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Abstract
This work is dedicated to the analysis of Berenger

PML method applied to the 3D linearized Euler equations
without advection terms, with variable wave velocity and
acoustic impedance. It is an extension of a previous work
presented in a 2D context [8]. The 3D linearized Eu-
ler equations are used to simulate propagation of acous-
tic waves beneath the subsurface. We propose an analy-
sis of these equations in a general heterogeneous context,
based ona priori error estimates. Following the method
introduced by Métral and Vacus [9], we derive an aug-
mented system from the original one, involving the primi-
tive unknowns and their first order spatial derivatives. We
define a symetrizer for this augmented system. This al-
lows to compute energy estimates in the three following
cases: the Cauchy problem, the half-space problem with
a non homogeneous Dirichlet boundary condition and fi-
nally the transmission problem between two half-spaces
separated by an impedance discontinuity.

Introduction
Geophysicists are interested in the modeling of seis-

mic wave propagation beneath the subsurface. To this
purpose, for instance in seismic imaging, they can be led
to use acoustic wave propagation model. In this context,
wave propagation is described by the following equation

∂ttp(x, t)− c(x)I(x)div

(

c(x)
I(x)

∇p(x, t)
)

= 0, (1)

where

• x = (x, y, z) ∈ R3 is the vector of spatial coordi-
nates;

• t ∈ [0, T ] is the time variable;

• p(x, t) is the pressure wavefield;

• c(x) is the wave velocity;

• I(x) is the acoustic impedance;

• div is the divergence operator;

• ∇ is the gradient operator.

Using absorbing boundary conditions is essential if one
wants to avoid fictitious reflections at the computational
domain boundaries. To this purpose, the PML (Perfectly

Matched Layers) method has been designed by Bérenger
[2], initially for the 2D Maxwell equations. The princi-
ple of absorbing layers is to surround the computational
domain with a non zero width layer in which the inci-
dent waves should decay. This layer must also produce as
weak as possible reflections at the interface with the in-
terest domain. The PML method fulfill these two require-
ments. Since its introduction in 1994, it has been success-
fully applied to numerous physical domains: electromag-
netic, acoustic and elastic wave propagation for instance.
The popularity of this method mostly comes from its effi-
ciency and its ease of implementation. On a mathematical
point of view, it consists in a two steps modification of the
initial system of equations:

• first, split the unknowns in the space directions;

• second, introduce absorption terms which are zero in
the interest domain and positive in the layer.

The most important drawback of the Bérenger PML
method is the potential loose of the well-posedness that
may occur by changing the form of the initial system of
equations. An intensive analysis of this method is pro-
posed by Halpern, Petit-Bergez and Rauch in [3]. The
authors give a theoretical framework allowing to extend
the PML method to all kind of general first order systems
of hyperbolic partial differential equations, and provide
tools to analyse the well-posedness of the resulting sys-
tems. In particular, it is proved that for an initial well-
posed system, the PML corresponding system is at least
weakly-well posed, and strongly well posed if the prin-
cipal part of the symbol of the partial operator is elliptic.
They also propose a new method they call HML (Harmo-
niously Matched Layers) that keep the well-posedness of
the equations and cancel reflexion coefficients to the first
order.

Here, we focus on the analysis of the Bérenger PML
equations by means of energy method. Indeed, in order
to apply the PML method to the equation (1), we rewrite
it as the following first order hyperbolic system

{

∂tu(x, t)−
c(x)
I(x)∇p(x, t) = 0

∂tp(x, t)− c(x)I(x) div u(x, t) = 0.
(2)



Here u(x, t) is the velocity displacement field. These
equations are equivalent to the linearized Euler equa-
tions, without advection. The PML equations for the
2D linearized Euler equations have been studied by Hes-
thaven [4], and Hu [5], with advection, in a context of
homogeneous media: the wave velocity and the acous-
tic impedance are constants (c(x) = c0 andI(x) = I0).
Hesthaven shows that, in this context, the PML system
is weakly well-posed, which is an explanation of numer-
ical instabilities evidenced by Hu. Hesthaven also pro-
poses a modified PML system which preserves the well-
posedeness of the initial Euler equations. Unfortunately,
this method shows up to be less efficient numerically.

Here, we are interested in modeling acoustic wave
propagation in 3D heterogeneous media, for which both
velocity field and acoustic impedance depend on spatial
coordinatesx. Furthermore, instead of splitting all the
unknowns, we rather prefer to split only the pressure field
p(x, t) in three componentspx(x, t), py(x, t), pz(x, t)
such that

p(x, t) = px(x, t) + py(x, t) + pz(x, t) (3)

The solution of the partially split PML system is equiv-
alent to the solution of the totally split system [3]. This
allows us to reduce the number of unknowns from12 to
6, thus reducing the computation cost. We obtain the fol-
lowing PML system






































∂tux(x, t)−
c(x)
I(x)∂xp(x, t) + σx(x)ux(x, t) = 0

∂tuy(x, t)−
c(x)
I(x)∂yp(x, t) + σy(y)uy(x, t) = 0

∂tuz(x, t)−
c(x)
I(x)∂zp(x, t) + σz(z)uz(x, t) = 0

∂tpx(x, t)− c(x)I(x)∂xux(x, t) + σx(x)px(x, t) = 0
∂tpy(x, t)− c(x)I(x)∂yuy(x, t) + σy(y)py(x, t) = 0
∂tpz(x, t)− c(x)I(x)∂zuz(x, t) + σz(z)pz(x, t) = 0

(4)
whereσx(x), σy(y), σz(z) are absorption coefficients, re-
spectively in the directionsx, y andz.

These coefficients are chosen in accordance with the
ones chosen by Hu [5]. Basically, they are zero in the in-
terest domain, and grow polynomially from the interface
between the computational domain and the layer toward
the external border of the layer.

We propose a numerical analysis of this system based
on the energy estimates method. Following the work
proposed by Métral and Vacus [9], and generalized by
Halpern, Petit-Bergez and Rauch [3], we show that for the
Cauchy problem, a combination of theL2 norm and the
H1 norm of the unknowns can be controlled by a com-

bination of theL2 norm and theH1 norm of the initial
condition. We then extend this result to the two following
cases:

• first, we consider a problem defined on a half-
space R2 × [0,+∞[ with a non homoge-
neous Dirichlet boundary conditionh(x, y, t)
on plane z = 0, with regular wave veloc-
ity c(x) ∈ C∞

(

R2 × [0,+∞[
)

and acoustic
impedanceI(x) ∈ C∞

(

R2 × [0,+∞[
)

;

• second, we consider a transmission problem between
two half-spaces separated by an impedance disconti-
nuity on the planez = 0, with regular wave velocity
c(x) ∈ C∞(R3)

The Cauchy problem is general and is to be considered
as a starting point of this work. The second case arises in
application to geophysics when modeling acoustic wave
response in a well, knowing the pressure condition at the
top of the well. The third case is also interesting for geo-
physicists because of the intrinsic discontinuity of acous-
tic impedance.

Preliminary : definition of an augmented system and
its symetrizer

We consider an augmented system derived from (4) by
adding equations on each of the spatial first derivative of
the primitive unknownsu andp. We obtain a system of
18 equations that may be written as

∂tU(x, t)−A(x)∂xU(x, t)−B(x)∂yU(x, t)
−C(x)∂zU(x, t) + S(x)U(x, t) = 0

(5)

We recall here the Kreiss symetrizer definition [6]:For a
PDE operator

P(x, t, ∂x) =
J
∑

j=1

Aj(x, t)∂xj with symbol

P (x, t, iω) = i

J
∑

j=1

ωjAj(x, t),

a symetrizer of this operator is a hermitian matrix
H(x, t, ω) positive definite for allx, t ∈ [0, T ], ω, ||ω|| =
1, C∞ with respect to all its arguments, which verifies

H(x, t, ω)P (x, t, ω) + P ∗(x, t, ω)H(x, t, ω) = 0.

We thus propose a first lemma :
Lemma 1 : There exists a symetrizerH(x) for the

operatorP1 = A∂x +B∂y + C∂z. SinceH(x) does not
depend onω, it symetrizes simultaneously the matrixesA,
B, andC.



This result is the keystone of the following theorems.
Its proof is obtained by exhibiting such a symetrizer,
which can thus be used to obtain energy estimates in the
three cases of interest.

Case 1 : Cauchy problem for regular coefficients

This case is the easiest one. Using the scalar product in-
duced byH(x), denoted by(., .)H , we study the quantity
d
dt(U,U)H whereU is solution of (5). We noteΩ = R3.
Using integration by part and Gronwall lemma, we obtain
an estimate that may be written as

‖(ux, uy, uz , p‖
2
L∞(0,T ;H1(Ω)) + ‖pz‖

2
L∞(0,T ;L2(Ω))+

‖(c(σxpx + σypy))‖
2
L∞(0,T ;L2(Ω)) ≤

C1e
C2T

(

‖(ux, uy, uz, p)(., ., ., 0)‖
2
H1 (Ω)+

‖c(σxpx + σypy))(., ., ., 0)‖
2
L2 (Ω)+

‖pz(., ., ., 0)‖
2
L2(Ω)

)

(6)
whereC1 andC2 depend onI(x), c(x), σx(x), σy(y) and
σz(z).

This estimate shows that theH1 norm of the solution
(u, px, py, pz) of the primitive system (4) is controlled by
the H1 norm of the initial state plus additiveL2 norm
terms of the initial state. Hence, if the initial state is reg-
ular enough, the solution remains bounded in the time in-
terval[0, T ] with a potential exponential growth of itsH1

norm. Moreover, this ensures the unicity of the solution.
Following the work of Petit-Bergez [10], the question of
the existence may be adressed deriving the same kind of
estimate on the semi-discretized in space problem. This
estimate should be uniform as the discretization param-
eter tends to zero. Passing to the limit should prove the
existence.

Case 2 : half-space problem with non homogeneous
Dirichlet boundary condition and regular wave veloc-
ity and acoustic impedance

Proceeding in this case in the same way as in the previ-
ous one, a difficulty arises: the integration by part of the
quantity d

dt(U,U)H following the z direction induces a
non-zero boundary term at the borderz = 0. This bound-
ary term prevents from obtaining directly the energy esti-
mates, as in the previous case.

However, making repeated use of the lifting theorem
introduced by Lions and Magenes [7], it is possible to
come back to the previous situation. We denoteΩ =
R2 × [0,+∞[ andΣ = R2. We thus obtain the follow-
ing energy estimates, depending on the regularity of the

boundary condition in spacesHr,s(Σ) :

‖(ux, uy, uz , p‖
2
L∞(0,T ;H1(Ω)) + ‖pz‖

2
L∞(0,T ;L2(Ω))+

‖(c(σxpx + σypy))‖
2
L∞(0,T ;L2(Ω)) ≤

C1

(

‖(ux, uy, uz , p)(., ., ., 0)‖
2
H1(Ω)+

‖c(σxpx + σypy))(., ., ., 0)‖
2
L2 (Ω)+

‖pz(., ., ., 0)‖
2
L2(Ω) +

)

C2‖h‖
2
H7/2,7/2(Σ)

+ C3‖h‖
2
H7/2,7/2(Σ)

(7)
where C1, C2 and C3 depend onI(x), c(x) and
σx(x), σy(y), σz(z).

In this case, theH1 norm of the solution(u, px, py, pz)
of the primitive system (4) is controlled by the sum of the
H1 norm of the initial state and additiveL2 norm terms of
the initial state plus the norm of the boundary condition
on the trace spaceH7/2,7/2(Σ).

Hence, if the boundary conditionh(x, y, t) is regular
enough, the norm of the solution of the primitive system
remains bounded on the intervalle[0, T ] with a potential
exponential growth. This estimate ensures the unicity of
the solution, and the existence problem may be adressed
again studying the semi-discretized in space problem.

Case 3 : Transmission problem with acoustic
impedance discontinuity on planez = 0

In this case we consider two half-spaces

Ω1 = R2×]−∞, 0], Ω2 = R2 × [0,+∞[.

We define the corresponding acoustic impedance func-
tionsI1(x) onΩ1, I2(x) onΩ2, such that

∀(x, y) ∈ R2, I1(x, y, 0
−) 6= I2(x, y, 0

+)

We suppose that at timet = 0 there exists a solution
(ux(x, 0), uz(x, 0), px(x, 0), pz(x, 0)) of the equations (4)
on the whole spaceΩ = Ω1 ∪ Ω2. We are interested in
finding energy estimates for this solution on the time in-
tervalle[0, T ].

We proceed in the same way as for the other cases:
on each half spaceΩi we define a symetrizerHi of
the augmented system (5) and we study the quantities
d
dt(Ui, Ui)Hi . Integrations by part followingz direction
yield two boundary terms that prevent from direct appli-
cation of Gronwall lemma. The difference between these
two terms is what is called the ”jump” term in the study
of transmission problem.

In order to obtain the desired energy estimate on the so-
lution onΩ, it is necessary to prove that this jump term is
bounded. In a context of3D acoustic impedance function



Ii(x), this seems to remain a difficult problem. However,
assuming1D acoustic impedance functionsIi(z) such
that

I1(0
−) 6= I2(0

+)

and using the continuity of the following quantities at the
interfacez = 0 :

• wave velocityc(x);

• velocity displacement normal to the interface
uz(x, t);

• pressure wavefieldp(x, t);

we prove that the jump term is zero. Thus, in this more
restrictive context of 1D acoustic impedance, we obtain
again the energy estimate (6).

Hence, for a regular enough initial condition defined on
Ω, assuming that the impedance function depends only on
the vertical directionz, theH1 norm of the solution of the
primitive system (4) is controlled by theH1 norm of the
initial state plus additiveL2 norm terms of the initial state.
This estimates ensures the unicity of the solution, and the
existence may be proved again using the semi-discretized
in space problem. However, in a fully 3D context, finding
an energy estimate still remains an open question.

Conlusion
We are interested here in the study of PML equations

for 3D acoustic wave propagation modeling in heteroge-
neous media. Basically, these equations are similar to the
linearized Euler equations without advection term. These
latter equations have been studied in a 2D context of
homogeneous media, where wave velocity and acoustic
impedance are constant functions.

Here, we obtain energy estimates of the solution
for a 3D heterogeneous medium, where wave velocity
impedance and acoustic impedance depend on space vari-
able. These estimates are obtained in three different
cases, arising in seismic wave modeling: the Cauchy
problem, propagation in the half-space with a non homo-
geneous Dirichlet boundary condition, and transmission
problem between two half-spaces separated by an acous-
tic impedance discontinuity.

In the two first cases, we find energy estimates that
show that if the initial or the boundary condition is reg-
ular enough, then theH1 norm of the solution remains
bounded on time the intervalle[0, T ], with a potential ex-
ponential growth. In the third case, we come to the same
conclusion assuming that the acoustic impedance depends
only on the spatial direction normal to the interface. In

each case, the energy estimates prove the unicity of the
solution.

Finally, some problems remain to be investigated: first,
in the latter case, the technique we used does not allow
to conclude in the general 3D context. Furthermore, in
the three cases, the existence question should be adressed.
This may be done successfully by extending the method
of Petit-Bergez on Maxwell equations in homogeneous
media [10] based upon a semi-discretization in space of
the problem.
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