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Introduction

Embedded systems that contain cryptography must be protected against side-channel analyses, to prevent attackers from exploiting information that leaks out of the system. Typical side-channels are the (instant) power consumption and the radiated electromagnetic field. The side-channel conveys a noisy image of internal variables right to the attacker. Important variables are those termed sensitive, that depend both on a varying input known by the attacker and on a constant inner data. In the context of block ciphers, they can typically be a part (e.g. one byte) of the plaintext (or of the ciphertext) and of the key (or of the key schedule). In addition, a sensitive variable shall depend on small parts of cryptographic key, e.g. bytes of it. This allows for a divide-and-conquer approach, where the key is recovered byte by byte (as in the case of AES [START_REF]NIST/ITL/CSD. Advanced Encryption Standard (AES)[END_REF]). To prevent those attacks, countermeasures are applied. Masking (refer to [START_REF] Mangard | Power Analysis Attacks: Revealing the Secrets of Smart Cards[END_REF]Chap. 9]) is a large class of them; it consists in randomizing the computations so that the leakage becomes less dependent on the sensitive variables. Masking in general applies as well to software and hardware designs.

This article brings two major contributions to the topic of masking, with application to hardware implementations. We introduce a masking strategy that is leakage resilient, while at the same time being applicable to any block cipher. The first contribution is the proof of its absence of leakage if the used masks are kept secret (e.g. alongside with the cryptographic key). The second contribution is a tradeoff between the size w of the masks set (assumed to be public this time) and the complexity of a brute-force search to finish the attack (since the correct key is recovered ex aequo with other incorrect keys).

The rest of the paper is organized as follows. Sec. 2 describes the studied homomorphic masking scheme. Its vulnerability evaluation is covered in Sec. 3. In Sec. 4, the secrecy of the homomorphic masking scheme is studied. Indistinguishability is demonstrated when the masks set is unknown. Otherwise, we prove that the hypotheses on the key bytes converge into an affine space of size less than or equal to 1 w 2 n (where n is the bitwidth of the sensitive variable, e.g. n = 8 for AES). Despite this burden, high-order attacks remain possible. They are discussed in Sec. 5, with the help of simulations. Several protections using only as many masks as identical substitution boxes in the algorithm (e.g. [START_REF] Prouff | A Generic Method for Secure SBox Implementation[END_REF] in AES and in PRESENT) are proposed. In the case of AES, it is possible to find a mask set of cardinality w = 16 that thwarts zerooffset attacks of order 1 to d = 3 including. The number of ex aequo key bytes is maximal, i.e. equal to w = 16. The proposed countermeasure is compared in terms of 16th-order success rate with other less educated choices for the masks. This study allows to prove "empirically" that our countermeasure both presents the smallest side-channel leakage and leads to an exhaustive search of maximal difficulty. Eventually, Sec. 6 gives the conclusions and draws some perspectives. The appendices A and B end the paper: they respectively recall known results, for the article to be self-contained, and give interesting properties about the leakage for the op-timal mask set in the case n = 8 bit.

Homomorphic Masking Scheme

In this article, we are interested in the protection of iterated block ciphers (such as AES). They are made up of linear parts (AddRoundKey, Mix-Columns and ShiftRows for AES) and non-linear parts (in AES: only SubBytes, an 8 bit to 8 bit bijection). We study the security of a hardware masking scheme, that is assumed to leak a sensitive variable Z, equal to the sum (bitwise, in F n 2 ) of a plaintext X, first masked by a random variable M , and second added to a secret key byte K:

Z = X ⊕ M ⊕ K . (1) 
Let us denote by n the common bitwidth of X, M and K. The variable X is a public part of the data involved in the computation (e.g. the plaintext or the ciphertext). The variable K is a secret (e.g. one byte of the key schedule) to recover, constant over all the side-channel observations. Eventually, M is the mask that implements the countermeasure. It is an unpredictable random variable, redrawn fresh at every encryption, that lives in a subset C of F n 2 . Designs featuring a leakage as per Eqn. (1) are numerous. However, it is customary that, in addition to Z, another share leaks M (refer for instance to the setup described in [START_REF] Lemke-Rust | Gaussian Mixture Models for Higher-Order Side Channel Analysis[END_REF] for differential side-channel attacks). Keeping the mask variable M along with the masked variable Z allows for an easy unmasking at the end of the computation (see for instance the architecture with two paths described in [START_REF] Standaert | FPGA Implementations of the DES and Triple-DES Masked Against Power Analysis Attacks[END_REF]). Masking schemes that leak the mask M solely through Z are those based on precomputed tables (table S in lieu of S); one example is Rotating Sboxes Masking (or RSM [START_REF] Nassar | RSM: a Small and Fast Countermeasure for AES, Secure against First-and Second-order Zero-Offset SCAs[END_REF]). In RSM, the plaintext X enters masked as X⊕M , then goes through linear operations (such as the key K addition, viz. AddRoundKey) with respect to the exclusive-or (i.e. homomorphically in the group (F n 2 , ⊕)), and traverses the substitution boxes (abridged sboxes) that are masked at the input and at the output with masks that make up for the initial masking. This tactic is referred to as Global Look-Up Table (GLUT) [START_REF] Prouff | A Generic Method for Secure SBox Implementation[END_REF]. For the overhead of this countermeasure to be acceptable, not all possible masked sboxes are precomputed. This amounts to reducing the size of the set C ⊆ F n 2 from 2 n to w = |C| 2 n : the GLUT equation thus becomes:

∀(Y, M in , M out ) ∈ F n 2 × C × C, (Y, M in , M out ) → S (Y, M in , M out ) = S(Y ⊕ M in ) ⊕ M out ∈ F n 2 . ( 2 
)
Thus the size (in units of memory bits) of the required RAM (or ROM) for the masked sboxes is reduced from: n × 2 3n (when w) . Further, the non-linear sbox is implemented in a look-up table: therefore, the value of the sbox is not computed with logic gates, but accessed from an array (RAM or ROM). This means that its evaluation does not produce glitches (additional spurious leakage resulting from incomplete transitions caused by races between signals). Therefore, attacks like [START_REF] Popp | Practical attacks on masked hardware[END_REF] do not apply. Thus the exploitable leakage writes as:

C = F n 2 ) to n × 2 n+2 log 2 (
L = L(X ⊕ M ⊕ K) , (3) 
where L is a degree-one pseudo Boolean function (i.e. a function from F n 2 to R). In the sequel, without loss of generality, we assume L is balanced. The fact L is of degree one reflects the hypothesis that each bit is independent, but can be weighted differently. The mask M , uniformly distributed on C, coincides with the mask M in at masked sbox input (in Eqn. (2)).

Also, in RSM, M out is deterministically known from M in (it is the successor in C); this remains secure because it is not expected that an attacker combines the leakage of two rounds of AES, since this involves too many key bytes ( 5 for AES). Therefore, the GLUT equation simplifies as:

S RSM (Y, M ) = S (Y, M, succ(M )) . (4) 
This table occupies a memory of n × 2 n+log 2 (w) = w × (n2 n ), in units of bit, i.e. the size of w unmasked sboxes. Therefore, when w = 16 = N B , there is not overhead in terms of memory for RSM: the N B identical SubBytes tables are traded for 16 different masked sboxes.

Vulnerabilities of the Homomorphic Masking

The leakage L given in Eqn.

(3) can be attacked by various means, namely information-theoretic distinguishers, such as the mutual information I [L ; X, K = k] introduced in [START_REF] Gierlichs | Mutual information analysis[END_REF], or high-order correlation power analysis (HO-CPA) [START_REF] Messerges | Using Second-Order Power Analysis to Attack DPA Resistant Software[END_REF].

Analysis of the HO-CPA

Information-theoretic distinguishers are generic, hence attractive when the leakage is unknown.

When the leakage can be modelled, the HO-CPA of minimal order are known to be more efficient than generic distinguishers [START_REF] Veyrat-Charvillon | Mutual Information Analysis: How, When and Why? In CHES[END_REF]. In this case, as the leakage is univariate (i.e. only one intermediate variable leaks), the adequate attacks are the zero-offset correlation power analyses introduced by Waddle and Wagner in [START_REF] Waddle | Towards Efficient Second-Order Power Analysis[END_REF]. They consist in testing whether the conditional expectation in X = x of a given power d > 0 of the leakage depends on x. Thus, the attacker checks for the feasibility of a dth-order zero-offset attack by computing Var E L d |X, K , and by selecting the smallest d such as this inter-class variance is nonzero. Owing to the linearity in F n 2 of the key addition in Eqn. [START_REF] Carlet | Side-Channel Indistinguishability[END_REF], Var E L d |X, K = k does not depend on k, thus writes simply Var E L d |X, K .

For the implementation to remain small (refer to Sec. 2), the random variable M is not uniformly distributed in F n 2 , but in a subset C of F n 2 . In the sequel, we see C as a code, and we call f the indicator of C. This code is characterized by a distance enumerator polynomial (see Definition 1 in the next section 4). The smallest strictly positive index of nonzero coefficients is called the

dual distance d ⊥ C of code C.
It has been proven that the countermeasure cannot be attacked at orders 1, . . . , d ⊥ C -1. Now, at order d ⊥ C , the inter-class variance is nonzero, thus there is the possibility of an attack. This result is recalled in Appendix A. In this section, we denote by d the attack order; attacks of order d < d ⊥ C fail, and of order d d ⊥ C succeed. However, it is well known that the success rate of the attack decreases with the attack order [START_REF] Prouff | Masking against Side Channel Attacks: a Formal Security Proof[END_REF]; this is why the preferred choice for d will be d ⊥ C . We note L the actual leakage, that is L (X ⊕ M ⊕ k ), where the symbols with stars denote the correct values used by the device, and not necessarily known by the attacker. As stated above, the inter-class variance is not a side-channel distinguisher because it takes the same values for all key bytes k ∈ F n 2 . Therefore, an attack with a "model " shall be used. As explained in [START_REF] Prouff | Statistical Analysis of Second Order Differential Power Analysis[END_REF] and recalled in Lemma 3 in Appendix A, the optimal strategy in an HO-CPA attack is to use as a prediction function

P (x, k) = E L d |X = x, K = k ,
for any guess k on the key byte. But, as L is a priori not known exactly by the attacker,

P (x, k) is actually taken equal to E L d |X = x, K = k ; this is the model used in the HO-CPA. The Pearson correlation coefficient (de- noted "ρ") calculated in an HO-CPA is ρ L d (X ⊕ M ⊕ k ); P (X, k) .
In the sequel, it is abridged as ρ k ,k , because the other random variables (viz. X and M ) are averaged by the ρ operator. It is proportional to cov k ,k , equal to the numerator of ρ k ,k , and computed in the next Lemma. Lemma 1. When the actual leakage is given by Eqn. (3) (unknown variables are marked with a star), the covariance cov k ,k distinguisher in a dthorder attack is equal to

1 1 2 n |C | |C| (L d ⊗ f ) ⊗ (L d ⊗ f ) (k ⊕ k) .
Proof. The covariance cov k ,k is computed as (recall L and L are assumed balanced):

E L d |K = k • E L d |X = x, K = k = 2 -n |C | x∈F n 2 m ∈C L d (x ⊕ m ⊕ k ) • 1 |C| m∈C L d (x ⊕ m ⊕ k) .
We can introduce the indicators f of C and f of 1 In this equation, we underline that the function

1 2 n |C ||C| (L d ⊗ f ) ⊗ (L d ⊗ f ) is applied to k ⊕ k.
Please notice it is not a product.

C; hence cov k ,k is equal to:

1 2 n |C | x∈F n 2 m ∈F n 2 f (m ) • L d (x ⊕ m ⊕ k ) • 1 |C| m∈F n 2 f (m) • L d (x ⊕ m ⊕ k) = 1 2 n |C | x∈F n 2 L d ⊗ f (x ⊕ k ) • 1 |C| L d ⊗ f (x ⊕ k) = 1 2 n |C ||C| (L d ⊗ f ) ⊗ (L d ⊗ f ) (k ⊕ k) .
Recall the convolution product is commutative and associative, i.e. (φ

1 ⊗ φ 2 ) ⊗ φ 3 = φ 1 ⊗ (φ 2 ⊗ φ 3 ) = φ 1 ⊗ φ 2 ⊗ φ 3 . Thus, ρ k ,k is equal to: L d ⊗ L d ⊗ f ⊗ f (k ⊕ k) L d ⊗ L d ⊗ f ⊗ f (0) • (L d ⊗ L d ⊗ f ⊗ f ) (0) . ( 5 
)
When d is even, constant terms shall be added in Eqn. [START_REF] Gierlichs | Mutual information analysis[END_REF], which do not change our conclusions.

Remark 1. Both cov k ,k and ρ k ,k depend only in the difference k ⊕ k between the correct and the guessed key bytes, and not in the actual key byte k . Thus the EIS (Equal Images under different Sub-keys2 ) assumption made in [START_REF] Schindler | A Stochastic Model for Differential Side Channel Cryptanalysis[END_REF] holds for the homomorphic masking.

Let us call g = L d ⊗ f and g = L d ⊗ f . In the rest of this section 3.1, we derive optimistic results (that are individually already well known), when the attacker knows L = L and f = f (hence g = g ).

Lemma 2 (Autocorrelation maximum at origin).

Let g be a pseudo-Boolean function. We have

g ⊗ g(x) g ⊗ g(0), with equality for x ∈ {x ∈ F n 2 /∀y ∈ F n 2 , g(y) = g(x ⊕ y)} -(Cauchy-Schwarz theorem). Remark 2. We have {x ∈ F n 2 /∀y ∈ F n 2 , f (y) = f (x ⊕ y)} ⊆ {x ∈ F n 2 /∀y ∈ F n 2 , g(y) = g(x ⊕ y)}. The kernel ker(f ) of a Boolean function f is the set {x ∈ F n 2 /∀y ∈ F n 2 , f (x⊕y) = f (x)⊕f (y)⊕f (0)}. Any x in this set is a linear structure of f (see [4]). ker(f ) is the set of x ∈ F n 2 such that the derivative D x f (y) = f (y) ⊕ f (x ⊕ y) of f is constant. ker(f )
is endowed with a space vector structure. By expressing that y → D x f (y) is null iff it is constant and that this constant is equal to zero, it can be noticed that the set

{x ∈ F n 2 /∀y ∈ F n 2 , f (y) = f (x⊕y)} is equal to ker(f )∩{x ∈ F n 2 /f (x) = f (0)}.
This set is called the space of null linear structures of f . It is a space vector. Notice that the space of null linear structures of f is equal to:

• ker(f ) ∩ supp(f ) if f (0) = 1, and to • ker(f ) ∩ (F n 2 \ supp(f )) if f (0) = 0. Let x 0 ∈ F n 2 and f : x ∈ F n 2 → f (x ⊕ x 0 ) ∈ F 2 .
The space of linear structures of f and f are identical. In particular, the space of null linear structures of f and f are identical.

Let p a bijective linear function and f :

x ∈ F n 2 → f • p(x) ∈ F 2 .
The space of null linear structures of f is the image of the space of null linear structures of f through p. This holds in particular for a permutation of the coordinates.

We say that two codes (non-necessarily linear) are equivalent if they can be deduced one from the other by a combination of:

• addition of constant κ ∈ F n
2 to all codewords, and

• permutation p of 1, n of the codeword coordi- nates.
This is a non-canonical equivalence notion, as usually codes are not translated. Let f and f be the indicators of two equivalent codes C and C . Then the space of null linear structures of f and f have the same cardinality.

If g = g , the HO-CPA (Eqn. (5)) is sound, i.e. distinguishes the correct key byte, because

(g ⊗ g) (k ⊕ k) is maximal if k ⊕ k = 0 ( i.e. if k = k ).
However, this maximum is attained for more key bytes, namely all key bytes whose difference with k belongs to the space of null linear structures of g = L d ⊗ f . The goal of the countermeasure designer is thus to maximize the size of this space vector. The next subsection proves that the maximal size is obtained for affine codes C.

Largest Space of Null Linear Structures

Proposition 1. If f is the indicator of a linear code C, then C ⊆ ker(f ). More precisely, ker(f ) = F n 2 if C is a hyperplane, otherwise ker(f ) = C.
Besides, the space of null linear structures of f is always C.

Proof. Let f be the indicator of a space vector C, and x, y ∈ C. We have f (x ⊕ y) = f (y) for all y if and only if x ⊕ C = C, and we have f

(x ⊕ y) = f (y) ⊕ 1 for all y if and only if x ⊕ C = F n 2 \ C.
Corollary 1. If f is the indicator of an affine code C, then the set of the space of null linear structures of f is the direction of C (the space vector from which C is translated).

Proof. It is well known that for an affine space C, the set of the x such as x ⊕ C = C is the direction of C. where k is an element from the space of null linear structures of g = L d ⊗ f .

Equivalent Codes Preserve the Security

First of all, we recall the definition of the distance enumerator polynomial.

Definition 1. The dual distance enumerator polynomial coefficient B ⊥ d of a code C (linear or not), where 0

d n, is the coefficient of X n-d Y d in 1 |C| D C (X + Y, X -Y ). We recall that D C (X, Y ) = 1 |C| x,y∈C X n-w H (x⊕y) Y w H (x⊕y) ,
where w H is the Hamming weight (∀x

∈ F n 2 , w H (x) = n i=1 x i ∈ 0, n , hence w H takes (n + 1) different values). Proposition 3. An alternative definition of B ⊥ d is B ⊥ d = b∈F n 2 , such that w H (b)=d 1 |C| c∈C (-1) b•c 2 .
Proof. This proposition 3 is well known; we briefly give its proof hereafter. According to the MacWilliams' identity (shown for instance in [START_REF] Carlet | Boolean Functions for Cryptography and Error Correcting Codes: Chapter of the monography Boolean Models and Methods in Mathematics[END_REF][START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]),

D C (X + Y, X -Y ) is equal to 1 |C| b∈F n 2 X n-w H (b) Y w H (b) c∈C (-1) b•c 2 .
Thus, by identification (in blue color), 1

|C| D C (X + Y, X -Y ) is equal to both: • n d=0 B ⊥ d X n-d Y d and • 1 |C| 2 b∈F n 2 X n-w H (b) Y w H (b) c∈C (-1) b•c 2 .
Two codes are equivalent if they can be deduced one from the other by the combination of an addition with a constant to all codewords and a permutation of the codewords coordinates. As those two transformations are commutative, we shall prove the invariance the distance enumerator polynomial under each operation independently. We denote by

B ⊥ C the set (B ⊥ d ) 0 d n for code C. Remark 3. Let κ ∈ F n 2 a constant. Let C and C = κ ⊕ C two codes (C = {κ ⊕ c, c ∈ C}). Then B ⊥ C = B ⊥ C . Remark 4. Let p a permutation of 1, n . Let C and C = p(C) two codes (C = {p(c), c ∈ C}). Then B ⊥ C = B ⊥ C .
In the two next subsections 4.2 and 4.3, we illustrate how to take advantage of the invariance of the dual distance by an arbitrary translation of the code (which derives new codes called cosets). For simplification, we assume that the attacker knows the exact leakage model (and thus takes L = L ), and attacks at the most appropriate order (for her), i.e.

d = d ⊥ C (= d ⊥ C ).

Perfect Secrecy if the Masking Scheme is Private

Let us assume that the used code equivalence classes are known, but not the exact code C (a particular coset). More specifically, we assume that the device uses C and that the attacker guesses C = κ ⊕ C is used instead. The constant κ ∈ F n 2 is an implementation key byte. The indicator of the two mask sets satisfies: m ∈ C ⇐⇒ f (m ) = 1 ⇐⇒ κ⊕m ∈ C ⇐⇒ f (κ⊕m ) = 1. Thus, the coefficient cov k ,k can be computed as in Lemma 1, and is equal to:

E L d ⊥ C (X ⊕ M ⊕ k ) • E L d ⊥ C (X ⊕ M ⊕ k)|X = 1 2 n |C| 2 (L d ⊥ C ⊗ f ) ⊗ (L d ⊥ C ⊗ f ) ([k ⊕ κ] ⊕ k) .
Hence, if κ is unknown, Corollary 2 states that the attacker can retrieve those ex aequo keys [k ⊕ κ] ⊕ (ker(k) ∩ {y ∈ F n 2 /g(y) = g(0)}), where g = L d ⊥ C ⊗ f . So, the attacker gets no information on k ; indeed, it is blinded -as in a Vernam cipher -by a secret key byte κ (see the term in square brackets), assumed unknown (that can thus be modeled by a random variable uniformly distributed on F n 2 ). Said differently, the correct key byte k is not necessarily within the key candidates that maximize the correlation coefficient. This conclusion is not in contradiction with Lemma 2, as in this Lemma we assume that the attacker knows the masks (f = f ) and the leakage model (L = L ). Of course, the same conclusion can be drawn if C is totally secret. Besides, notice that the security argument can be reversed: as the secret key byte k is unknown, the implementation key byte κ is protected (at least from side-channel attacks).

In theory, this solution requires only to store (k , κ) secretly in a tamper-proof memory; the secrets are now a pair of key bytes: one cryptographic key byte and one implementation key byte. However, in practice, to avoid leaking κ when computing the masks set C = κ ⊕ C, all the w codewords {c ∈ C } would be "burnt" in the device (e.g. implemented in a n × w-bit RAM or ROM for every sbox). Now, it is known that ROM arrays can be reverse-engineered easily 3 . FPGA designs implement the ROMs as RAMs initialized at the boot time (from an encrypted bitstream), and therefore the homomorphic masking countermeasure can be claimed unconditionally secure. For cost reasons, ASIC designs are likely to base their architecture on a ROM, since ROM blocks are far less costly than RAM blocks.

Besides, for the unconditional security to hold on the whole key (the 16 key bytes of the AES), a different code C must be used for every sbox. Thus, the total number of memory required is (16 × w) × n2 n bit, which is 16 times more than announced for RSM (recall Eqn. ( 4)). Actually, in RSM, there is only one code C for the entire AES, hence a memory requirement of w × n2 n bit. As there is only one implementation key byte κ for the 16 sboxes, every cryptographic key byte is offset by the same quantity.

Therefore, it is relevant to investigate the security level of the countermeasure if the masks are public or have been reverse-engineered.

Indistinguishable Keys if the Masking is Public

We assume that the attacker knows C (hence C = C , or equivalently κ = 0). Despite this 3 Refer for instance to chemical preparations in [6, Fig. 5 & 6] and to automatic recognition with tool rompar (presented in this webpage http://www.aperturelabs.com/ tools.html).

knowledge, there remains for the attacker a bruteforce exhaustive search. For instance, when C is affine and w = 16, for each of the 16 key bytes of an AES, the side-channel attack manages to reduce the key byte space size from 2 8 to w = 2 4 , but stops at this point (there is no other useful information to extract from the side-channel measurements, i.e. a purported back-tracking is not applicable). The subsequent exhaustive search for the complete key (16 key bytes) can be made prohibitory. In the example of AES, the final key search is 16 16 = 2 64 . Using Rijndael, the initial proposal for AES, with a 32 bytes datapath (N B = 32, and not 16 as in AES [START_REF]NIST/ITL/CSD. Advanced Encryption Standard (AES)[END_REF]), the final search has complexity 2 128 , i.e. the same complexity as that of brute-forcing the 128-bit key (recall that the key k is the primary asset to protect). Notice that the knowledge of the 16 key candidates of one sbox does not help finding the secret key of another sbox. Indeed, such strategy would require to combine the leakages of the two sboxes, which is not permitted in parallel implementations of the homomorphic masking, because all the sboxes are evaluated concomitantly.

Remark 5 (Side-Channel Indistinguishability). Ties ( i.e. ex aequo keys) exist irrespective of the attack order ( i.e. also at orders > d ⊥ C ), thus even for information-theoretic attacks ( e.g. the MIA [START_REF] Gierlichs | Mutual information analysis[END_REF]), and so, even without hypothesis on the leakage model L .

Our homomorphic masking is thus a provably secure side-channel resilient countermeasure 4 .

5 Success Rates in the Case of AES

Studied Codes for n = 8

Seven codes C are studied. They are defined in Tab. 1. Their distance enumerator polynomial is given in Tab. 2, and their codewords and null linear structures in Tab. 3.

Here is a verbose description of these codes:

• Code 1 (also nicknamed M 0 1) contains only the 0 element, denoted 0x00 ∈ F 8 2 , and thus 4 Notice that indistinguishable keys were already discussed in [START_REF] Medwed | Towards Super-Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs[END_REF], but with the limitation that plaintexts had to be formatted and that attacks should restrict to the first round. 

2 n i=1 2 i-1 xi • f (x) d ⊥ C B ⊥ d ⊥ C 1 M 0 1 0x0000000000000000000000000000000000000000000000000000000000000001 1 8 2 M 1 2 0x0000000000000000000004000000000000000000002000000000000000000000 2 28 3 M 2 
{0x02, 0x13, 0x1c, 0x2d, 0x44, 0x6b, 0x77, 0x78, 0x9f, 0xa5, 0xaa, 0xb0, 0xc1, 0xce, 0xd9, 0xf6} {0x00} 4 {0x00, 0x09, 0x1e, 0x33, 0x55, 0x66, 0x6c, 0x7b, 0x87, 0xaf, 0xb4, 0xb8, 0xca, 0xd2, 0xdd, 0xe1} {0x00} 5 {0x01, 0x08, 0x1f, 0x32, 0x54, 0x67, 0x6d, 0x7a, 0x86, 0xae, 0xb5, 0xb9, 0xcb, 0xd3, 0xdc, 0xe0} {0x00} 6 {0x0a, 0x0d, 0x13, 0x14, 0x60, 0x67, 0x79, 0x7e, 0xa2, 0xa5, 0xbb, 0xbc, 0xc9, 0xce, 0xd0, 0xd7} {0x00, 0x07, 0x19, 0x1e} 7 {0x10, 0x1f, 0x26, 0x29, 0x43, 0x4c, 0x75, 0x7a, 0x85, 0x8a, 0xb3, 0xbc, 0xd6, 0xd9, 0xe0, 0xef} {0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a, 0x95, 0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff} represents an unmasked implementation (of lowest security);

Code # B ⊥ 0 B ⊥ 1 B ⊥ 2 B ⊥ 3 B ⊥ 4 B ⊥ 5 B ⊥ 6 B ⊥ 7 B ⊥
• Code 2 (also nicknamed M 1 2) contains two elements, that are 1's complement one from each other; this masking is sufficient to resist first order attacks;

• Codes 3 to 6 contain w = 16 elements of F 8 2 , and allow to resist up order d = 3 attacks.

They are nicknamed M 2 16, M 2 16 bis, M 2 16 bis2 and M 2 16 ter. The codes 4 & 5 are equivalent: C 4 = C 5 ⊕ 0x01, i.e. f 5 (x) = f 4 (x ⊕ 0x01)). As shown in Remark 2, the functions f 4 and f 5 have the same space of null linear structures, namely {0x00}. However, the space of null linear structures of g 4 = w 3 H ⊗ f 4 is {0x00} whereas that of g 5 = w 3 H ⊗ f 5 is {0x00, 0x08}. This means that a third-order attack will give one maximal key when the countermeasure uses M 2 16 bis, but two ex aequo when M 2 16 bis2 is used instead 5 Otherwise, codes M 2 16, M 2 16 bis and M 2 16 ter are interesting because they have different B ⊥ 3 values.

• Code 7 (also nicknamed M 3 16) is an affine code equivalent to the linear code C of parameters [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF][START_REF] Dubuc | Characterization of Linear Structures[END_REF][START_REF] Dubuc | Characterization of Linear Structures[END_REF]. It is self-dual, and belongs to the only class of equivalent codes C that have

d ⊥ C = 4 (indeed, d ⊥ C = n -d C ⊥ = n -d C = 8 -4 = 4
). Being affine, its space of null linear structures set is of maximal size w = 16 (Proposition 2). Additional properties are discussed in appendix B.

Codes 3 to 7 contain w = 16 codewords of length n = 8, and thus allow to define 16 new sboxes (as per Eqn. ( 2)), that would implement the homomorphic masking when traded for the genuine (unmasked) sboxes of AES. For example, in RSM, the new sboxes are:

S RSM : (Y, i) ∈ F 8 2 × F 4 2 → S(Y ⊕ M i ) ⊕ M i+1 mod 16 ∈ F 8
2 , where C = {M i } i∈ 0,16 . In this case, the overhead of the countermeasure is virtually zero, because the number of sboxes is not increased between the unprotected and the protected implementations. Nonetheless, some extra resources are needed for the management of the masks. Nassar et al. report in [START_REF] Nassar | RSM: a Small and Fast Countermeasure for AES, Secure against First-and Second-order Zero-Offset SCAs[END_REF] an implementation in Altera Stratix-II FPGA of a homomorphic masking on AES; they achieve a moderate increase of 40% in memory usage, of 48% in user LUT logic, and a decrease of 34% of the maximal operating frequency.

Simulated High-Order Attacks on RSM

Because of the degeneracy of w = 16 key byte guesses with code 7, we can only evaluate whether the correct key is amongst the 16 first ones. Thus, a 16th-order success rate is computed [START_REF] Standaert | A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks[END_REF]. By definition, it is the probability that the correct key byte is ranked between 16th to 1st, inclusively. For the mask set corresponding to code 7, this is equivalent to saying that the correct key byte equivalence class is ranked first. In particular, when considering the 16th-order success rate, codes 4 and 5 yield the same result, hence only the results for code 4 are displayed.

In the attack, we consider that L is noisy: it is added a random variable N , that follows a centered normal law of variance σ 2 . The simulation results are shown in Fig. 1 for attacks at order d = 3, with 100 experiments (in which both the seed for the random noise and the correct key are updated). As predicted by the theory, the attack does not succeed on the mask set 7 (a.k.a. code M 3 16). Indeed, all the correlations between the cube of the centered traces and any key hypothesis are the same (viz. zero). Thus, the 16th-order success rate is actually converging to 16/256 = 1/16 (which is < 1); 1/16 is the probability of finding the correct key after 16 successive trials without replacement. 16th-order success rates for 4th-order CPA for σ ∈ {0, 1 2 , 1, ..., 4}, and a budget of 1 million traces. 6 It can be proven that the success rate of a zero-offset dth-order CPA is all the larger as B ⊥ d is large. We call N 80% the number of traces for the 16thorder success rate to overcome 80%. Informally, it represents the data complexity for a successful attack with a confidence of 80%. Each point is obtained as follows: 100 attacks are launched, to derive a success rate. In [START_REF] Waddle | Towards Efficient Second-Order Power Analysis[END_REF], a high-order masking scheme involving a sharing of a bit into d + 1 shares was studied. It assumes all the shares have an additive noise modeled as a centered Gaussian distribution N (0, σ 2 ). Under these conditions, they prove that:

N 80% σ d+4•log(0.8)/ log(σ) . (6) 
A recent paper has generalized this law for multibit leakage [START_REF] Prouff | Masking against Side Channel Attacks: a Formal Security Proof[END_REF]. To confront these results to our masking scheme (where N 80% is evaluated with a success rate of order 16), we represent in Fig. 3 a N 80% vs σ law in log-log, for the lowest-order attack that works on the given countermeasures. To obtain this figure, we pushed the simulations up to 32 million (≈ 2 25 ) traces. Qualitatively, the slope indeed increases with the attack order d, albeit as a 2d (and not d).

Conclusions and Perspectives

In this paper, we have studied a homomorphic masking scheme, applicable to block ciphers. While linear parts of cryptographic algorithms can be computed homomorphically, non-linear parts cannot. Therefore, the non-linear parts (the sboxes) are stored precomputed for a given pool of masks. The cost of the implementation is all the smaller as this pool is small, which motivates for a homomorphic depleted masking scheme. We prove in this article that when masks are n = 8 bit long, and with the constraint of precomputing only as many (namely w = 16) sboxes as in the original AES algorithm, it is possible to have the AES protected against monovariate attacks of order d = 3. Furthermore, we analyze this set under the theory of codes. It is an affine subcode of F n 2 . We know that there exists only one class of equivalent codes C of length n = 8, size w = 16, and dual distance d ⊥ C = 4. Still, if the exact member of the class remains secret, the masking can be proven unconditionally secure. If the code has been compromised (or is deliberately made public), then an attacker will exhibit a set of possible key bytes, that is an affine space containing the correct key plus a space vector of size up to w. This demands for the attacker an extra exhaustive search on top of the side-channel attack; if the algorithm can be tuned, this exhaustive search can be made as complex as desired by increasing the number of sboxes. Finally, we illustrate the complexity of the high-order correlation power analyses by computing success rates of order w: the attack requires more than 1 million traces for a noise standard deviation σ 3.5. Therefore, the homomorphic computation countermeasure presented in this article is a strong solution for implementations that can only be attacked by monovariate analysis, such as FPGA or ASIC implementations of Rotating Sboxes Masking (RSM [START_REF] Nassar | RSM: a Small and Fast Countermeasure for AES, Secure against First-and Second-order Zero-Offset SCAs[END_REF]).

As perspectives, we intend to extend RSM and its security proofs to software implementations. Proof. It is in Sec. 5 of [START_REF] Nassar | Formal Analysis of the Entropy / Security Trade-off in First-Order Masking Countermeasures against Side-Channel Attacks[END_REF] for d = 2. The proof for any d is the Theorem 1 of [START_REF] Bhasin | Theory of masking with codewords in hardware: lowweight dth-order correlation-immune Boolean functions[END_REF].

B Properties of Code M 3 16

In this appendix, we study the code C = M 3 16. It is the code 7, i.e. the last one in Tab. 1, 2 and 3. This linear code is the Reed-Muller code RM(1, 3), hence has parameters [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF][START_REF] Dubuc | Characterization of Linear Structures[END_REF][START_REF] Dubuc | Characterization of Linear Structures[END_REF]. It is generated from this matrix, given in systematic form:     1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0

    .
More precisely, the code M 3 16 (also used in [START_REF]DPA Contest[END_REF]) has its coordinates in another order. If we denote by 1 the leftmost coordinate of M 3 16, the coordinates are permuted as follows:

(1, 2, 3, 4, 5, 6, 7, 8) → (4, 5, 3, 2, 1, 6, 7, 8) . This code has noteworthy properties when the leakage function L is the Hamming weight. 1. 1 16 , 0, 0, 0, 14 16 , 0, 0, 0, 1 16 if y ∈ C;

2. 0, 1 16 , 0, 7 16 , 0, 7 16 , 0, 1 16 , 0 if there exists a codeword of Hamming weight 1 in y ⊕ C; 3. 0, 0, 4 16 , 0, 8 16 , 0, 4 16 , 0, 0 if there exists a codeword of Hamming weight 2 in y ⊕ C.

Proof. As C is a linear code, the distribution of y 1 ⊕ M and y 2 ⊕ M are identical if y 1 ⊕ y 2 ∈ C (where y 1 and y 2 are two elements of F 8

2 ). This defines an equivalence relation R, that partitions F 8 2 into 256/16 classes C y = y ⊕ C. We call the generator of C y the smallest element of C y , seen as list of integers written in hexadecimal. The 16 partitions are generated by 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16 and 0x17. Let us now consider the distribution of w H (y ⊕ M ) ∈ 0, 8 instead of that of y⊕M ∈ F 8 2 . The distribution of w H (y ⊕ M ) merges some classes; specifically, the 16 classes are regrouped so as to yield only 3. By exhaustive computer computation, it happens that the distributions are those listed in the Proposition 4, where the generators are grouped as: 

. = C 0x03 ∪C 0x05 ∪ C 0x06 ∪ C 0x11 ∪ C 0x12 ∪ C 0x14 ∪ C 0x17 .
It can be checked, that:

1. each element of the first partition generates a code that contains the null vector;

2. each element of the second partition generates a code that contains a vector of Hamming weight 1;

3. each element of the second partition generates a code that contains a vector of Hamming weight 2.

In terms of code theory, the Proposition 4 has a short phrasing.
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 2331424 Figure1: 16th-order success rates for 3rd-order CPA for σ ∈ {0,1 2 , 1, ..., 4}, and a budget of 1 million traces.
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 2 Figure2: 16th-order success rates for 4th-order CPA for σ ∈ {0,1 2 , 1, ..., 4}, and a budget of 1 million traces.

Figure 3 :

 3 Figure 3: Number of traces to achieve a success rate 80% for various noise standard deviations σ.

Proof.

  We have (with or without the absolute values):|ρ [L ; P (X)] | = |ρ [L ; E [L |X]] | × |ρ [E [L |X] ; P (X)] | . As |ρ [E [L |X] ; P (X)] | 1, it is clear that E [L |X] is the optimal prediction function P (X).Eventually, the security level obtained by the homomorphic masking countermeasure is unveiled in Theorem 1.Theorem 1 (RSM security). Let L = L(X ⊕M ⊕ k ), where L : F n 2 → R is a form, X ∼ U(F n 2 )and M ∼ U(C) are two random variables, and k ∈ F n 2 is a secret key. Then,d = min i > 0, Var E L i |X = 0 ⇐⇒ C is a code of dual distance d ⊥ C = d .

Proposition 4 .

 4 There are only three different distributions of w H (y ⊕ M ), when M ∼ U(C) when y ∈ F 8 2 . Namely, the set of probabilities (P [w H (y ⊕ M ) = ]) ∈ 0,8 are equal to:

1 .

 1 16 values of y, namely y ∈ C 1 . = C 0x00 ; 2. 128 values of y, namely y ∈ C 2. = C 0x01 ∪C 0x02 ∪ C 0x04 ∪ C 0x07 ∪ C 0x10 ∪ C 0x13 ∪ C 0x15 ∪ C 0x16 ;3. 112 values of y, namely y ∈ C 3

Table 1 :

 1 Some codes C of length n = 8 and size w = 16. Code # Nickname Truth table of f , under the form x∈F n

	2

Table 3 :

 3 Codewords ( first line ) and null linear structures ( second line ) of the codes of Tab. 1.

		16	0x0040000002004002000104208000000001800800000000100000200010080004	3	4.5
	4	M 2 16 bis 0x0000000220040400011080000000008008001040002000000008000040000201 3	3.5
	5	M 2 16 bis2 0x0000000110080800022040000000004004002080001000000004000080000102 3	3.5
	6	M 2 16 ter 0x0000000000814200180000240000000042000081000000000000000000182400 3	4
	7	M 3 16	0x0000800102400000100800000000042004200000000010080000024080010000	4	14
	Code #	Codewords and null linear structures		
	1		{0x00} {0x00}		
	2		{0x55, 0xaa} {0x00, 0xff}		

Table 2 :

 2 Coefficients of the distance enumerator polynomial for the codes of Tab. 1 (B ⊥

	C d ⊥	in bold ).

In the AES, a sub-key is any byte of the key.

This is an illustration that the space of null linear structures of f can be strictly included in that of g.
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A Known Results on Side-Channel Analysis and Masking

The best correlation attack (also refer to [START_REF] Prouff | Statistical Analysis of Second Order Differential Power Analysis[END_REF]) is described in the following Lemma 3. Lemma 3. Let L ∈ R and X ∈ F n 2 be two random variables, and P : F n 2 → R an arbitrary pseudo-Boolean function. The function P (X) that maximizes the linear correlation coefficient ρ

Proposition 5 (Equivalent of Proposition 4).

There are only three distinct weight enumerator polynomials for all the cosets of C = M 3 16. They are: 16

In terms of security, the Proposition 4 yields an interesting result.

Corollary 2. When L = w H , then the optimal prediction function P : y ∈ F 8 2 → E w H (y ⊕ M ) d takes either only one value (at orders d < 4), or only three values (at orders d ≥ 4).

Proof. At order d,

Now,

• But for d ≥ 4, the values in Eqn. ( 7) are different.

Remark 6. The three distributions in Proposition 4 have the same variance, namely 2.