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Abstract

The Harmoniously Matched Layers (HML) were
introduced by Halpern et al. in 2011 [2] for general
hyperbolic operators. This method is based on an ex-
trapolation of solutions using first-order layers. For
constant coefficient problems, its numerical perfor-
mances are comparable to those of Bérenger’s PML
[1], while preserving the strong well-posedness of the
hyperbolic system. In homogeneous media, the PML
are nonreflecting and absorbing. This is no longer
true in heterogeneous media. In that case, other
methods may become more attractive. Numerical
experiments involving the propagation of 2D acous-
tic waves in an inhomogeneous medium show smaller
amplitude reflections at the interface for the HML.

Introduction

The numerical simulation of wave propagation in
unbounded media occurs in numerous industrial ap-
plications, such as radar detection or seismic imaging.
In these contexts, the use of Perfectly Matched Layer
(PML), introduced by Bérenger for the Maxwell sys-
tem, has rapidly become the state-of-the-art tech-
nique to perform such simulations [1]. The domain
of interest is surrounded with a damping layer, where
the incident waves should be absorbed without reflec-
tions for any incidence angle. The original unknowns
of the hyperbolic system related to the wave equation
are split into non-physical unknowns, and a damping
factor is introduced in the resulting equations. Years
of successful applications due to its efficiency and its
ease of implementation have followed Bérenger’s dis-
covery.

In the context of variable background coefficients,
the model can still be used, but needs some care in
the implementation and the mathematical analysis,
as the reflectivity of the layer becomes non negligi-
ble, and strong well-posedness can be lost [3]. In this
study, we are interested in a new layer method, in-
troduced by Halpern et al [2], named Harmoniously
Matched Layers (HML). This method is designed to

keep the well-posedness of the original hyperbolic
system by using a classical first-order damping layer
(named SMART layer in the sequel). The reflectivity
of the layer is controlled by an extrapolation tech-
nique which annihilates first-order reflections in the
high frequency regime. The aim of this study is to
compare PML and HML methods in the simple case
of 2D acoustic waves propagation.

PML and HML formulation for 2D acoustic

wave propagation within the subsurface

Consider the first-order velocity-stress formulation
for the 2D propagation of acoustic waves in Ω =
[0, L]2 ⊂ R2, with variable density ρ(x1, x2) and ve-
locity c(x1, x2)

1,







∂tu −
1

ρ
∇p = 0

∂tp − ρc2divu = 0,

u(x1, x2, 0) = 0,

p(x1, x2, 0) = p0(x1, x2).

(1)
Here, u = (u1, u2) is the displacement velocity vec-
tor, p is the pressure wavefield, and p0 is the initial
pressure wavefield. The PML equations associated
with system (1) are defined on Ωl = [−l; L+ l]2 ⊂ R2







∂tuj −
1

ρ
∂j(p1 + p2) + σjuj = 0

∂tpj − ρc2∂juj + σjpj = 0
(2)

where pj denote the non-physical split pressure wave-
fields, and σj(xj) are the absorbing coefficients non
zero only in Ωl\Ω. This system is weakly well posed:
for piecewise continuous velocity and impedance, en-
ergy estimates with one loss of derivatives have been
obtained in [4]. The SMART equations add to the
operator the zero order perturbation defined by the
projectors on the relevant eigenspaces in each direc-

1For convenience, we restrict our notations to the square do-

main case. Extension to rectangular domains is straightfor-

ward.



tion.



















∂tuj −
1
ρ
∂jp + 1

1+ρ2c2
Fj(u, p)

∂tp − ρc2divu + ρc
1+ρ2c2

∑

j=1,2

Fj(u, p) = 0.

Fj(u, p) =
[

σ+
j (uj + ρcp) + σ−

j (uj − ρcp)
]

(3)

where σ+
j = (σj)|[L;L+l], σ

−
j = (σj)|[−l;0] (see [2]

for a detailed derivation of these equations). The
SMART equations keep the strong well-posedness of
the original system (1). Denote U(σ) = (u1, u2, p)
the solution of the SMART system for an absorption
σ = (σ1, σ2). The HML strategy consists in comput-
ing an extrapolation UHML such that

UHML = U(2σ) − 2U(σ). (4)

Numerical study of reflectivity in a varying

medium

Consider Ω and Ωl such that L = l = 5. The den-
sity ρ is taken constant equal to 1. The non constant
velocity c is

c(x1, x2) = 2 + sin(3(x1 − L)). (5)

The absorption coefficients σj are the usual order
3 polynomials (exact formula are given for instance
in [4]). Homogeneous Dirichlet boundary conditions
are imposed at the boundary of Ωl. We choose
the initial condition p0 such that, for x = (x1, x2),
xC = (4.5, 2), v = (1,−1), k = 3, r = 0.8:

p0(x1, x2) = f(x1, x2)χ‖x−xC‖≤r

f(x1, x2) = cos2
(

π
‖x−xC‖

r

)

cos
(

kπ
v.(x−xC)

r

)

(6)
A“beam” centered on xC propagates along the line
x = −z and hits the absorbing layer with an non-
normal incidence angle. We present on figure 1 the
resulting pressure wavefield at time t = 0.75 s and
the difference of the PML, SMART and HML solu-
tion with the exact solution. The PML layer gener-
ates a reflected wave at the interface with the interest
domain, whose infinity norm is close to 10−4. The re-
flection generated by the SMART layer reaches 10−3

in infinity norm. Conversely, the extrapolation tech-
nique used for the HML method yield a significant
decrease of the reflection, which only reaches 10−7 in
infinity norm in this case.

Figure 1. Exact pressure wavefield (top left). Differ-
ence between exact and results from SMART (top
right), PML (bottom left), HML (bottom right).

Conclusion and perspectives

This preliminary experiment demonstrates that,
for variable coefficients problems, the HML method
can yield improvements in terms of reflectivity com-
pared to the PML method. Another advantage is
that the HML formulation keeps the well-posedness
of the initial set of equations, which may yield more
robust absorbing layer formulations for the simula-
tion of wave propagating in elastic and anisotropic
medias. The mathematical analysis of these models
is undergoing.
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