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Abstract

We introduce a masking strategy for hardware that
prevents any side-channel attacker from recover-
ing uniquely the secret key of a cryptographic de-
vice. In this masking scheme, termed homomor-
phic, the sensitive data is exclusive-ored with a ran-
dom value that belongs to a given set. We show
that if this masking set is concealed, then no infor-
mation about the cryptographic key leaks. If the
masking set is public (or disclosed), then any (high-
order) attack reveals a group of equiprobable keys.
Those results are applied to the case of the AES,
where sensitive variables are bytes. To any mask
corresponds a masked substitution box. We prove
that there exists a homomorphic masking with 16
masks (hence a number of substitution boxes equal
to that of the same algorithm without masking)
that resists mono-variate first-, second-, and third-
order side-channel attacks. Furthermore, even if
the masking set is public, each byte of the correct
key is found only ex æquo with 15 incorrect ones,
making the side-channel analysis insufficient alone
– the remaining key space shall be explored by
other means (typically exhaustive search). Thus,
our homomorphic masking strategy allows both to
increase the number of side-channel measurements
and to demand for a final non negligible brute-
forcing (of complexity 16NB = 264 for AES, that
has NB = 16 substitution boxes). The hardware

implementation of the Rotating Substitution boxes
Masking (RSM) is a practical instantiation of our
homomorphic masking countermeasure.

Keywords: Brute-force, hardware implemen-
tation, high-order correlation power attacks (HO-
CPA), homomorphic masking, indistinguishabil-
ity, resilience, rotating substitution boxes masking
(RSM), side-channel analysis, symmetric ciphers.

1 Introduction

Embedded systems that contain cryptography must
be protected against side-channel analyses, to pre-
vent attackers from exploiting information that
leaks out of the system. Typical side-channels are
the (instant) power consumption and the radiated
electromagnetic field. The side-channel conveys a
noisy image of internal variables right to the at-
tacker. Important variables are those termed sen-
sitive, that depend both on a varying input known
by the attacker and on a constant inner data. In
the context of block ciphers, they can typically be
a part (e.g. one byte) of the plaintext (or of the ci-
phertext) and of the key (or of the key schedule). In
addition, a sensitive variable shall depend on small
parts of cryptographic key, e.g. bytes of it. This al-
lows for a divide-and-conquer approach, where the
key is recovered byte by byte (as in the case of
AES [13]). To prevent those attacks, countermea-
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sures are applied. Masking (refer to [8, Chap. 9])
is a large class of them; it consists in randomiz-
ing the computations so that the leakage becomes
less dependent on the sensitive variables. Masking
in general applies as well to software and hardware
designs.
This article brings two major contributions to

the topic of masking, with application to hardware
implementations. We introduce a masking strat-
egy that is leakage resilient, while at the same time
being applicable to any block cipher. The first con-
tribution is the proof of its absence of leakage if the
used masks are kept secret (e.g. alongside with the
cryptographic key). The second contribution is a
tradeoff between the size w of the masks set (as-
sumed to be public this time) and the complexity
of a brute-force search to finish the attack (since
the correct key is recovered ex æquo with other in-
correct keys).
The rest of the paper is organized as follows.

Sec. 2 describes the studied homomorphic mask-
ing scheme. Its vulnerability evaluation is covered
in Sec. 3. In Sec. 4, the secrecy of the homomor-
phic masking scheme is studied. Indistinguishabil-
ity is demonstrated when the masks set is unknown.
Otherwise, we prove that the hypotheses on the key
bytes converge into an affine space of size less than
or equal to 1 6 w 6 2n (where n is the bitwidth
of the sensitive variable, e.g. n = 8 for AES). De-
spite this burden, high-order attacks remain pos-
sible. They are discussed in Sec. 5, with the help
of simulations. Several protections using only as
many masks as identical substitution boxes in the
algorithm (e.g. 16 in AES and in PRESENT) are
proposed. In the case of AES, it is possible to find
a mask set of cardinality w = 16 that thwarts zero-
offset attacks of order 1 to d = 3 including. The
number of ex æquo key bytes is maximal, i.e. equal
to w = 16. The proposed countermeasure is com-
pared in terms of 16th-order success rate with other
less educated choices for the masks. This study
allows to prove “empirically” that our countermea-
sure both presents the smallest side-channel leakage
and leads to an exhaustive search of maximal diffi-
culty. Eventually, Sec. 6 gives the conclusions and
draws some perspectives. The appendices A and B
end the paper: they respectively recall known re-
sults, for the article to be self-contained, and give
interesting properties about the leakage for the op-
timal mask set in the case n = 8 bit.

2 Homomorphic Masking

Scheme

In this article, we are interested in the protec-
tion of iterated block ciphers (such as AES). They
are made up of linear parts (AddRoundKey, Mix-
Columns and ShiftRows for AES) and non-linear
parts (in AES: only SubBytes, an 8 bit to 8 bit
bijection). We study the security of a hardware
masking scheme, that is assumed to leak a sensi-
tive variable Z, equal to the sum (bitwise, in F

n
2 )

of a plaintext X, first masked by a random variable
M , and second added to a secret key byte K:

Z = X ⊕M ⊕K . (1)

Let us denote by n the common bitwidth of X,
M and K. The variable X is a public part of
the data involved in the computation (e.g. the
plaintext or the ciphertext). The variable K is a
secret (e.g. one byte of the key schedule) to re-
cover, constant over all the side-channel observa-
tions. Eventually, M is the mask that implements
the countermeasure. It is an unpredictable random
variable, redrawn fresh at every encryption, that
lives in a subset C of Fn

2 . Designs featuring a leak-
age as per Eqn. (1) are numerous. However, it is
customary that, in addition to Z, another share
leaks M (refer for instance to the setup described
in [6] for differential side-channel attacks). Keep-
ing the mask variable M along with the masked
variable Z allows for an easy unmasking at the end
of the computation (see for instance the architec-
ture with two paths described in [20]). Masking
schemes that leak the mask M solely through Z are
those based on precomputed tables (table S′ in lieu
of S); one example is Rotating Sboxes Masking (or
RSM [12]). In RSM, the plaintext X enters masked
asX⊕M , then goes through linear operations (such
as the key K addition, viz. AddRoundKey) with
respect to the exclusive-or (i.e. homomorphically
in the group (Fn

2 ,⊕)), and traverses the substitu-
tion boxes (abridged sboxes) that are masked at the
input and at the output with masks that make up
for the initial masking. This tactic is referred to as
Global Look-Up Table (GLUT) [15]. For the over-
head of this countermeasure to be acceptable, not
all possible masked sboxes are precomputed. This
amounts to reducing the size of the set C ⊆ F

n
2

from 2n to w = |C| 6 2n: the GLUT equation thus
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becomes:

∀(Y,Min,Mout) ∈ F
n
2 × C × C,

(Y,Min,Mout) 7→ S′(Y,Min,Mout)
= S(Y ⊕Min)⊕Mout ∈ F

n
2 .

(2)

Thus the size (in units of memory bits) of the
required RAM (or ROM) for the masked sboxes
is reduced from: n × 23n (when C = F

n
2 ) to

n × 2n+2 log
2
(w). Further, the non-linear sbox is

implemented in a look-up table: therefore, the
value of the sbox is not computed with logic gates,
but accessed from an array (RAM or ROM). This
means that its evaluation does not produce glitches
(additional spurious leakage resulting from incom-
plete transitions caused by races between signals).
Therefore, attacks like [14] do not apply. Thus the
exploitable leakage writes as:

L = L(X ⊕M ⊕K) , (3)

where L is a degree-one pseudo Boolean function
(i.e. a function from F

n
2 to R). In the sequel, with-

out loss of generality, we assume L is balanced. The
fact L is of degree one reflects the hypothesis that
each bit is independent, but can be weighted dif-
ferently. The mask M , uniformly distributed on C,
coincides with the mask Min at masked sbox input
(in Eqn. (2)).
Also, in RSM, Mout is deterministically known

from Min (it is the successor in C); this remains
secure because it is not expected that an attacker
combines the leakage of two rounds of AES, since
this involves too many key bytes (> 5 for AES).
Therefore, the GLUT equation simplifies as:

S′
RSM(Y,M) = S′(Y,M, succ(M)) . (4)

This table occupies a memory of n × 2n+log
2
(w) =

w × (n2n), in units of bit, i.e. the size of w un-
masked sboxes. Therefore, when w = 16 = NB ,
there is not overhead in terms of memory for RSM:
the NB identical SubBytes tables are traded for 16
different masked sboxes.

3 Vulnerabilities of the Homo-

morphic Masking

The leakage L given in Eqn. (3) can be attacked
by various means, namely information-theoretic

distinguishers, such as the mutual information
I [L ;X,K = k] introduced in [4], or high-order cor-
relation power analysis (HO-CPA) [10].

3.1 Analysis of the HO-CPA

Information-theoretic distinguishers are generic,
hence attractive when the leakage is unknown.
When the leakage can be modelled, the HO-CPA
of minimal order are known to be more efficient
than generic distinguishers [21]. In this case, as
the leakage is univariate (i.e. only one intermedi-
ate variable leaks), the adequate attacks are the
zero-offset correlation power analyses introduced
by Waddle and Wagner in [22]. They consist
in testing whether the conditional expectation in
X = x of a given power d > 0 of the leakage de-
pends on x. Thus, the attacker checks for the feasi-
bility of a dth-order zero-offset attack by computing
Var

[

E
[

L d|X,K
]]

, and by selecting the smallest d
such as this inter-class variance is nonzero. Ow-
ing to the linearity in F

n
2 of the key addition in

Eqn. (3), Var
[

E
[

L d|X,K = k
]]

does not depend

on k, thus writes simply Var
[

E
[

L d|X,K
]]

.
For the implementation to remain small (refer to

Sec. 2), the random variable M is not uniformly
distributed in F

n
2 , but in a subset C of Fn

2 . In the
sequel, we see C as a code, and we call f the indi-
cator of C. This code is characterized by a distance
enumerator polynomial (see Definition 1 in the next
section 4). The smallest strictly positive index of
nonzero coefficients is called the dual distance d⊥C
of code C.

It has been proven that the countermeasure can-
not be attacked at orders 1, . . . , d⊥C − 1. Now, at
order d⊥C , the inter-class variance is nonzero, thus
there is the possibility of an attack. This result is
recalled in Appendix A. In this section, we denote
by d the attack order; attacks of order d < d⊥C fail,
and of order d > d⊥C succeed. However, it is well
known that the success rate of the attack decreases
with the attack order [16]; this is why the preferred
choice for d will be d⊥C .
We note L ⋆ the actual leakage, that is L⋆(X ⊕

M⋆⊕k⋆), where the symbols with stars denote the
correct values used by the device, and not neces-
sarily known by the attacker. As stated above,
the inter-class variance is not a side-channel distin-
guisher because it takes the same values for all key
bytes k ∈ F

n
2 . Therefore, an attack with a “model”
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shall be used. As explained in [17] and recalled in
Lemma 3 in Appendix A, the optimal strategy in an
HO-CPA attack is to use as a prediction function

P (x, k) = E

[

L ⋆d|X = x,K = k
]

, for any guess k

on the key byte. But, as L⋆ is a priori not known
exactly by the attacker, P (x, k) is actually taken
equal to E

[

L d|X = x,K = k
]

; this is the model
used in the HO-CPA.
The Pearson correlation coefficient (de-

noted “ρ”) calculated in an HO-CPA is

ρ
[

L⋆d(X ⊕M⋆ ⊕ k⋆);P (X, k)
]

. In the se-

quel, it is abridged as ρk⋆,k, because the other
random variables (viz. X and M⋆) are averaged
by the ρ operator. It is proportional to covk⋆,k,
equal to the numerator of ρk⋆,k, and computed in
the next Lemma.

Lemma 1. When the actual leakage is given by
Eqn. (3) (unknown variables are marked with a
star), the covariance covk⋆,k distinguisher in a dth-
order attack is equal to1

1

2n |C⋆| |C|

(

(L⋆d ⊗ f⋆)⊗ (Ld ⊗ f)
)

(k⋆ ⊕ k) .

Proof. The covariance covk⋆,k is computed as (re-
call L and L⋆ are assumed balanced):

E

[(

L ⋆d|K = k⋆
)

·
(

E
[

L d|X = x,K = k
])

]

=

2−n

|C⋆|

∑

x∈F
n

2

∑

m⋆∈C⋆ L⋆d(x⊕m⋆ ⊕ k⋆)

·
(

1
|C|

∑

m∈C Ld(x⊕m⊕ k)
)

.

We can introduce the indicators f⋆ of C⋆ and f of
C; hence covk⋆,k is equal to:

1
2n|C⋆|

∑

x∈F
n

2

∑

m⋆∈F
n

2

f⋆(m⋆) · L⋆d(x⊕m⋆ ⊕ k⋆)

·
(

1
|C|

∑

m∈F
n

2

f(m) · Ld(x⊕m⊕ k)
)

= 1
2n|C⋆|

∑

x∈F
n

2

(

L⋆d ⊗ f⋆(x⊕ k⋆)
)

·
(

1
|C|L

d ⊗ f(x⊕ k)
)

= 1
2n|C⋆||C|

(

(L⋆d ⊗ f⋆)⊗ (Ld ⊗ f)
)

(k⋆ ⊕ k) .

1In this equation, we underline that the function
1

2n|C⋆||C|

(

(L⋆d ⊗ f⋆)⊗ (Ld ⊗ f)
)

is applied to k⋆ ⊕ k.

Please notice it is not a product.

Recall the convolution product is commutative
and associative, i.e. (φ1 ⊗ φ2) ⊗ φ3 = φ1 ⊗ (φ2 ⊗
φ3) = φ1 ⊗ φ2 ⊗ φ3. Thus, ρk⋆,k is equal to:

(

L⋆d ⊗ Ld ⊗ f⋆ ⊗ f
)

(k⋆ ⊕ k)
√

(

L⋆d ⊗ L⋆d ⊗ f⋆ ⊗ f⋆
)

(0) · (Ld ⊗ Ld ⊗ f ⊗ f) (0)

.

(5)
When d is even, constant terms shall be added in
Eqn. (5), which do not change our conclusions.

Remark 1. Both covk⋆,k and ρk⋆,k depend only in
the difference k⋆ ⊕ k between the correct and the
guessed key bytes, and not in the actual key byte
k⋆. Thus the EIS (Equal Images under different
Sub-keys2) assumption made in [18] holds for the
homomorphic masking.

Let us call g⋆ = L⋆d⊗ f⋆ and g = Ld⊗ f . In the
rest of this section 3.1, we derive optimistic results
(that are individually already well known), when
the attacker knows L = L⋆ and f = f⋆ (hence
g = g⋆).

Lemma 2 (Autocorrelation maximum at origin).
Let g be a pseudo-Boolean function. We have
g ⊗ g(x) 6 g ⊗ g(0), with equality for x ∈ {x′ ∈
F
n
2/∀y ∈ F

n
2 , g(y) = g(x′⊕y)} — (Cauchy-Schwarz

theorem).

Remark 2. We have {x ∈ F
n
2/∀y ∈ F

n
2 , f(y) =

f(x⊕ y)} ⊆ {x ∈ F
n
2/∀y ∈ F

n
2 , g(y) = g(x⊕ y)}.

The kernel ker(f) of a Boolean function f is the
set {x ∈ F

n
2/∀y ∈ F

n
2 , f(x⊕y) = f(x)⊕f(y)⊕f(0)}.

Any x in this set is a linear structure of f (see [3]).
ker(f) is the set of x ∈ F

n
2 such that the derivative

Dxf(y) = f(y)⊕ f(x⊕ y) of f is constant. ker(f)
is endowed with a space vector structure.
By expressing that y 7→ Dxf(y) is null iff it is

constant and that this constant is equal to zero, it
can be noticed that the set {x ∈ F

n
2/∀y ∈ F

n
2 , f(y) =

f(x⊕y)} is equal to ker(f)∩{x ∈ F
n
2/f(x) = f(0)}.

This set is called the space of null linear structures
of f . It is a space vector. Notice that the space of
null linear structures of f is equal to:

• ker(f) ∩ supp(f) if f(0) = 1, and to

• ker(f) ∩ (Fn
2\ supp(f)) if f(0) = 0.

2In the AES, a sub-key is any byte of the key.
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Let x0 ∈ F
n
2 and f ′ : x ∈ F

n
2 7→ f(x ⊕ x0) ∈ F2.

The space of linear structures of f and f ′ are identi-
cal. In particular, the space of null linear structures
of f and f ′ are identical.

Let p a bijective linear function and f ′ : x ∈
F
n
2 7→ f ◦ p(x) ∈ F2. The space of null linear struc-

tures of f ′ is the image of the space of null linear
structures of f through p. This holds in particular
for a permutation of the coordinates.

We say that two codes (non-necessarily linear)
are equivalent if they can be deduced one from the
other by a combination of:

• addition of constant κ ∈ F
n
2 to all codewords,

and

• permutation p of J1, nK of the codeword coordi-
nates.

This is a non-canonical equivalence notion, as usu-
ally codes are not translated.

Let f and f⋆ be the indicators of two equiva-
lent codes C and C⋆. Then the space of null linear
structures of f and f⋆ have the same cardinality.

If g = g⋆, the HO-CPA (Eqn. (5)) is sound,
i.e. distinguishes the correct key byte, because
(g ⊗ g) (k⋆ ⊕ k) is maximal if k⋆ ⊕ k = 0 ( i.e.
if k = k⋆). However, this maximum is attained
for more key bytes, namely all key bytes whose dif-
ference with k⋆ belongs to the space of null linear
structures of g = Ld ⊗ f .

The goal of the countermeasure designer is thus
to maximize the size of this space vector. The next
subsection proves that the maximal size is obtained
for affine codes C.

3.2 Largest Space of Null Linear

Structures

Proposition 1. If f is the indicator of a linear
code C, then C ⊆ ker(f). More precisely, ker(f) =
F
n
2 if C is a hyperplane, otherwise ker(f) = C.

Besides, the space of null linear structures of f is
always C.

Proof. Let f be the indicator of a space vector C,
and x, y ∈ C. We have f(x ⊕ y) = f(y) for all y
if and only if x ⊕ C = C, and we have f(x ⊕ y) =
f(y)⊕ 1 for all y if and only if x⊕C = F

n
2 \C.

Corollary 1. If f is the indicator of an affine code
C, then the set of the space of null linear structures
of f is the direction of C (the space vector from
which C is translated).

Proof. It is well known that for an affine space C,
the set of the x such as x⊕ C = C is the direction
of C.

Proposition 2 (Max. No of ex æquo key bytes).
Let f a Boolean function of weight w. The cardi-
nality of the space of null linear structures of f is
at most w, and it equals w if and only if f is the
indicator of an affine code.

Proof. We call C the support of f . Without loss of
generality (by translation), we can assume 0 ∈ C.
Therefore, the set of x such as x⊕C = C is included
in C and has thus at most |C| elements. It has
exactly |C| elements if and only if C is stable by
translation of all its elements, which is equivalent
to saying that C is a space vector.

4 Secrecy Analysis of the Ho-

momorphic Masking

Instead of using code C, any equivalent code C⋆

can be used (thereby ensuring an equal security
level). First of all, it is observed in Sec. 4.1 that
such a substitution does not alter the security be-
cause distance enumerator polynomials of equiva-
lent codes are identical. In particular their dual dis-
tances are the same. Second, we show in Sec. 4.2
that if the exact equivalent code C⋆ used in the
device is unknown by the attacker, then the homo-
morphic countermeasure is unconditionally secure.
Third, we prove in Sec. 4.3 that if the code C⋆ is
known by the attacker, then the correct key byte k⋆

cannot be distinguished from bad key bytes k⋆⊕k,
where k is an element from the space of null linear
structures of g = Ld ⊗ f .

4.1 Equivalent Codes Preserve the

Security

First of all, we recall the definition of the distance
enumerator polynomial.

Definition 1. The dual distance enumerator poly-
nomial coefficient B⊥

d of a code C (linear or not),
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where 0 6 d 6 n, is the coefficient of Xn−dY d in
1
|C|DC(X + Y,X − Y ). We recall that

DC(X,Y ) =
1

|C|

∑

x,y∈C

Xn−wH(x⊕y)Y wH(x⊕y) ,

where wH is the Hamming weight (∀x ∈
F
n
2 , wH(x) =

∑n
i=1 xi ∈ J0, nK, hence wH takes

(n+ 1) different values).

Proposition 3. An alternative definition of B⊥
d is

B⊥
d =

∑

b∈F
n

2
, such that

wH(b)=d

(

1

|C|

∑

c∈C

(−1)b·c

)2

.

Proof. This proposition 3 is well known; we
briefly give its proof hereafter. According to the
MacWilliams’ identity (shown for instance in [2,
7]), DC(X + Y,X − Y ) is equal to

1

|C|

∑

b∈F
n

2

Xn−wH(b)Y wH(b)

(

∑

c∈C

(−1)b·c

)2

.

Thus, by identification (in blue color), 1
|C|DC(X +

Y,X − Y ) is equal to both:

{

•
∑n

d=0 B
⊥
d Xn−dY d and

• 1
|C|2

∑

b∈F
n

2

Xn−wH(b)Y wH(b)
(
∑

c∈C(−1)b·c
)2

.

Two codes are equivalent if they can be deduced
one from the other by the combination of an addi-
tion with a constant to all codewords and a permu-
tation of the codewords coordinates. As those two
transformations are commutative, we shall prove
the invariance the distance enumerator polynomial
under each operation independently. We denote by
B⊥

C the set (B⊥
d )06d6n for code C.

Remark 3. Let κ ∈ F
n
2 a constant. Let C and

C⋆ = κ⊕C two codes (C⋆ = {κ⊕ c, c ∈ C}). Then
B⊥

C = B⊥
C⋆ .

Remark 4. Let p a permutation of J1, nK. Let C
and C⋆ = p(C) two codes (C⋆ = {p(c), c ∈ C}).
Then B⊥

C = B⊥
C⋆ .

In the two next subsections 4.2 and 4.3, we il-
lustrate how to take advantage of the invariance of
the dual distance by an arbitrary translation of the
code (which derives new codes called cosets). For
simplification, we assume that the attacker knows
the exact leakage model (and thus takes L = L⋆),
and attacks at the most appropriate order (for her),
i.e. d = d⊥C (= d⊥C⋆).

4.2 Perfect Secrecy if the Masking

Scheme is Private

Let us assume that the used code equivalence
classes are known, but not the exact code C⋆ (a
particular coset). More specifically, we assume that
the device uses C⋆ and that the attacker guesses
C = κ⊕C⋆ is used instead. The constant κ ∈ F

n
2 is

an implementation key byte. The indicator of the
two mask sets satisfies: m⋆ ∈ C⋆ ⇐⇒ f⋆(m⋆) =
1 ⇐⇒ κ⊕m⋆ ∈ C ⇐⇒ f(κ⊕m⋆) = 1. Thus, the
coefficient covk⋆,k can be computed as in Lemma 1,
and is equal to:

E

[(

Ld⊥

C (X ⊕M⋆ ⊕ k⋆)
)

·
(

E

[

Ld⊥

C (X ⊕M ⊕ k)|X
])]

=
1

2n |C|2

(

(Ld⊥

C ⊗ f)⊗ (Ld⊥

C ⊗ f)
)

([k⋆ ⊕ κ]⊕ k) .

Hence, if κ is unknown, Corollary 2 states that
the attacker can retrieve those ex æquo keys [k⋆ ⊕
κ] ⊕ (ker(k) ∩ {y ∈ F

n
2/g(y) = g(0)}), where

g = Ld⊥

C ⊗ f . So, the attacker gets no informa-
tion on k⋆; indeed, it is blinded — as in a Vernam
cipher — by a secret key byte κ (see the term in
square brackets), assumed unknown (that can thus
be modeled by a random variable uniformly dis-
tributed on F

n
2 ). Said differently, the correct key

byte k⋆ is not necessarily within the key candidates
that maximize the correlation coefficient. This con-
clusion is not in contradiction with Lemma 2, as in
this Lemma we assume that the attacker knows the
masks (f = f⋆) and the leakage model (L = L⋆).
Of course, the same conclusion can be drawn if C⋆

is totally secret. Besides, notice that the security
argument can be reversed: as the secret key byte
k⋆ is unknown, the implementation key byte κ is
protected (at least from side-channel attacks).
In theory, this solution requires only to store

(k⋆, κ) secretly in a tamper-proof memory; the se-
crets are now a pair of key bytes: one cryptographic
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key byte and one implementation key byte. How-
ever, in practice, to avoid leaking κ when comput-
ing the masks set C⋆ = κ⊕C, all the w codewords
{c⋆ ∈ C⋆} would be “burnt” in the device (e.g. im-
plemented in a n × w-bit RAM or ROM for every
sbox). Now, it is known that ROM arrays can be
reverse-engineered easily3. FPGA designs imple-
ment the ROMs as RAMs initialized at the boot
time (from an encrypted bitstream), and therefore
the homomorphic masking countermeasure can be
claimed unconditionally secure. For cost reasons,
ASIC designs are likely to base their architecture
on a ROM, since ROM blocks are far less costly
than RAM blocks.
Besides, for the unconditional security to hold

on the whole key (the 16 key bytes of the AES),
a different code C⋆ must be used for every sbox.
Thus, the total number of memory required is
(16 × w) × n2n bit, which is 16 times more than
announced for RSM (recall Eqn. (4)). Actually, in
RSM, there is only one code C for the entire AES,
hence a memory requirement of w × n2n bit. As
there is only one implementation key byte κ for the
16 sboxes, every cryptographic key byte is offset by
the same quantity.
Therefore, it is relevant to investigate the secu-

rity level of the countermeasure if the masks are
public or have been reverse-engineered.

4.3 Indistinguishable Keys if the

Masking is Public

We assume that the attacker knows C⋆ (hence
C = C⋆, or equivalently κ = 0). Despite this
knowledge, there remains for the attacker a brute-
force exhaustive search. For instance, when C is
affine and w = 16, for each of the 16 key bytes of
an AES, the side-channel attack manages to reduce
the key byte space size from 28 to w = 24, but stops
at this point (there is no other useful information
to extract from the side-channel measurements, i.e.
a purported back-tracking is not applicable). The
subsequent exhaustive search for the complete key
(16 key bytes) can be made prohibitory. In the ex-
ample of AES, the final key search is 1616 = 264.
Using Rijndael, the initial proposal for AES, with

3Refer for instance to chemical preparations in [5,
Fig. 5 & 6] and to automatic recognition with tool rompar
(presented in this webpage http://www.aperturelabs.com/

tools.html).

Table 2: Coefficients of the distance enumerator
polynomial for the codes of Tab. 1 (B⊥

d⊥

C

in bold ).

Code # B⊥
0

B⊥
1

B⊥
2

B⊥
3

B⊥
4

B⊥
5

B⊥
6

B⊥
7

B⊥
8

1 1 8 28 56 70 56 28 8 1
2 1 0 28 0 70 0 28 0 1
3 1 0 0 4.5 5 3 2 0.5 0
4 1 0 0 3.5 7 3.5 0 0 1
5 1 0 0 3.5 7 3.5 0 0 1
6 1 0 0 4 5 4 2 0 0
7 1 0 0 0 14 0 0 0 1

a 32 bytes datapath (NB = 32, and not 16 as in
AES [13]), the final search has complexity 2128, i.e.
the same complexity as that of brute-forcing the
128-bit key (recall that the key k⋆ is the primary
asset to protect). Notice that the knowledge of the
16 key candidates of one sbox does not help find-
ing the secret key of another sbox. Indeed, such
strategy would require to combine the leakages of
the two sboxes, which is not permitted in paral-
lel implementations of the homomorphic masking,
because all the sboxes are evaluated concomitantly.

Remark 5 (Side-Channel Indistinguishability).
Ties ( i.e. ex æquo keys) exist irrespective of the at-
tack order ( i.e. also at orders > d⊥C), thus even for
information-theoretic attacks ( e.g. the MIA [4]),
and so, even without hypothesis on the leakage
model L⋆.

Our homomorphic masking is thus a provably se-
cure side-channel resilient countermeasure4.

5 Success Rates in the Case of

AES

5.1 Studied Codes for n = 8

Seven codes C are studied. They are defined in
Tab. 1. Their distance enumerator polynomial is
given in Tab. 2, and their codewords and null linear
structures in Tab. 3.

Here is a verbose description of these codes:

4Notice that indistinguishable keys were already dis-
cussed in [9], but with the limitation that plaintexts had
to be formatted and that attacks should restrict to the first
round.
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Table 1: Some codes C of length n = 8 and size w = 16.

Code # Nickname Truth table of f , under the form
∑

x∈F
n

2

2
∑

n

i=1
2i−1xi · f(x) d⊥C B⊥

d⊥

C

1 M0 1 0x0000000000000000000000000000000000000000000000000000000000000001 1 8
2 M1 2 0x0000000000000000000004000000000000000000002000000000000000000000 2 28
3 M2 16 0x0040000002004002000104208000000001800800000000100000200010080004 3 4.5
4 M2 16 bis 0x0000000220040400011080000000008008001040002000000008000040000201 3 3.5
5 M2 16 bis2 0x0000000110080800022040000000004004002080001000000004000080000102 3 3.5
6 M2 16 ter 0x0000000000814200180000240000000042000081000000000000000000182400 3 4
7 M3 16 0x0000800102400000100800000000042004200000000010080000024080010000 4 14

Table 3: Codewords ( first line ) and null linear structures ( second line ) of the codes of Tab. 1.

Code # Codewords and null linear structures

1
{0x00}

{0x00}

2
{0x55, 0xaa}

{0x00, 0xff}

3
{0x02, 0x13, 0x1c, 0x2d, 0x44, 0x6b, 0x77, 0x78, 0x9f, 0xa5, 0xaa, 0xb0, 0xc1, 0xce, 0xd9, 0xf6}

{0x00}

4
{0x00, 0x09, 0x1e, 0x33, 0x55, 0x66, 0x6c, 0x7b, 0x87, 0xaf, 0xb4, 0xb8, 0xca, 0xd2, 0xdd, 0xe1}

{0x00}

5
{0x01, 0x08, 0x1f, 0x32, 0x54, 0x67, 0x6d, 0x7a, 0x86, 0xae, 0xb5, 0xb9, 0xcb, 0xd3, 0xdc, 0xe0}

{0x00}

6
{0x0a, 0x0d, 0x13, 0x14, 0x60, 0x67, 0x79, 0x7e, 0xa2, 0xa5, 0xbb, 0xbc, 0xc9, 0xce, 0xd0, 0xd7}

{0x00, 0x07, 0x19, 0x1e}

7
{0x10, 0x1f, 0x26, 0x29, 0x43, 0x4c, 0x75, 0x7a, 0x85, 0x8a, 0xb3, 0xbc, 0xd6, 0xd9, 0xe0, 0xef}

{0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a, 0x95, 0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff}
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• Code 1 (also nicknamed M0 1) contains only
the 0 element, denoted 0x00 ∈ F

8
2, and thus

represents an unmasked implementation (of
lowest security);

• Code 2 (also nicknamed M1 2) contains two
elements, that are 1’s complement one from
each other; this masking is sufficient to resist
first order attacks;

• Codes 3 to 6 contain w = 16 elements of
F
8
2, and allow to resist up order d =

3 attacks. They are nicknamed M2 16,
M2 16 bis, M2 16 bis2 and M2 16 ter. The
codes 4 & 5 are equivalent: C4 = C5 ⊕ 0x01,
i.e. f5(x) = f4(x ⊕ 0x01)). As shown in Re-
mark 2, the functions f4 and f5 have the same
space of null linear structures, namely {0x00}.
However, the space of null linear structures
of g4 = w3

H ⊗ f4 is {0x00} whereas that of
g5 = w3

H ⊗ f5 is {0x00, 0x08}. This means
that a third-order attack will give one maximal
key when the countermeasure uses M2 16 bis,
but two ex æquo when M2 16 bis2 is used
instead5 Otherwise, codes M2 16, M2 16 bis
and M2 16 ter are interesting because they
have different B⊥

3 values.

• Code 7 (also nicknamed M3 16) is an affine
code equivalent to the linear code C of param-
eters [8, 4, 4]. It is self-dual, and belongs to
the only class of equivalent codes C that have
d⊥C = 4 (indeed, d⊥C = n − dC⊥ = n − dC =
8 − 4 = 4). Being affine, its space of null lin-
ear structures set is of maximal size w = 16
(Proposition 2). Additional properties are dis-
cussed in appendix B.

Codes 3 to 7 contain w = 16 codewords of length
n = 8, and thus allow to define 16 new sboxes (as
per Eqn. (2)), that would implement the homo-
morphic masking when traded for the genuine (un-
masked) sboxes of AES. For example, in RSM, the
new sboxes are: S′

RSM : (Y, i) ∈ F
8
2 × F

4
2 7→ S(Y ⊕

Mi)⊕Mi+1 mod 16 ∈ F
8
2, where C = {Mi}i∈J0,16J.

In this case, the overhead of the countermeasure
is virtually zero, because the number of sboxes is
not increased between the unprotected and the pro-
tected implementations. Nonetheless, some extra

5This is an illustration that the space of null linear struc-
tures of f can be strictly included in that of g.

resources are needed for the management of the
masks. Nassar et al. report in [12] an implementa-
tion in Altera Stratix-II FPGA of a homomorphic
masking on AES; they achieve a moderate increase
of 40% in memory usage, of 48% in user LUT logic,
and a decrease of 34% of the maximal operating
frequency.

5.2 Simulated High-Order Attacks

on RSM

Because of the degeneracy of w = 16 key byte
guesses with code 7, we can only evaluate whether
the correct key is amongst the 16 first ones. Thus, a
16th-order success rate is computed [19]. By defini-
tion, it is the probability that the correct key byte
is ranked between 16th to 1st, inclusively. For the
mask set corresponding to code 7, this is equiva-
lent to saying that the correct key byte equivalence
class is ranked first. In particular, when consider-
ing the 16th-order success rate, codes 4 and 5 yield
the same result, hence only the results for code 4
are displayed.

In the attack, we consider that L ⋆ is noisy: it is
added a random variable N , that follows a centered
normal law of variance σ2. The simulation results
are shown in Fig. 1 for attacks at order d = 3, with
100 experiments (in which both the seed for the
random noise and the correct key are updated). As
predicted by the theory, the attack does not succeed
on the mask set 7 (a.k.a. code M3 16). Indeed, all
the correlations between the cube of the centered
traces and any key hypothesis are the same (viz.
zero). Thus, the 16th-order success rate is actually
converging to 16/256 = 1/16 (which is < 1); 1/16
is the probability of finding the correct key after 16
successive trials without replacement.

Figure 2 reports for attack results at order d =
4. Interestingly6, the most secure mask sets are
M2 16 and M2 16 ter, followed by M2 16 bis, the
less secure being M3 16. But of course, M2 16,
M2 16 bis andM2 16 ter are better off be attacked
at order d = 3, whereas M3 16 cannot.

We call N80% the number of traces for the 16th-
order success rate to overcome 80%. Informally,
it represents the data complexity for a successful
attack with a confidence of 80%. Each point is

6It can be proven that the success rate of a zero-offset
dth-order CPA is all the larger as B⊥

d
is large.
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Figure 1: 16th-order success rates for 3rd-order
CPA for σ ∈ {0, 1

2 , 1, ..., 4}, and a budget of 1 mil-
lion traces.
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Figure 2: 16th-order success rates for 4th-order
CPA for σ ∈ {0, 1

2 , 1, ..., 4}, and a budget of 1 mil-
lion traces.

obtained as follows: 100 attacks are launched, to
derive a success rate. In [22], a high-order mask-
ing scheme involving a sharing of a bit into d + 1
shares was studied. It assumes all the shares have
an additive noise modeled as a centered Gaussian
distributionN (0, σ2). Under these conditions, they
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Figure 3: Number of traces to achieve a success
rate > 80% for various noise standard deviations
σ.

prove that:

N80% > σd+4·log(0.8)/ log(σ) . (6)

A recent paper has generalized this law for multi-
bit leakage [16]. To confront these results to our
masking scheme (where N80% is evaluated with a
success rate of order 16), we represent in Fig. 3 a
N80% vs σ law in log-log, for the lowest-order at-
tack that works on the given countermeasures. To
obtain this figure, we pushed the simulations up to
32 million (≈ 225) traces. Qualitatively, the slope
indeed increases with the attack order d, albeit as
a 2d (and not d).

6 Conclusions and Perspec-

tives

In this paper, we have studied a homomorphic
masking scheme, applicable to block ciphers. While
linear parts of cryptographic algorithms can be
computed homomorphically, non-linear parts can-
not. Therefore, the non-linear parts (the sboxes)
are stored precomputed for a given pool of masks.
The cost of the implementation is all the smaller
as this pool is small, which motivates for a homo-
morphic depleted masking scheme. We prove in
this article that when masks are n = 8 bit long,
and with the constraint of precomputing only as
many (namely w = 16) sboxes as in the original
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AES algorithm, it is possible to have the AES pro-
tected against monovariate attacks of order d = 3.
Furthermore, we analyze this set under the the-
ory of codes. It is an affine subcode of F

n
2 . We

know that there exists only one class of equiva-
lent codes C of length n = 8, size w = 16, and
dual distance d⊥C = 4. Still, if the exact mem-
ber of the class remains secret, the masking can
be proven unconditionally secure. If the code has
been compromised (or is deliberately made public),
then an attacker will exhibit a set of possible key
bytes, that is an affine space containing the correct
key plus a space vector of size up to w. This de-
mands for the attacker an extra exhaustive search
on top of the side-channel attack; if the algorithm
can be tuned, this exhaustive search can be made
as complex as desired by increasing the number of
sboxes. Finally, we illustrate the complexity of the
high-order correlation power analyses by comput-
ing success rates of order w: the attack requires
more than 1 million traces for a noise standard de-
viation σ > 3.5. Therefore, the homomorphic com-
putation countermeasure presented in this article
is a strong solution for implementations that can
only be attacked by monovariate analysis, such as
FPGA or ASIC implementations of Rotating Sboxes
Masking (RSM [12]).

As perspectives, we intend to extend RSM and
its security proofs to software implementations.
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A Known Results on Side-

Channel Analysis and

Masking

The best correlation attack (also refer to [17]) is
described in the following Lemma 3.

Lemma 3. Let L ∈ R and X ∈ F
n
2 be two random

variables, and P : F
n
2 → R an arbitrary pseudo-

Boolean function. The function P (X) that maxi-
mizes the linear correlation coefficient ρ [L ;P (X)]
is x 7→ P (X = x) = E [L |X = x].

Proof. We have (with or without the absolute val-
ues):

|ρ [L ;P (X)] | = |ρ [L ;E [L |X]] |×|ρ [E [L |X] ;P (X)] | .

As |ρ [E [L |X] ;P (X)] | 6 1, it is clear that
E [L |X] is the optimal prediction function
P (X).

Eventually, the security level obtained by the ho-
momorphic masking countermeasure is unveiled in
Theorem 1.
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Theorem 1 (RSM security). Let L = L(X⊕M⊕
k⋆), where L : Fn

2 → R is a form, X ∼ U(Fn
2 ) and

M ∼ U(C) are two random variables, and k⋆ ∈ F
n
2

is a secret key. Then,

d = min
{

i > 0, Var
[

E
[

L
i|X
]]

6= 0
}

⇐⇒

C is a code of dual distance d⊥C = d .

Proof. It is in Sec. 5 of [11] for d = 2. The proof
for any d is the Theorem 1 of [1].

B Properties of Code M3 16

In this appendix, we study the code C = M3 16. It
is the code 7, i.e. the last one in Tab. 1, 2 and 3. It
has noteworthy properties when the leakage func-
tion L is the Hamming weight.

Property 1. There are only three different dis-
tributions of wH (y ⊕M), when M ∼ U(C)
when y ∈ F

8
2. Namely, the set of probabilities

(P [wH (y ⊕M) = ℓ])ℓ∈J0,8K are equal to:

1.
(

1
16 , 0, 0, 0,

14
16 , 0, 0, 0,

1
16

)

if y ∈ C;

2.
(

0, 1
16 , 0,

7
16 , 0,

7
16 , 0,

1
16 , 0

)

if there exists a
codeword of Hamming weight 1 in y ⊕ C;

3.
(

0, 0, 4
16 , 0,

8
16 , 0,

4
16 , 0, 0

)

if there exists a code-
word of Hamming weight 2 in y ⊕ C.

Proof. As C is a linear code, the distribution of
y1 ⊕ M and y2 ⊕ M are identical if y1 ⊕ y2 ∈ C
(where y1 and y2 are two elements of F

8
2). This

defines an equivalence relation R, that partitions
F
8
2 into 256/16 classes Cy = y ⊕ C. We call the

generator of Cy the smallest element of Cy, seen as
list of integers written in hexadecimal. The 16 par-
titions are generated by 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16 and 0x17. Let us now consider
the distribution of wH(y ⊕ M) ∈ J0, 8K instead of
that of y⊕M ∈ F

8
2. The distribution of wH (y ⊕M)

merges some classes; specifically, the 16 classes are
regrouped so as to yield only 3. By exhaustive com-
puter computation, it happens that the distribu-
tions are those listed in the property 1, where the
generators are grouped as:

1. 16 values of y, namely y ∈ C1
.
= C0x00;

2. 128 values of y, namely y ∈ C2
.
= C0x01∪C0x02∪

C0x04 ∪ C0x07 ∪ C0x10 ∪ C0x13 ∪ C0x15 ∪ C0x16;

3. 112 values of y, namely y ∈ C3
.
= C0x03∪C0x05∪

C0x06 ∪ C0x11 ∪ C0x12 ∪ C0x14 ∪ C0x17.

It can be checked, that:

1. each element of the first partition generates a
code that contains the null vector;

2. each element of the second partition gener-
ates a code that contains a vector of Hamming
weight 1;

3. each element of the second partition gener-
ates a code that contains a vector of Hamming
weight 2.

In terms of code theory, the property 1 has a
short phrasing.

Property 2 (Equivalent of property 1). There are
only three distinct weight enumerator polynomials
for all the cosets of C = M3 16. They are: 16 ×
∑8

ℓ=0 P [wH (y ⊕M) = ℓ]Xn−ℓY ℓ, or specifically:

• X8 + 14X4Y 4 + Y 8 (16 times),

• X7Y + 7X3Y 5 + 7X3Y 5 +XY 7 (128 times),

• 4X6Y 2 + 8X4Y 4 + 4X2Y 6 (112 times).

In terms of security, the property 1 yields an in-
teresting result.

Corollary 2. When L = wH , then the optimal
prediction function P : y ∈ F

8
2 7→ E

[

wH(y ⊕M)d
]

takes either only one value (at orders d < 4), or
only three values (at orders d ≥ 4).

Proof. At order d,

P (y) =
1

16

∑

m∈C

wH (y ⊕m)
d

=
1

161+d











14× 4d + 8d if y ∈ C1 ,

1 + 7× (3d + 5d) + 7d if y ∈ C2 ,

4× (2d + 6d) + 8× 4d if y ∈ C3 .

(7)

Now,
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• For d = 1, 14×41+81 = 1+7×(31+51)+71 =
4× (21 + 61) + 8× 41 = 64;

• For d = 2, 14×42+82 = 1+7×(32+52)+72 =
4× (22 + 62) + 8× 42 = 288;

• For d = 3, 14×43+83 = 1+7×(33+53)+73 =
4× (23 + 63) + 8× 43 = 1408;

• But for d ≥ 4, the values in Eqn. (7) are dif-
ferent.

14


	Introduction
	Homomorphic Masking Scheme
	Vulnerabilities of the Homomorphic Masking
	Analysis of the HO-CPA
	Largest Space of Null Linear Structures

	Secrecy Analysis of the Homomorphic Masking
	Equivalent Codes Preserve the Security
	Perfect Secrecy if the Masking Scheme is Private
	Indistinguishable Keys if the Masking is Public

	Success Rates in the Case of AES
	Studied Codes for n=8
	Simulated High-Order Attacks on RSM

	Conclusions and Perspectives
	Known Results on Side-Channel Analysis and Masking
	Properties of Code M3_16

