove that

P #£ λ = 1 ≥ e -(γ+o(1))λ , (5.6) 
where as usual o(1) denotes a quantity which goes to 0 as λ → ∞. To this end, we have by the change of measure (see Section 2.2 and (2.9)) that

P #£ λ = 1 = Q 1 W £ λ 1 (#£ λ =1) = Q e V (w τ λ (w) ) 1 (#£ λ =1) ≥ e λ Q #£ λ = 1 . (5.7) Notice that under Q, {#£ λ = 1} means that £ λ = {w τ λ (w) }. Recall that ν(u) denotes the number of children of u ∈ T. Then Q #£ λ = 1 G ∞ = 1 (0≤k<τ λ (w),ν(w k )=1
) and thus

P #£ λ = 1 ≥ e λ Q 0 ≤ k < τ λ (w), ν(w k ) = 1 . (5.8) 
Recall (1.9) for γ. We claim that

Q 0 ≤ k < τ λ (w), ν(w k ) = 1 = e -(1+γ+o ( 
1))λ .

(5.9)

To get (5.9), we use the fact (cf. Section 2.2) that ( u∈℧(w k ) δ {∆V (u)} , ∆V (w k )) k≥1 are i.i.d.

under Q, where ∆V (u

) := V (u) -V ( ← u) for any u = ∅ ≡ w 0 . Notice that ν(w k-1 ) = 1 + #℧(w k ).
Let us check that the process

U n := e (1+γ)V (wn) 1 (∀1≤k≤n,ν(w k-1 )=1) , n ≥ 1, is a Q-martingale of mean 1. In fact, U n is a product of n i.i.d. variables, then it is enough to check that Q U 1 = 1. But Q U 1 = Q e (1+γ)V (w 1 ) 1 (ν(w 0 )=1) = E |u|=1 e γV ( 
u) 1 (ν=1) = 1, as claimed. By the optional stopping theorem and the Fatou lemma, we get that Q U τ λ (w) ≤ 1, which implies the upper bound in (5.9) since V (τ λ (w)) > λ [under Q, τ λ (w) is a.s. finite].

To get the lower bound in (5.9), let ε > 0 be small. Fix some large constant C whose value will be determined later. Let us find some γ C such that the process

U (C) n := e (1+γ C )V (wn) 1 (∀1≤k≤n,ν(w k-1 )=1, ∆V (w k )≤C) , n ≥ 1, is a Q-martingale with mean 1. As for U n , the constant γ C § is determined by 1 = E |u|=1 e γ C V (u) 1 (ν=1,V (u)≤C) , where for |u| = 1, ∆V (u) = V (u). Plainly γ C → γ as C → ∞. Choose C sufficiently large such that γ C ≤ γ + ε. Since (U (K) k , k ≤ τ λ (w)
) is uniformly bounded by e (1+γ C )(λ+C) . By the optional stopping theorem, we obtain that

1 = Q U (C) τ λ (w) ≤ e (1+γ C )(λ+C) Q ∀1 ≤ k ≤ n, ν(w k-1 ) = 1 ,
finishing the proof of (5.9) as ε can be arbitrarily small. The Lemma (in the case q = 0) follows from (5.9) and (5.8).

(ii) Second (and last) case: q > 0. We can not repeat the same proof as before, for instance p 1 ≡ P(ν = 1) may vanish.

Again by the change of measure we have that for any integer m ≥ 1,

P 0 < #£ λ ≤ m = Q 1 W £ λ 1 (#£ λ ≤m) ≥ 1 m e λ Q #£ λ ≤ m , (5.10) 
where we used the facts that W £ λ = u∈£ λ e -V (u) ≤ me -λ on {#£ λ ≤ m} and under Q, £ λ contains at least the singleton {w τ λ (w) }. Define for any x > 0, q(x)

:= P sup v∈T V (v) ≤ x = P £ x = ∅ ,
with the usual convention that sup ∅ = 0. Plainly, lim x→∞ q(x) = P sup v∈T V (v) < ∞ = P S c = q. For any small ε > 0, there exists some x 0 = x 0 (ε) > 0 such that q(x) ≥ qε for all x ≥ x 0 . § For the existence of such constant, we used the integrability assumption (1.6): the convex function

f : b → E |u|=1 e bV (u) 1 (ν=1) has a derivative f ′ (γ) ≥ f (γ)-f (0) γ > 0 hence f is increasing at γ. Then f (a) > f (γ) = 1. Take C 0 large enough such that E
|u|=1 e aV (u) 1 (ν=1,V (u)≤C0) > 1, then such γ C exists for all C ≥ C 0 . We shall use the existences of similar constants later without further explanations.

Let δ > 0 be small. Before bounding below Q #£ λ ≤ m with some m = m δ , we first choose some constants. Let α be large and ε be small whose values will be determined later. Recall that ℧(w k ) denotes the set of brothers of w k . Let us choose a constant γ α,ε such that

U (α,ε) n := e (1+γα,ε) V (wn) (q -ε) 0≤k<n (ν(w k )-1) 1 (∀k<n,∀u∈℧(w k ), ∆V (u)≤α) , n ≥ 1, (5.11) 
is a Q-martingale with mean 1. As before, such γ α,ε is determined by the following equalities

1 = Q e (1+γα,ε)V (w 1 ) (q -ε) ν(w 0 )-1 1 (max |u|=1,u =w 1 V (u)≤α) = E |u|=1 e γα,εV (u) (q -ε) ν-1 1 (max |v|=1,v =u V (v)≤α) .
The existence of γ a,ε follows from (1.5) and (1.6). Clearly γ α,ε → γ as α → ∞ and ε → 0. Fix now α ≡ α(δ) > 0 (large enough) and ε ≡ ε(δ) > 0 (small enough) such that γ α,ε < γ +δ. Choose a constant x 0 ≡ x 0 (δ) > 0 such that q(x) ≥ qε for all x ≥ x 0 .

On the other hand, we remark that (1.1) and (1.5) imply that

P 1 ≤ ν < ∞, max |u|=1 V (u) > 0 > 0.
(5.12) 

In fact, E 1 (1≤ν<∞) q ν-1 |u|=1 e γV (u) 1 (V (u)>0) = 1-E 1 (1≤ν<∞) q ν-1 |u|=1 e γV (u) 1 (V (u)≤0) > 1 -E 1 (1≤ν<∞) q ν-1 ν > 0, hence (5.
* ≤ E 1 (ν≤n * ) |u|=1 e -V (u) 1 (V (u)≥c * ) = Q ν(w 0 ) ≤ n * , V (w 1 ) ≥ c * , (5.13) 
where the last equality follows from the change of measure formula (Section 2.2 (i), w 0 = ∅).

Choose (and fix) a constant L ≥ α + x 0 such that L c * is an integer. Define m δ := (n * ) L/c * . Recall (1.18) for the definition of τ λ (u). For any λ > 2L, we consider the following events λ := T u ∩ £ λ and ν(u) denotes the number of children of u. Observe that on A 1 ∩ A 2 , τ λ (w) ≤ τ λ-L (w) + L c * , and #£ λ ≤ (n * ) L/c * ≡ m δ . Since q > 0, p 0 ≡ P(ν = 0) > 0, it follows from the spinal decomposition (Section 2.2 (iii)) that q(λ-V (u))1 (∆V (u)≤α) ≥ k<τ λ-L (w)

Q #£ λ ≤ m δ ≥ Q A 1 ∩ A 2 = Q B 1
(q-ε) ν(w k-1 )-1 1 (max u∈℧(w k ) ∆V (u)≤α) =: B 2 , by using the fact that for any u ∈ ℧(w k ) with k < τ λ-L (w), V (u) ≤ λ -L + α ≤ λx 0 , and q(λ -V (u)) ≥ q(x 0 ) ≥ qε.

Recall that under Q, ( u∈℧(w k ) δ {∆V (u)} , ∆V (w k )) k≥1 are i.i.d.; then the strong Markov property implies that under Q and conditioned on G τ λ-L (w) , (ν(w k-1 ), ∆V (w k )) k≥τ λ-L (w) are i.i.d., of common law that of (ν(w 0 ), V (w 1 )). Therefore, . Going back to (5.11) and applying the optional stopping theorem at τ λ-L for U (α,ε) (which remains bounded up to τ λ-L ), we get that Q[B 2 ] = Q (qε) 0≤k<τ λ-L (w) (ν(w k )-1) 1 (∀k<n,∀u∈℧(w k ), ∆V (u)≤α) ≥ e -(1+γα,ε)(λ-L+α) .

Q #£ λ ≤ m δ ≥ p m δ 0 Q B 2 Q ν(w 0 ) ≤ n * , V ( 
In view of (5.10) and (5.15), this implies that

P 0 < #£ λ ≤ m δ ≥ 1 m δ p m δ 0 b L/c * *
e L-α e -γα,ε(λ-L+α) .

Then we have proved the Lemma in the case q > 0 [by choosing a sufficiently large λ 0 (δ)].

Lemma 5.4 (The Schröder case) Under the same assumptions as in Theorem 1.4, for any constant a > 0, we have E e -a #£ λ 1 (#£ λ >0) = e -(γ+o(1))λ , λ → ∞.

(5.16)

Proof of Lemma 5.4. From Lemma 5.3, the lower bound of (5.16) follows immediately. We also mention that in the cases when q = 0 or q > 0 but 0 < a < log(1/q), we can give a proof of the lower bound of (5.16) in the same way as that of (5.1).

For the upper bound, we proceed in the same way as in the proof of Lemma 5.1, but by paying attention to the possibility of extinction of the system. Take b > 0 such that E e -bD∞ ≥ e -a . By (5.2), e λ D ∞ ≤ u∈£ λ D ∞ (u), then E e -b e λ D∞ 1 (D∞>0) ≥ E e -b u∈£ λ D∞(u) 1 (D∞>0)

≥ E e -b u∈£ λ D∞(u) 1 (#£ λ >0) -P {#£ λ > 0} ∩ S c ≥ E e -a #£ λ 1 (#£ λ >0) -P {#£ λ > 0} ∩ S c .

By (1.14), E e -b e λ D∞ 1 (D∞>0) ≤ Ce -γλ , which together with Lemma 5.2 yield the upper bound in (5.16).

We now are ready to give the proof of (1.16):

Proof of (1.16). Let us prove at first the the lower bound in (1.16). By Lemma 4.4, there are c 13 > 0 (large enough) and c 14 > 0 (small enough) such that min n 2 ≤k≤n P(M k ≥ We prove now the upper bound in (1.16). By assumption (1.6) holds for any a > 0, hence S 1 has all exponential moments. It follows from (2.6) that for any a > 0, there exists some C a > 0 such that P S τ λλ ≥ x ≤ C a e -ax , ∀ x ≥ 0.

(5.17)

Let δ > 0 be small and a > (1 + γ)/δ + 1. Then

P max u∈£ λ V (u) > (1 + δ)λ ≤ E u∈£ λ
1 (V (u)>(1+δ)λ) = E e Sτ λ 1 (S τ λ ≥(1+δ)λ) = o(e -γλ ), (5.18) where the last equality follows easily from (5.17 

  a.s., where here and in the sequel, P * (•) := P (•|S) ,

. 16 )

 16 (The Böttcher case) Assume (1.7) and (1.8). Then P M n > 3 2 log n + λ = exp(-e (β+o(1))λ ).

  of u and by ν(u) the number of children of u. Define ℧(u) := {v : ← v = ← u, v = u} the set (eventually empty) of brothers of u for any u = ∅. For any u ∈ T, we denote by T u := {v ∈ T : u ≤ v} the subtree of T rooted at u.

Lemma 4 . 1

 41 Assume (1.1) and (1.2). There exists some constants c 5 , c 6 > 0 such that for n ≥ 1, P min |u|=n V (u) < c 5 n 1/3 ≤ c 6 e -c 5 n 1/3 , (4.1)

(4. 5 )

 5 If ν = ∞ [which is allowed under (1.1) and (1.

Lemma 4 . 5

 45 Assume (1.1) and (1.2). For any fixed a > 1, we have lim sup n→∞ P * max n≤k≤an

  ). By Lemmas 4.4 and 4.5, we can choose two positive constants c 11 and c 12 such that for any n ≥ 1c 11 ≤ e -c 12 , (5.4)

  12) holds. It follows that there are some integer n * ≥ 1 and some positive constants c * and b * such that b

A 1 :

 1 = ∀k < τ λ-L (w), ∀u ∈ ℧(w k ), ∆V (u) ≤ α, £ (u) λ = ∅ , A 2 := ∀τ λ-L (w) ≤ k < τ λ-L (w) + L c * , ∀u ∈ ℧(w k ), ν(u) = 0, ν(w k-1 ) ≤ n * , ∆V (w k ) ≥ c * ,where £ (u)

τ≥ p m δ 0 Q B 1 τ

 1 λ-L (w)+ L c * -1 k=τ λ-L (w) u∈℧(w k ) p 0 × 1 (ν(w k-1 )≤n * ,∆V (w k )≥c * ) λ-L (w)+ L c * -1 k=τ λ-L (w) 1 (ν(w k-1 )≤n * ,∆V (w k )≥c * ) ,(5.14)whereB 1 := k<τ λ-L (w) u∈℧(w k )

w 1 )

 1 ≥ c * L/c * ≥ p m δ 0 b L/c * * Q B 2 . (5.15) It remains to estimate Q[B 2 ]

3 2n 2 ,n 2 ≥λ |u| > n 2 ≥

 3222 log nc 13 , S) ≥ c 14 for all n ≥ 1. Let δ > 0 be small and let m δ ≥ 1 and λ 0 (δ) > 0 be as in Lemma 5.3. Let λ ≥ λ 0 (δ). Remark thatP M n > 3 2 log n+λ-c 13 , S ≥ P 0 < #£ λ ≤ m δ , ∀u ∈ £ λ , M S (u) ,where as before, S (u) = {T u suvives} and M (u) j := min v∈Tu,|v|=|u|+j (V (v) -V (u)) for any j ≥ 0. It follows thatP M n > 3 2 log n + λc 13 , S ≥ (c 14 ) m δ P 0 < #£ λ ≤ m δ , max u∈£ λ |u| ≤ (c 14 ) m δ P 0 < #£ λ ≤ m δ -P max u∈£ (c 14 ) m δ e -(γ+δ)λc 6 e -c5 n 1/3 , by Lemma 5.3 and (4.2). The lower bound of (1.16) follows.

V

  for all large n ≥ n 0 and 0< λ = o(log n), (u) > (1 + δ)λ + P max u∈£ λ |u| > n 2 ≤ o(e -γλ ) + c 6 e -c 5 n 1/3 = o(e -γλ ).

  The technical conditions (1.6) and (1.8) are made to avoid too large jumps of Θ in the moderate deviations.

.9) (ii) Under (1.1), the condition (1.6) or

(1.8) 

implies that E[ν] < ∞.

‡ This is where we use the condition that the law of log |u|=1 e -V (u) is non-lattice.
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On S ∩ {M n > 3 2 log n + (1 + 2δ)λ}, £ λ = ∅. Consider λ such that δλ < log n. Therefore,

where

• are i.i.d. copies of M • . By Lemma 4.5 (with a = 4), there exist some c 15 > 0 and λ 0 such that (δ being fixed) for all large n ≥ n 0 (λ 0 ),

Then by conditioning on F £ λ , we get that

)λ , by Lemma 5.4. This and (5.20) prove the upper bound in (1.16) since δ can be arbitrarily small.