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We propose a splitting algorithm for solving a coupled system of primal-dual monotone inclusions in real Hilbert spaces. The proposed algorithm has a structure identical to that of the forward-backward algorithm with variable metric. The operators involved in the problem formulation are used separately in the sense that single-valued operators are used individually and approximately in the forward steps and multi-valued operators are used individually via their generalization resolvent in the backward steps. The weak convergence of the algorithm proposed is proved. Applications to coupled system of monotone inclusions in duality and minimization problems, and multi-dictionary signal representation are demonstrated.

Introduction

Various problems in applied mathematics such as evolution inclusions [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF], partial differential equations [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems -Applications to dynamical games and PDE's[END_REF][START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF], mechanics [START_REF] Glowinski | Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[END_REF], variational inequalities [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF], Nash equilibria [START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in non-potential games[END_REF], and optimization problems [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Cai | Simultaneous cartoon and texture inpainting[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF], reduce to solving monotone inclusions. The simplest monotone inclusion is to find a zero point of a maximally monotone operator acting on a real Hilbert space. This problem can be solved efficiently by the proximal point algorithm when the resolvent of the operator is easy to implement numerically [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF] (see [START_REF] Bonnans | A family of variable metric proximal methods[END_REF][START_REF] Burke | A variable metric proximal point algorithm for monotone operators[END_REF][START_REF] Burke | On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating[END_REF][START_REF] Combettes | Variable metric quasi-Fejér monotonicity[END_REF][START_REF] Lemaréchal | Variable metric bundle methods: from conceptual to implementable forms[END_REF][START_REF] Parente | A class of inexact variable metric proximal point algorithms[END_REF][START_REF] Qi | A preconditioning proximal Newton's method for nondifferentiable convex optimization[END_REF] in the context of variable metric). The problem was then extended to the problem of finding a zero point of the sum of a maximally monotone operator and a cocoercive operator. In this case, we can use the forward-backward splitting algorithm [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] (see [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF] in the context of variable metric). When the cocoercive operator is relaxed to be Lipschitzian and monotone, the problem can be solved by the forward-backward-forward splitting algorithm in [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF] (see [START_REF] Vũ | A variable metric extension of the forward-backward-forward algorithm for monotone operators[END_REF] for the variable metric extension of this algorithm). We also note that when the single-valued operator is replaced by any maximally monotone and multi-valued operator, we also have Douglas-Rachford splitting method; see [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] and the references therein.

The first composite monotone inclusion was studied in [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF] for the sum of a composite operator and a maximally monotone operator. They have proposed a new primal-dual splitting algorithm to solve it as well as its dual problem. This framework was then extended to the inclusion with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum monotone operators[END_REF]. In the special cases of [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum monotone operators[END_REF], for instance, when the Lipschitzian monotone operator is either cocoercive or maximally monotone and multi-valued operator, alternative algorithms were also proposed [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF], [START_REF] Bot | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF] (the variable metric versions of the algorithms in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum monotone operators[END_REF] and [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] were presented [START_REF] Vũ | A variable metric extension of the forward-backward-forward algorithm for monotone operators[END_REF] and [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF], respectively). Very recently, these frameworks have been unified into a system of monotone inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators in [START_REF] Combettes | Systems of structured monotone inclusions: duality, algorithms, and applications[END_REF].

Observe that when the problem has a structure, for examples, mixtures of composite, Lipschitzian or cocoercive, and parallel-sum type monotone operators as in [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Vũ | A variable metric extension of the forward-backward-forward algorithm for monotone operators[END_REF][START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum monotone operators[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF], existing purely primal splitting methods do not offer satisfactory options to solve the problem due to the appearance of the composite components and hence alternative primal-dual strategies must be explored. In this paper, motivated by coupled monotone inclusions and systems of monotone inclusions, we address the numerical solutions of coupled system of primal-dual inclusions in real Hilbert spaces. We develop a flexible algorithm to solve this problem, analyze its asymptotic behavior, and show that it can solve several problems beyond the state of the art.

In the present paper, we state the coupled system of monotone inclusions under investigation and recall some notations and background on the monotone operator theory in Section 2. We propose a primal-dual splitting algorithm for solving this problem in Section 3. In Section 4, we provide application to coupled system of monotone inclusions in duality. Section 5 is devoted to applications to minimization problems. Section 6 is an application to multidictionary signal representation.

Problem Formulation and Technical Results

Problem Formulation

In this paper, we focus on solving the following coupled system of monotone inclusions.

Problem 2.1 Let m and s be strictly positive integers, let ν 0 and µ 0 be in ]0, +∞[. For every i ∈ {1, . . . , m}, let (H i , • | • ) be a real Hilbert space, let z i ∈ H i , let A i : H i ⇉ H i be maximally monotone, let C i : H 1 ×. . .×H m → H i be such that, for every x := (x i ) 1≤i≤m and y := (y i

) 1≤i≤m in H 1 × . . . × H m , m i=1 x i -y i | C i x -C i y ≥ ν 0 m i=1 C i x -C i y 2 .
(

) 1 
For every k ∈ {1, . . . , s}, let (G k , • | • ) be a real Hilbert space, let r k ∈ G k , let B k : G k ⇉ G k be maximally monotone, let S k : G 1 × . . . × G s → G k be such that, for every v := (v k ) 1≤k≤s and w := (w k ) 1≤k≤s in G 1 × . . . × G s ,

s k=1 v k -w k | S k v -S k w ≥ µ 0 s k=1 S k v -S k w 2 . ( 2 
)
For every i ∈ {1, . . . , m} and for every k ∈ {1, . . . , s}, let L k,i : H i → G k be a bounded linear operator. The problem is to find x := (x 1 , . . . , x m ) in

H 1 × . . . × H m and v := (v 1 , . . . , v s ) in G 1 × . . . × G s such that                  z 1 - s k=1 L * k,1 v k ∈ A 1 x 1 + C 1 x . . . z m - s k=1 L * k,m v k ∈ A m x m + C m x and                  m i=1 L 1,i x i -r 1 ∈ B 1 v 1 + S 1 v . . . m i=1 L s,i x i -r s ∈ B s v s + S s v.
(3) We denote by Ω the set of solutions to (3).

In the case when ((L k,i ) 1≤k≤s ) 1≤i≤m are zero, we can use the algorithm in [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF] to solve the inclusions on the left hand side and the right hand side of (3) separately. Let us note that the non-linear coupling terms (C i ) 1≤i≤m and (S k ) 1≤k≤s were introduced in [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF] and they are cocoercive operators which often play a central role; see for instance [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF][START_REF] Glowinski | Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[END_REF][START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Chen | Convergence rates in forward-backward splitting[END_REF][START_REF] Tseng | Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming[END_REF][START_REF] Zhu | Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities[END_REF]. Let us add that the general algorithm in [START_REF] Combettes | Systems of structured monotone inclusions: duality, algorithms, and applications[END_REF] can solve Problem 2.1 for the case when C i and S k are univariate, monotone and Lipschitzian. The algorithm proposed in [START_REF] Bot | Solving systems of monotone inclusions via primaldual splitting techniques[END_REF] can solve Problem 2.1 for the case when s = m, and (A i ) 1≤i≤m are zero, (S i ) 1≤i≤m are univariate, and for each (k, i) ∈ {1, . . . , m} 2 with k = i, L k,i is zero. Furthermore, the primal-dual algorithm in [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF]Section 6] can solve Problem 2.1 for the case when m = 1 and each S k is univariate, cocoercive.

To sum up, recent frameworks can solve special cases of Problem 2.1 and no existing algorithm can solve it in the general case. Notation and background. Throughout, H and G, and (G i ) 1≤i≤m are real Hilbert spaces. Their scalar products and associated norms are respectively denoted by • | • and • . We denote by B (H, G) the space of bounded linear operators from H to G. The adjoint of L ∈ B (H, G) is denoted by L * . We set B (H) := B (H, H). The symbols ⇀ and → denote respectively weak and strong convergence, and Id denotes the identity operator, we denote by ℓ 1 + (N) the set of summable sequences in [0, +∞[ and by ℓ 2 (K) (∅ = K ⊂ N) the set of square summable sequences, indexed by K, in R.

Let M 1 and M 2 be self-adjoint operators in B (H), we write

M 1 M 2 iff (∀x ∈ H) M 1 x | x ≥ M 2 x | x .
Let α ∈ ]0, +∞[. We set

P α (H) := M ∈ B (H) : M * = M and M α Id .
The square root of M in P α (H) is denoted by √ M . Moreover, for every M in P α (H), we define respectively a scalar product and a norm by

(∀x ∈ H)(∀y ∈ H) x | y M := M x | y and x M := M x | x .
Let A : H ⇉ H be a set-valued operator. The domain and the graph of A are respectively defined by

dom A := x ∈ H : Ax = ∅ and gra A := (x, u) ∈ H × H : u ∈ Ax .
The set of zeros and the range of A are respectively defined by zer A := x ∈ H : 0 ∈ Ax and ran

A := u ∈ H : (∃ x ∈ H) u ∈ Ax .
The inverse of A and the resolvent of A are respectively defined by

A -1 : H ⇉ H : u → x ∈ H : u ∈ Ax and J A := (Id +A) -1 .
Moreover, A is monotone iff

(∀(x, y) ∈ H × H)(∀(u, v) ∈ Ax × Ay) x -y | u -v ≥ 0,
and maximally monotone iff it is monotone and there exists no monotone operator B : H ⇉ H such that gra A ⊂ gra B and

A = B. A single-valued operator B : H → H is β-cocoercive, for some β ∈ ]0, +∞[, iff (∀x ∈ H)(∀y ∈ H) x -y | Bx -By ≥ β Bx -By 2 .
The parallel sum of A : H ⇉ H and B :

H ⇉ H is A B := (A -1 + B -1 ) -1 .
Let Γ 0 (H) be the class of proper lower semicontinuous convex functions from H to ]-∞, +∞]. For any U ∈ P α (H) and f ∈ Γ 0 (H), we define

J U -1 ∂f := prox U f : H → H : x → argmin y∈H f (y) + 1 2 x -y 2 U , (4) 
and

J ∂f := prox f : H → H : x → argmin y∈H f (y) + 1 2 x -y 2 ,
and the conjugate function of f is

f * : a → sup x∈H a | x -f (x) .
Note that,

(∀f ∈ Γ 0 (H))(x ∈ H)(y ∈ H) y ∈ ∂f (x) ⇔ x ∈ ∂f * (y), or equivalently, (∀f ∈ Γ 0 (H)) (∂f ) -1 = ∂f * . (5) 
The infimal convolution of the two functions f and g from H to ]-∞, +∞] is

f g : x → inf y∈H (f (y) + g(x -y)).
The indicator function of a nonempty, closed and convex set C is denoted by ι C , its conjugate is the support function σ C , the distance function of C is denoted by d C . Finally, the strong relative interior of a subset C of H is the set of points x ∈ C such that the cone generated by -x + C is a closed vector subspace of H.

Technical Results

We recall some results on monotone operators. 

(∀u ∈ Ax)(∀(y, v) ∈ gra A) x -y | u -v ≥ φ( x -y ).
(b) A is strongly monotone, i.e., there exists α ∈ ]0, +∞[ such that A -α Id is monotone.

(c) J A is compact, i.e., for every bounded set C ⊂ H, the closure of J A (C) is compact. In particular, dom A is boundedly relatively compact, i.e., the intersection of its closure with every closed ball is compact. (d) A : H → H is single-valued with a single-valued continuous inverse. (e) A is single-valued on dom A and Id -A is demicompact, i.e., for every bounded sequence (x n ) n∈N in dom A such that (Ax n ) n∈N converges strongly, (x n ) n∈N admits a strong cluster point. (f ) A = ∂f , where f ∈ Γ 0 (H) is uniformly convex at x, i.e., there exists an increasing function φ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that, for every α ∈ ]0, 1[ and every y ∈ dom f, 

f αx + (1 -α)y + α(1 -α)φ( x -y ) ≤ αf (x) + (1 -α)f (y). ( 
J UA = (U -1 + A) -1 • U -1 .
Lemma 2.3 Let α and β be strictly positive reals, let B : H → H be βcocoercive, let U ∈ P α (H) be such that U -1 < 2β and set P := Id -U -1 B. Then,

(∀x ∈ H)(y ∈ H) P x -P y 2 U ≤ x -y 2 U -(2β -U -1
) Bx -By 2 . (6) Hence, P is nonexpansive with respect to the norm • U .

Proof. Let x ∈ H and y ∈ H. Then, using the cocoercivity of B, we have

P x -P y 2 U = x -y 2 U -2 x -y | Bx -By + U -1 (Bx -By) 2 U ≤ x -y 2 U -2β Bx -By 2 + Bx -By | U -1 (Bx -By) ≤ x -y 2 U -(2β -U -1
) Bx -By 2 , which proves (6). 

Z := zer(A + B) = ∅. ( 7 
) Let α ∈ ]0, +∞[, let β ∈ ]0, +∞[, let (η n ) n∈N be a sequence in ℓ 1 + (N), and let (U n ) n∈N be a sequence in P α (K) such that µ := sup n∈N U n < +∞ and (∀n ∈ N) (1 + η n )U n+1 U n . ( 8 
)
Let ε ∈ ]0, min{1, 2β/(µ + 1)}], let (λ n ) n∈N be a sequence in [ε, 1], let (γ n ) n∈N be a sequence in [ε, (2β -ε)/µ], let x 0 ∈ K, and let (a n ) n∈N and (b n ) n∈N be absolutely summable sequences in K. Then, iterate, for every n ∈ N,

1. y n := x n -γ n U n (Bx n + b n ) 2. x n+1 := x n + λ n J γnUnA (y n ) + a n -x n . (9) 
Then, the following hold for some x ∈ Z.

(a) x n ⇀ x.

(b) n∈N |||Bx n -Bx||| 2 < +∞. (c) Suppose that at every point in Z, A or B is demiregular, then x n → x.

Algorithm and Convergence

We propose the following algorithm for solving Problem 2.1. Algorithm 3.1 Let α ∈ ]0, +∞[ and, for every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, let (U i,n ) n∈N be a sequence in P α (H i ) and let (V k,n ) n∈N be a sequence in P α (G k ). Set β := min{ν 0 , µ 0 }, and let [START_REF] Cai | Simultaneous cartoon and texture inpainting[END_REF] where, for every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, the following conditions hold.

ε ∈ ]0, min{1, β}[, let (λ n ) n∈N be a sequence in [ε, 1]. Fix (x i,0 ) 1≤i≤m in H 1 × . . . × H m and (v k,0 ) 1≤k≤s in G 1 × . . . × G s . Then, iterate, for every n ∈ N, (i) For i = 1, . . . , m 1. t i,n := s k=1 L * k,i v k,n + C i,n (x 1,n , . . . , x m,n ) + c i,n 2. p i,n := J Ui,nAi x i,n -U i,n (t i,n -z i ) + a i,n 3. y i,n := 2p i,n -x i,n 4. x i,n+1 := x i,n + λ n (p i,n -x i,n ) (ii) For k = 1, . . . , s 1. w k,n := m i=1 L k,i y i,n -S k,n (v 1,n , . . . , v s,n ) -d k,n 2. q k,n := J V k,n B k v k,n + V k,n w k,n -r k + b k,n 3. v k,n+1 := v k,n + λ n (q k,n -v k,n ),
(a) (∀n ∈ N) U i,n+1 U i,n and V k,n+1 V k,n , and

µ := sup n∈N { U 1,n , . . . , U m,n , V 1,n , . . . , V s,n } < +∞. (b) (C i,n ) n∈N are operators from H 1 × . . . × H m to H i such that (b1) (C i,n -C i ) n∈N are Lipschitz continuous with respective constants (κ i,n ) n∈N ∈ ]0, +∞[ satisfying n∈N κ i,n < +∞.
(b2) There exists s ∈ H 1 × . . . × H m not depending on i such that

(∀n ∈ N) C i,n s = C i s. (c) (S k,n ) n∈N are operators from G 1 × . . . × G s to G k such that (c1) (S k,n -S k ) n∈N are Lipschitz continuous with respective constants (η k,n ) n∈N ∈ ]0, +∞[ satisfying n∈N η k,n < +∞.
(c2) There exists w ∈ G 1 × . . . × G s not depending on k such that Even when restricted to the constant metric case (which is the case where (U i,n ) 1≤i≤m and (V k,n ) 1≤k≤s are identity operators), the algorithm is new. (c) Condition (a) was used in [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Vũ | A variable metric extension of the forward-backward-forward algorithm for monotone operators[END_REF], while conditions (b) and (c) were used in [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF], and conditions (d) and (e) which quantify the tolerance allowed in the inexact implementation of the resolvents and the approximations of single-valued operators are widely used in the literature. (d) Algorithm 3.1 is an extension of [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF]Corollary 6.2] where m = 1 and every n ∈ N: C 1,n = C and for every k ∈ {1, . . . , s}, S k,n = D -1 k is restricted to be univariate and cocoercive, and B k is replaced by B -1 k . The main result of the paper can be now stated.

(∀n ∈ N) S k,n w = S k w. (d) (a i,n ) n∈N and (c i,n ) n∈N are absolutely summable sequences in H i . ( e 
Theorem 3.1 Suppose in Problem 2.1 that Ω = ∅ and there exists L k0,i0 = 0 for some i 0 ∈ {1, . . . , m} and k 0 ∈ {1, . . . , s}. For every n ∈ N, set

δ n := m i=1 s k=1 V k,n L k,i U i,n 2 -1 -1, (11) 
and suppose that

ζ n := δ n (1 + δ n ) max 1≤i≤m,1≤k≤s { U i,n , V k,n } ≥ 1 2β -ε . ( 12 
)
For every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, let (x i,n ) n∈N and (v k,n ) n∈N be sequences generated by Algorithm 3.1. Then, the following hold for some

(x 1 , . . . , x m , v 1 , . . . , v s ) ∈ Ω. (a) (∀i ∈ {1, . . . , m}) x i,n ⇀ x i and (∀k ∈ {1, . . . , s}) v k,n ⇀ v k . (b) Suppose that the operator (x i ) 1≤i≤m → (C j (x i ) 1≤i≤m ) 1≤j≤m is demiregu- lar (see Lemma 2.1 for special cases) at (x 1 , . . . , x m ), then (∀i ∈ {1, . . . , m}) x i,n → x i . (c) Suppose that the operator (v k ) 1≤k≤s → (S j (v k ) 1≤k≤s ) 1≤j≤s is demiregular (see Lemma 2.1 for special cases) at (v 1 , . . . , v s ), then (∀k ∈ {1, . . . , s}) v k,n → v k . (d)
Suppose that there exists j ∈ {1, . . . , m} and an operator C :

H j → H j such that (∀(x i ) 1≤i≤m ∈ (H i ) 1≤i≤m ) C j (x 1 , . . . , x m ) = Cx j and C is demiregu- lar (see Lemma 2.
1 for special cases) at x j , then x j,n → x j . (e) Suppose that there exists j ∈ {1, . . . , s} and an operator D :

G j → G j such that (∀(v k ) 1≤k≤s ∈ (G k ) 1≤k≤s ) S j (v 1 , . . . , v s ) = Dv j and D is demiregular (see Lemma 2.1 for special cases) at v j , then v j,n → v j .
Proof. Let us introduce the Hilbert direct sums

H := H 1 ⊕ . . . ⊕ H m , G := G 1 ⊕ . . . ⊕ G s , and 
K := H ⊕ G.
We denote by x := (x i ) 1≤i≤m , y := (y i ) 1≤i≤m the generic elements in H, and by v := (v k ) 1≤k≤s , w := (w k ) 1≤k≤s the generic elements in G. The generic elements in K will be denoted by p := (x, v). The scalar product and the norm of H are respectively defined by

• | • : (x, y) → m i=1 x i | y i and • : x → x | x .
The scalar product and the norm of G are defined by the same fashion as those of H,

• | • : (v, w) → s k=1 v k | w k and • : v → v | v .
We next define respectively the scalar product and the norm of K by

• | • : (x, v), (y, w) → m i=1 x i | y i + s k=1 v k | w k and ||| • ||| : (x, v) → (x, v) | (x, v) . ( 13 
) Set                          A : H ⇉ H : x → × m i=1 A i x i B : G ⇉ G : v → × s k=1 B k v k C : H → H : x → (C i x) 1≤i≤m D : G ⇉ G : v → (S k v) 1≤k≤s L : H → G : x → m i=1 L k,i x i 1≤k≤s z := (z 1 , . . . , z m ) r := (r 1 , . . . , r s ), (14) 
and for every n ∈ N,

C n : H → H : x → (C i,n x) 1≤i≤m and D n : G → G : v → (S k,n v) 1≤k≤s .
Then, it follows from (1) that

(∀x ∈ H)(y ∈ H) x -y | Cx -Cy ≥ ν 0 Cx -Cy 2 , (15) 
from ( 2) that

(∀v ∈ G)(w ∈ G) v -w | Dv -Dw ≥ µ 0 Dv -Dw 2 , (16) 
which shows that C and D are respectively ν 0 -cocoercive and µ 0 -cocoercive and hence they are maximally monotone [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Example 20.28]. Moreover, it follows from [6, Proposition 20.23] that A and B are maximally monotone. Furthermore,

L * : G → H : v → s k=1 L * k,i v k 1≤i≤m .
Then, using ( 14), we can rewrite the system of monotone inclusions (3) as a monotone inclusion in K,

find (x, v) ∈ K such that z -L * v, Lx -r ∈ (A + C)x, (B + D)v . ( 17 
) Set      M : K ⇉ K : (x, v) → (-z + Ax, r + Bv) S : K → K : (x, v) → (L * v, -Lx) Q : K → K : (x, v) → (Cx, Dv), (18) 
and for every n ∈ N,

     Q n : K → K : (x, v) → (C n x, D n v) U n : K → K : (x, v) → (U i,n x i ) 1≤i≤m , (V k,n v k ) 1≤k≤s V n : K → K : (x, v) → U -1 n (x, v) -(L * v, Lx). (19) 
Then, M and S are maximally monotone, and ( 15), ( 16) imply that Q is βcocoercive and hence it is maximally monotone [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Example 20.28]. Therefore, M + S + Q is maximally monotone [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 24.4]. Furthermore, the problem [START_REF] Burke | A variable metric proximal point algorithm for monotone operators[END_REF] reduces to find a zero point of

M + S + Q. Note that Ω = ∅ implies that zer(M + S + Q) = ∅. ( 20 
)
We next derive from the condition (a) in Algorithm 3.1 that

µ := sup n∈N U n < +∞, and (∀n ∈ N) U n+1 U n ∈ P α (K), (21) 
and it follows from ( 13) and [19, Lemma 2.1(ii)] that, for every n ∈ N and every p := (x, v) ∈ K,

|||p||| 2 U -1 n = m i=1 x i 2 U -1 i,n + s k=1 v k 2 V -1 k,n ≥ m i=1 x i 2 U -1 i,n + s k=1 v k 2 V -1 k,n ≥ m i=1 x i 2 + s k=1 v k 2 min 1≤i≤m,1≤k≤s { U i,n -1 , V k,n -1 } = |||p||| 2 min 1≤i≤m,1≤k≤s { U i,n -1 , V k,n -1 }. ( 22 
)
Note that (V n ) n∈N are self-adjoint, let us check that (V n ) n∈N are strongly monotone. To this end, let us introduce

(∀n ∈ N)          T n : H → G : x → m i=1 V k,n L k,i x i 1≤k≤s R n : G → G : v → V 1,n -1 v 1 , . . . , V s,n -1 v s . (23) 
We note that, for every i ∈ {1, . . . , m} and every n ∈ N,

(∀x ∈ H i ) x | U -1 i,n x = U i,n -1 x | U i,n -1 x = U i,n -1 x 2 .
Then, by using Cauchy-Schwarz's inequality, for every n ∈ N and every x ∈ H, we have

T n x 2 = s k=1 m i=1 V k,n L k,i U i,n U i,n -1 x i 2 ≤ s k=1 m i=1 V k,n L k,i U i,n U i,n -1 x i 2 ≤ s k=1 m i=1 V k,n L k,i U i,n 2 m i=1 U i,n -1 x i 2 = m i=1 x i 2 U -1 i,n s k=1 m i=1 V k,n L k,i U i,n 2 = β n m i=1 x i 2 U -1 i,n , (24) 
where we set

(∀n ∈ N) β n := s k=1 m i=1 V k,n L k,i U i,n 2 
, which together with [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] imply that

(∀n ∈ N) (1 + δ n )β n = 1 1 + δ n . (25) 
Moreover,

(∀n ∈ N)(v ∈ G) R n v 2 = s k=1 V k,n -1 v k 2 = s k=1 v k 2 V -1 k,n . (26) 
Therefore, for every p := (x, v) ∈ K and every n ∈ N, it follows from ( 19), ( 23), ( 25), ( 26) and ( 22), ( 12) that

p | V n p = |||p||| 2 U -1 n -2 Lx | v = |||p||| 2 U -1 n -2 s k=1 m i=1 V k,n L k,i x i | V k,n -1 v k = |||p||| 2 U -1 n -2 (1 + δ n )β n -1 T n x | (1 + δ n )β n R n v ≥ |||p||| 2 U -1 n - |||T n x||| 2 (1 + δ n )β n + (1 + δ n )β n R n v 2 ≥ |||p||| 2 U -1 n - m i=1 x i 2 U -1 i,n (1 + δ n ) + (1 + δ n )β n s k=1 v k 2 V -1 k,n = δ n 1 + δ n m i=1 x i 2 U -1 i,n + s k=1 v k 2 V -1 k,n ≥ ζ n |||p||| 2 . ( 27 
)
In turn, (V n ) n∈N are invertible, by [19, Lemma 2.1(iii)] and [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF],

(∀n ∈ N) V -1 n ≤ 1 ζ n ≤ 2β -ε,
and by [19, Lemma 2.1(i)], [START_REF] Parente | A class of inexact variable metric proximal point algorithms[END_REF], for every n ∈ N,

U n+1 U n ⇒ U -1 n U -1 n+1 ⇒ V n V n+1 ⇒ V -1 n+1 V -1 n .
Furthermore, for every p ∈ K, we derive from [19, Lemma 2.1(ii)] that

V -1 n p | p ≥ V n -1 |||p||| 2 ≥ 1 ρ |||p||| 2 , where ρ := α -1 + S . (28) 
Altogether,

sup n∈N V -1 n ≤ 2β -ε and (∀n ∈ N) V -1 n+1 V -1 n ∈ P 1/ρ (K). ( 29 
)
Moreover, using [19, Lemma 2.1(i)(ii)] and (29), we obtain

∀(z n ) n∈N ∈ K N n∈N |||z n ||| < +∞ ⇔ n∈N |||z n ||| V -1 n < +∞ (30)
and

∀(z n ) n∈N ∈ K N n∈N |||z n ||| < +∞ ⇔ n∈N |||z n ||| V n < +∞, (31) 
and

(∀p ∈ K) sup n∈N |||p||| V n < +∞. ( 32 
)
Now we can reformulate the algorithm [START_REF] Cai | Simultaneous cartoon and texture inpainting[END_REF] as iterations in the space K. We first observe that (10) is equivalent to

(i) For i = 1, . . . , m 1. U -1 i,n (x i,n -p i,n ) - s k=1 L * k,i v k,n -C i,n (x 1,n , . . . , x m,n ) ∈ -z i + A i (p i,n -a i,n ) + c i,n -U -1 i,n a i,n 2. x i,n+1 = x i,n + λ n (p i,n -x i,n ) (ii) For k = 1, . . . , s 1. V -1 k,n (v k,n -q k,n ) - m i=1 L k,i (x i,n -p i,n ) -S k,n (v 1,n , . . . , v s,n ) ∈ r k + B k (q k,n -b k,n ) - m i=1 L k,i p i,n + d k,n -V -1 k,n b k,n 2. v k,n+1 = v k,n + λ n (q k,n -v k,n ). ( 33 
) Set                    p n := (x 1,n , . . . , x m,n , v 1,n , . . . , v s,n ) y n := (p 1,n , . . . , p m,n , q 1,n , . . . , q s,n ) a n := (a 1,n , . . . , a m,n , b 1,n , . . . , b s,n ) c n := (c 1,n , . . . , c m,n , d 1,n , . . . , d s,n ) d n := (U -1 i,n a i,n ) 1≤i≤m , (V -1 k,n b k,n ) 1≤k≤m b n := (S + V n )a n + c n -d n .
Then, using the same argument as in [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]Eqs. (3.22)-(3.35)], using [START_REF] Burke | On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating[END_REF], [START_REF] Combettes | Variable metric quasi-Fejér monotonicity[END_REF], [START_REF] Zhu | Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities[END_REF] yields

(∀n ∈ N) V n (p n -y n ) -Q n p n ∈ (M + S)(y n -a n ) + Sa n + c n -d n p n+1 = p n + λ n (y n -p n ). ( 34 
) For every n ∈ N, we have

V n (p n -y n ) -Q n p n ∈ (M + S)(y n -a n ) + Sa n + c n -d n ⇔ (V n -Q n )p n ∈ (M + S + V n )(y n -a n ) + (S + V n )a n + c n -d n ⇔ y n = M + S + V n -1 (V n -Q n )p n -(S + V n )a n -c n + d n + a n ⇔ y n = Id + V -1 n (M + S) -1 Id -V -1 n Q n p n -V -1 n b n + a n ⇔ y n = J V -1 n (M +S) Id -V -1 n Q n p n -V -1 n b n + a n . (35) 
Therefore, for every n ∈ N, (34) becomes

p n+1 = p n + λ n J V -1 n (M +S) p n -V -1 n (Q n p n + b n ) + a n -p n . ( 36 
)
By setting, for every n ∈ N,

         M : K ⇉ K : (x, v) → M (x, v) + S(x, v), P n := Id -V -1 n Q n and P n := Id -V -1 n Q, E n := Q n -Q and Q n := V -1 n E n , e 1,n := Q n p n + V -1 n b n , (37) 
we have

(36) ⇔ p n+1 = p n + λ n J V -1 n M P n p n -V -1 n b n + a n -p n = (1 -λ n )p n + λ n J V -1 n M P n p n -V -1 n b n + λ n a n = (1 -λ n )p n + λ n J V -1 n M P n p n -e 1,n + λ n a n (38) = (1 -λ n )p n + λ n J V -1 n M P n p n -e 1,n + a n . (39) 
Algorithm ( 39) is a special instance of the variable metric forward-backward splitting [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF] with

(∀n ∈ N) γ n = 1 ∈ ε, (2β -ε)/(sup n∈N V -1 n ) (see (29)). Note that M is maximally monotone, Q is β-cocoercive, and (λ n ) n∈N in [ε, 1].
Moreover, [START_REF] Bot | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF] and [START_REF] Lemaréchal | Variable metric bundle methods: from conceptual to implementable forms[END_REF] show respectively that ( 8) and ( 7) are satisfied. Therefore, in view of Theorem 2.1, it is sufficient to prove that (e 

           n∈N |||a n ||| ≤ n∈N m i=1 a i,n + s k=1 b k,n < +∞, n∈N |||c n ||| ≤ n∈N m i=1 c i,n + s k=1 d k,n < +∞. (42) 
Moreover, for every n ∈ N,

U n ∈ P α (K), it follows from [19, Lemma 2.1(iii)] that U -1 n ≤ α -1 . Hence,        n∈N |||d n ||| ≤ α -1 n∈N |||a n ||| < +∞, n∈N |||b n ||| ≤ (ρ + S ) n∈N |||a n ||| + n∈N |||c n ||| + |||d n ||| < +∞.
Therefore, (a n ) n∈N , (b n ) n∈N , (c n ) n∈N and (d n ) n∈N are absolutely summable in K. Next it follows from the conditions (b), (c) in Algorithm 3.1 and ( 29), ( 27), ( 12) that, for every p := (x, v) ∈ K and every q := (y, w) ∈ K, and every n ∈ N,

Q n p -Q n q 2 V n = Q n p -Q n q | V n Q n p -Q n q = E n p -E n q | V -1 n E n p -V -1 n E n q ≤ V -1 n |||E n p -E n q||| 2 ≤ (2β -ε) (C n -C)x -(C n -C)y 2 + (D n -D)v -(D n -D)w 2 = (2β -ε) m i=1 (C i,n -C i )x -(C i,n -C i )y 2 + s k=1 (S k,n -S k )v -(S k,n -S k )w 2 ≤ (2β -ε) m i=1 κ 2 i,n x -y 2 + s k=1 η 2 k,n v -w 2 ≤ (2β -ε) m i=1 κ 2 i,n + s k=1 η 2 k,n |||p -q||| 2 ≤ (2β -ε)ζ -1 n m i=1 κ 2 i,n + s k=1 η 2 k,n |||p -q||| 2 V n ≤ (2β -ε) 2 m i=1 κ 2 i,n + s k=1 η 2 k,n |||p -q||| 2 V n , (43) 
which implies that

Q n is Lipschitz continuous (in the norm ||| • ||| V n ) with respectively constant κ n := (2β -ε) m i=1 κ 2 i,n + s k=1 η 2 k,n , that satisfies n∈N κ n < +∞. ( 44 
)
Let p := (x, v) ∈ zer(M + S + Q) and noting that (∀n

∈ N) Q n (s, w) = 0, |||e 1,n ||| V n ≤ ||| Q n p n ||| V n + |||V -1 n b n ||| V n ≤ ||| Q n p n -Q n p||| V n + ||| Q n p -Q n (s, w)||| V n + |||V -1 n b n ||| V n ≤ κ n |||p n -p||| V n + κ n |||p -(s, w)||| V n + |||V -1 n b n ||| V n = κ n |||p n -p||| V n + κ n |||p -(s, w)||| V n + |||b n ||| V -1 n . (45) 
Since p ∈ zer(M + S + Q), we have

(∀n ∈ N) p = J V -1 n M (P n p). Hence, for each n ∈ N, since J V -1
n M and P n are nonexpansive with respect to the norm ||| • ||| V n by Lemma 2.2(b) and Lemma 2.3, we have

|||J V -1 n M P n p n -e 1,n -p||| V n = |||J V -1 n M P n p n -e 1,n -J V -1 n M (P n p)||| V n ≤ |||p n -p||| V n + |||e 1,n ||| V n ,
which and [START_REF] Mosco | Dual variational inequalities[END_REF] imply that

|||p n+1 -p||| V n ≤ (1 -λ n ) p n -p V n + λ n J V -1 n M P n p n -e 1,n -p V n + λ n a n V n ≤ 1 -λ n + λ n p n -p V n + |||e 1,n ||| V n + λ n a n V n ≤ (1 + κ n )|||p n -p||| V n + α n , (46) 
where

(∀n ∈ N) α n := κ n |||p -(s, w)||| V n + b n V -1 n + a n V n . ( 47 
)
Noting that (32), ( 31), ( 30) and ( 43), (42), we have

n∈N α n < +∞. (48) 
Therefore, we derive from ( 46) and (∀n

∈ N) V n V n+1 that (∀n ∈ N) p n+1 -p V n+1 ≤ (1 + κ n )|||p n -p||| V n + α n , (49) 
and hence, by [START_REF] Polyak | Introduction to Optimization[END_REF]

, Lemma 2.2.2], sup n∈N |||p n -p||| V n < +∞, (50) 
which and ( 45),( 44),( 48), ( 43), ( 30), ( 31), [START_REF] Tseng | Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming[END_REF] |||Qp n -Qp||| → 0, which implies that, for every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s},

C i (x 1,n , . . . , x m,n ) -C i (x 1 , . . . , x m ) → 0, S k (v 1,n , . . . , v s,n ) -S k (v 1 , . . . , v s ) → 0.
Moreover, by (a), we obtain, for every i ∈ {1, . . . , m}, x i,n ⇀ x i and for every k ∈ {1, . . . , s}, v k,n ⇀ v k . Therefore, the conclusions follow from the definition of the demiregular operators. (d)(e): The conclusions follow from our assumptions and the definition of the demiregular operators.

Application to Coupled System of Monotone Inclusions in Duality

We provide an application to coupled system of monotone inclusions. Our problem formulation covers not only a wide class of monotone inclusions and duality frameworks in the literature (see [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF][START_REF] Bot | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF][START_REF] Chen | Convergence rates in forward-backward splitting[END_REF][START_REF] Tseng | Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming[END_REF][START_REF] Attouch | A general duality principle for the sum of two operators[END_REF][START_REF] Eckstein | General projective splitting methods for sums of maximal monotone operators[END_REF][START_REF] Mosco | Dual variational inequalities[END_REF][START_REF] Raguet | Generalized forward-backward splitting[END_REF][START_REF] Rockafellar | Duality and stability in extremum problems involving convex functions[END_REF] and the references therein), and coupled system of monotone inclusions unified in [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF], but also a wide class of minimization formulations, in particular, in the multi-component signal decomposition and recovery; see [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF][START_REF] Briceño-Arias | Proximal algorithms for multicomponent image recovery problems[END_REF] and the references therein.

Problem 4.1 Let m and s be strictly positive integers, and let ν 0 be in ]0, +∞[. For every i ∈ {1, . . . , m}, let (H i , • | • ) be a real Hilbert space, let z i ∈ H i , let A i : H i ⇉ H i be maximally monotone, let C i : H 1 ×. . .×H m → H i be such that for every x := (x i ) 1≤i≤m and y : 

= (y i ) 1≤i≤m in H 1 × . . . × H m , m i=1 x i -y i | C i x -C i y ≥ ν 0 m i=1 C i x -C i y 2 . ( 52 
) For every k ∈ {1, . . . , s}, let (G k , • | • ) be a real Hilbert space, let r k ∈ G k , let D k : G k ⇉ G k be
:= (x 1 , . . . , x m ) in H 1 × . . . × H m such that                  z 1 ∈ A 1 x 1 + s k=1 L * k,1 (D k B k ) m i=1 L k,i x i -r k + C 1 x . . . z m ∈ A m x m + s k=1 L * k,m (D k B k ) m i=1 L k,i x i -r k + C m x. (53) 
We denote by P the set of solutions to (53). The dual inclusion is to find

v 1 ∈ G 1 , . . . , v s ∈ G s such that ∃x := (x i ) 1≤i≤m ∈ (H i ) 1≤i≤m                  z 1 - s k=1 L * k,1 v k ∈ A 1 x 1 + C 1 x . . . z m - s k=1 L * k,m v k ∈ A m x m + C m x, and 
                 m i=1 L 1,i x i -r 1 ∈ B -1 1 v 1 + D -1 1 v 1 . . . m i=1 L s,i x i -r s ∈ B -1 s v s + D -1 s v s . (54) 
The set of solutions to (54) is denoted by D.

Remark 4.1 In Problem 4.1, there are two types of coupling. The first one is the smooth coupling modeled by (C i ) 1≤i≤m . The second one is the non-smooth coupling involving the parallel sums modeled by the second terms in (53). The frameworks in [START_REF] Combettes | Systems of structured monotone inclusions: duality, algorithms, and applications[END_REF] and [START_REF] Bot | Solving systems of monotone inclusions via primaldual splitting techniques[END_REF] consider respectively non-smooth coupling and smooth coupling only. The condition on (C i ) 1≤i≤m is relaxed to be monotone and Lipschitzian in [START_REF] Bot | Solving systems of monotone inclusions via primaldual splitting techniques[END_REF] but the algorithm proposed has an additional forward step even when (C i ) 1≤i≤m are restricted to be cocoercive. This double coupling model can be easily solved by using our duality framework.

Algorithm 4.1 Let α ∈ ]0, +∞[ and, for every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, let (U i,n ) n∈N be a sequence in P α (H i ) and let (V k,n ) n∈N be a sequence in P α (G k ). Set β := min{ν 0 , ν 1 , . . . , ν s }, and let

ε ∈ ]0, min{1, β}[, let (λ n ) n∈N be a sequence in [ε, 1]. Let (x i,0 ) 1≤i≤m ∈ H 1 × . . . × H m and (v k,0 ) 1≤k≤s ∈ G 1 × . . . × G s . Then, iterate, for every n ∈ N, (i) For i = 1, . . . , m 1. t i,n := s k=1 L * k,i v k,n + C i,n (x 1,n , . . . , x m,n ) + c i,n 2. p i,n := J Ui,nAi x i,n -U i,n (t i,n -z i ) + a i,n 3. y i,n := 2p i,n -x i,n 4. x i,n+1 := x i,n + λ n (p i,n -x i,n ) (ii) For k = 1, . . . , s 1. w k,n := m i=1 L k,i y i,n -S k,n v k,n -d k,n 2. q k,n := J V k,n B -1 k v k,n + V k,n (w k,n -r k ) + b k,n 3. v k,n+1 := v k,n + λ n (q k,n -v k,n ), ( 55 
)
where, for every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, the following conditions hold.

(a) (∀n ∈ N) U i,n+1 U i,n and V k,n+1 V k,n , and

µ := sup n∈N { U 1,n , . . . , U m,n , V 1,n , . . . , V s,n } < +∞. (b) (C i,n ) n∈N are operators from H 1 × . . . × H m to H i such that (b1) (C i,n -C i ) n∈N are Lipschitz continuous with respective constants (κ i,n ) n∈N ∈ ]0, +∞[ satisfying n∈N κ i,n < +∞.
(b2) There exists s ∈ H 1 × . . . × H m not depending on i such that Corollary 4.1 Suppose that P = ∅ and there exists L k0,i0 = 0, for some i 0 in {1, . . . , m} and k 0 in {1, . . . , s}, and (12) is satisfied. For every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, let (x i,n ) n∈N and (v k,n ) n∈N be sequences generated by Algorithm 4.1. Then, the following hold for some (x 1 , . . . , x m ) ∈ P and (v 1 , . . . , v s ) ∈ D.

(∀n ∈ N) C i,n s = C i s. (c) ( S k,n ) n∈N are operators from G k to G k such that (c1) ( S k,n -D -1 k ) n∈N are Lipschitz continuous with respective constants (η k,n ) n∈N ∈ ]0, +∞[ satisfying n∈N η k,n < +∞. (c2) There exists w := (w j ) 1≤j≤s ∈ G 1 × . . . × G s not depending on k such that (∀n ∈ N) S k,n w k = D -1 k w k . (d) (a i,n ) n∈N
(a) (∀i ∈ {1, . . . , m}) x i,n ⇀ x i and (∀k ∈ {1, . . . , s}) v k,n ⇀ v k . (b) Suppose that the operator (x i ) 1≤i≤m → (C j (x i ) 1≤i≤m ) 1≤j≤m is demiregular (see Lemma 2.1 for special cases) at (x 1 , . . . , x m ), then (∀i ∈ {1, . . . , m}) x i,n → x i . (c) Suppose that D -1 j is demiregular (see Lemma 2.1 for special cases) at v j , for some j ∈ {1, . . . , s}, then v j,n → v j . (d) Suppose that there exists j ∈ {1, . . . , m} and operator C :

H j → H j such that (∀(x i ) 1≤i≤m ∈ (H i ) 1≤i≤m ) C j (x 1 , . . . , x m ) = Cx j and C is demiregu- lar (see Lemma 2.
1 for special cases) at x j , then x j,n → x j .

Proof. Set µ 0 := min{ν 1 , . . . , ν s } and define

(∀k ∈ {1, . . . , s}) S k : G 1 × . . . × G s → G k : (v 1 , . . . , v s ) → D -1 k v k . (56) 
Then, for every v := (v k ) 1≤k≤s in G 1 × . . . × G s and every w := (w k ) 1≤k≤s in G 1 × . . . × G s , we obtain

s k=1 v k -w k | S k v -S k w = s k=1 v k -w k | D -1 k v k -D -1 k w k ≥ s k=1 ν k D -1 k v k -D -1 k w k 2 ≥ µ 0 s k=1 D -1 k v k -D -1 k w k 2 = µ 0 s k=1 S k v -S k w 2 , ( 57 
)
which shows that ( 2 

(∀k ∈ {1, . . . , s}) S k,n : G 1 × . . . × G s → G k : (v 1 , . . . , v s ) → S k,n v k . (58) Since ( S k,n -D -1 k ) n∈N are Lipschitz continuous with respective constants (η k,n ) n∈N , for every v := (v k ) 1≤k≤s in G 1 × . . . × G s , w := (w k ) 1≤k≤s in G 1 × . . . × G s , and every n ∈ N, k ∈ {1, . . . , s}, we have (S k,n -S k )v -(S k,n -S k )w 2 = ( S k,n -D -1 k )v k -( S k,n -D -1 k )w k 2 ≤ η 2 k,n v k -w k 2 ≤ η 2 k,n s j=1 v j -w j 2 = η 2 k,n v -w 2 .
Moreover, it follows from (56), (58) and the condition (c2) in Algorithm 4.1 that

(∀n ∈ N)(k ∈ {1, . . . , s}) S k,n w = S k,n w k = D -1 k w k = S k w.
Hence, the condition (c) in Algorithm 3.1 is also satisfied. Furthermore, the algorithm (10) reduces to (55) where B k is replaced by B -1 k . Next, since P = ∅, we derive from (53) that, for every k ∈ {1, . . . , s}, there exists

v k ∈ G k such that v k ∈ (D k B k ) m i=1 L k,i x i -r k ⇔ m i=1 L k,i x i -r k ∈ B -1 k v k + D -1 k v k , (59) and 
(∀i ∈ {1, . . . , m}) z i -

s k=1 L * k,i v k ∈ A i x i + C i (x 1 , . . . , x m ), (60) 
which show that Ω = ∅ and D = ∅. Inversely, if (x 1 , . . . , x m , v 1 , . . . , v s ) ∈ Ω, then the inclusions (59) and (60) are satisfied. Hence (v 1 , . . . , v s ) ∈ D and (x 1 , . . . , x m ) ∈ P. Therefore, the conclusions follow from Theorem 3.1.

Application to Minimization Problems

We provide applications to minimization problems involving infimal convolutions, composite functions and couplings. In the classic setting, the coupling is often modeled by the constraints of the form

(∀k ∈ {1, . . . , s}) m i=1 L k,i x i ∈ D k ,
where (D k ) 1≤k≤s are nonempty, closed and convex subsets of G k . The degree of violation of each hard constraint is measured by ι D k . However, due to the imprecise prior information or unmodeled dynamics in the data formation process, there are inaccuracies in the definition of the several sets in the family (D k ) 1≤k≤s . Therefore, instead of coupling by hard constraints, some authors use soft constraints by forcing m i=1 L k,i x i to be close to D k . This forcing is often measured by distance functions. This strategy was used in [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF]. Here we follow the approach of [START_REF] Combettes | Systems of structured monotone inclusions: duality, algorithms, and applications[END_REF], we use the parallel sums to model the coupling but we separate the smooth components and they are modeled by a differentiable function ϕ ∈ Γ 0 (H 1 × . . . × H m ).

Problem 5.1 Let m and s be strictly positive integers. For every i ∈ {1, . . . , m}, let H i be a real Hilbert space, let z i ∈ H i , let f i ∈ Γ 0 (H i ). For every k ∈ {1, . . . , s}, let G k be a real Hilbert space, let r k ∈ G k , let ℓ k ∈ Γ 0 (G k ) be ν k -strongly convex function, for some ν k ∈ ]0, +∞[, let g k ∈ Γ 0 (G k ). For every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, let L k,i : H i → G k be a bounded linear operator. Let ϕ :

H 1 × . . . × H m → R be convex differentiable function with ν -1 0 -Lipschitz continuous gradient. The primal problem is to minimize x1∈H1,...,xm∈Hm m i=1 f i (x i ) -x i | z i + s k=1 ℓ k g k m i=1 L k,i x i -r k +ϕ(x 1 , . . . , x m ), (61) 
under the assumption that there exists x := (x 1 , . . . , x m ) such that, for every i ∈ {1, . . . , m},

z i ∈ ∂f i (x i ) + s k=1 L * k,i • ∂ℓ k ∂g k • m j=1 L k,j x j -r k + ∇ i ϕ(x), (62) 
where ∇ i ϕ is the ith component of the gradient ∇ϕ, and the dual problem is to minimize v1∈G1,...,vs∈Gs

ϕ * m i=1 f * i z i - s k=1 L * k,i v k 1≤i≤m + s k=1 ℓ * k (v k ) + g * k (v k ) + v k | r k . (63) 
In the case when the infimal convolutions are absent, Problem 5.1 often appears in the multi-components signal decomposition and recovery problems; see [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in non-potential games[END_REF][START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF] and the references therein.

Example 5.1 Some special cases of this problem are listed in the following.

(a) In the case when ϕ : (x 1 , . . . , x m ) → m i=1 h i (x i ), where, for every i in {1, . . . , m}, h i : was also studied in [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF].

H i → R is a convex differentiable function with τ -1 i - Lipschitz continuous gradient, for some τ i ∈ ]0, +∞[, Problem
Algorithm 5.1 Let α ∈ ]0, +∞[ and, for every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, let (U i,n ) n∈N be a sequence in P α (H i ) and let (V k,n ) n∈N be a sequence in P α (G k ). Set β := min{ν 0 , ν 1 , . . . , ν s }, and let ε ∈ ]0, min{1, β}[,

let (λ n ) n∈N be a sequence in [ε, 1]. Let (x i,0 ) 1≤i≤m ∈ H 1 × . . . × H m and (v k,0 ) 1≤k≤s ∈ G 1 × . . . × G s .
Then, iterate, for every n ∈ N,

(i) For i = 1, . . . , m 1. t i,n := s k=1 L * k,i v k,n + ∇ i ϕ n (x 1,n , . . . , x m,n ) + c i,n 2. p i,n := prox U -1 i,n fi x i,n -U i,n (t i,n -z i ) + a i,n 3. y i,n := 2p i,n -x i,n 4. x i,n+1 := x i,n + λ n (p i,n -x i,n ) (ii) For k = 1, . . . , s 1. w k,n := m i=1 L k,i y i,n -∇ ℓ k,n (v k,n ) -d k,n 2. q k,n := prox V -1 k,n g * k v k,n + V k,n (w k,n -r k ) + b k,n 3. v k,n+1 := v k,n + λ n (q k,n -v k,n ), (64) 
where, for every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, the following conditions hold.

(a) (∀n ∈ N) U i,n+1 U i,n and V k,n+1 V k,n , and

µ := sup n∈N { U 1,n , . . . , U m,n , V 1,n , . . . , V s,n } < +∞. (b) (ϕ n ) n∈N are differentiable functions in Γ 0 (H 1 × . . . × H m ) such that (b1) (∇ i ϕ n -∇ i ϕ) n∈N are Lipschitz continuous with respective constants (κ i,n ) n∈N ∈ ]0, +∞[ satisfying n∈N κ i,n < +∞.
(b2) There exists s ∈ H 1 × . . . × H m not depending on i such that

(∀n ∈ N) ∇ i ϕ n (s) = ∇ i ϕ(s). (c) ( ℓ k,n ) n∈N are differentiable functions in Γ 0 (G k ) such that (c1) (∇ ℓ k,n -∇ℓ * k ) n∈N are Lipschitz continuous with respective constants (η k,n ) n∈N ∈ ]0, +∞[ satisfying n∈N η k,n < +∞. (c2) There exists w := (w j ) 1≤j≤s ∈ G 1 × . . . × G s not depending on k such that (∀n ∈ N) ∇ ℓ k,n (w k ) = ∇ℓ * k (w k ). (d) (a i,n ) n∈N and (c i,n ) n∈N are absolutely summable sequences in H i . (e) (b k,n ) n∈N and (d k,n ) n∈N are absolutely summable sequences in G k .
Corollary 5.1 Suppose that there exists L k0,i0 = 0, for some i 0 ∈ {1, . . . , m} and k 0 ∈ {1, . . . , s}, and (12) is satisfied. For every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, let (x i,n ) n∈N and (v k,n ) n∈N be sequences generated by Algorithm 5.1. Then, the following hold for some solution (x 1 , . . . , x m ) to (61) and (v 1 , . . . , v s ) to (63).

(a) (∀i ∈ {1, . . . , m}) x i,n ⇀ x i and (∀k ∈ {1, . . . , s}) v k,n ⇀ v k . (b) Suppose that ϕ is defined as in Example 5.1(a) and h j is uniformly convex at x j , for some j ∈ {1, . . . , m}, then x j,n → x j . (c) Suppose that ℓ * j is uniformly convex at v j , for some j ∈ {1, . . . , s}, then v j,n → v j .

Proof. Set (∀i ∈ {1, . . . , m}) A i := ∂f i and

C i := ∇ i ϕ, C i,n = ∇ i ϕ n (∀k ∈ {1, . . . , s}) B k := ∂g k and D k := ∂ℓ k , S k,n = ∇ ℓ k,n . (65) 
Then, it follows from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 20.40] 

g k ) = ∂g k ∂ℓ k = B k D k . (66) 
Let H and G be defined as in the proof of Theorem 3.1, and let L, z and r be defined as in [START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF], and define

     f : H → ]-∞, +∞[ : x → m i=1 f i (x i ) g : G → ]-∞, +∞[ : v → s k=1 g k (v k ) ℓ : G → ]-∞, +∞[ : v → s k=1 ℓ k (v k ).
Observe that [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 13.27],

f * : y → m i=1 f * i (y i ), g * : v → s k=1 g * k (v k ), and ℓ * : v → s k=1 ℓ * k (v k ).
We also have

ℓ g : v → s k=1 (ℓ k g k )(v k ).
Then, the primal problem becomes

minimize x∈H f (x) -x | z + (ℓ g)(Lx -r) + ϕ(x), (67) 
and the dual problem becomes minimize v∈G

(ϕ * f * )(z -L * v) + ℓ * (v) + g * (v) + v | r . (68) 
Then, by (62), x = (x 1 , . . . , x m ) is a solution to (53), i.e., for every i in {1, . . . , m},

z i ∈ ∂f i (x i ) + s k=1 L * k,i ∂ℓ k ∂g k m j=1 L k,j x j -r k + ∇ i ϕ(x).
Then, using (65), (66), [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 16.38(iii)], [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 16.8],

0 ∈ ∂ f + • | z (x) + L * ∂(ℓ g)(Lx -r) + ∇ϕ(x). (69) 
Therefore, by [6, Proposition 16.5(ii)], we derive from (69) that

0 ∈ ∂ f + • | z + (ℓ g)(L • -r) + ϕ (x).
Hence, by Fermat's rule [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 16.2] that x is a solution to (67), i.e, x is a solution to (61). We next let v be a solution to (54). Then, using [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 15.3] and (5),

-r ∈ -L (∂f + ∇ϕ) -1 (z -L * v) + (∂g) -1 (v) + (∂ℓ) -1 (v) = -L ∂(f + ϕ) * (z -L * v) + ∂g * (v) + ∂ℓ * (v) = -L ∂(f * ϕ * )(z -L * v) + ∂g * (v) + ∂ℓ * (v). (70) 
Therefore, by [6, Proposition 16.5(ii)], we derive from (70) that

0 ∈ ∂ (ϕ * f * )(z -L * •) + ℓ * + g * + • | r (v).
Hence 

) k∈K ⊂ H (∅ = K ⊂ N) is a dictionary with dictionary constant µ in ]0, +∞[ if (∀x ∈ H) k∈K | x | o k | 2 ≤ µ x 2 .
Then, the dictionary operator is defined by

F : H → ℓ 2 (K) : x → ( x | o k ) k∈K (71) 
and its adjoint is

F * : ℓ 2 (K) → H : (ω k ) k∈K → k∈K ω k o k .
Dictionary extends the notion of orthonormal bases and frames which play a significant role in the theory of signal processing. It is mainly due to their ability to efficiently capture a wide range of signal features; see [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Cai | Convergence analysis of tight framelet approach for missing data recovery[END_REF][START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF][START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF] and the references therein. The focus of this section is to explore the information of the original signals (x i ) 1≤i≤m which are assumed to be available on the coefficients of dictionaries (( x i | o i,j ) 1≤i≤m ) j∈K and close to (soft constraints) nonempty, closed and convex subsets (C i ) 1≤i≤m modeling their prior information. The rest of the information available will be modeled by potential functions (f i ) 1≤i≤m (hard constraints). Furthermore, the data-fitting terms are measured by non-smooth functions.

Problem 6.1 Let H be a real Hilbert space, let m and s be strictly positive integers such that s > m, let γ ∈ ]0, +∞[, and let K be a nonempty subset of N. For every i ∈ {1, . . . , m}, let G i := ℓ 2 (K), let f i ∈ Γ 0 (H), let (o i,j ) j∈K be a dictionary in H with associated dictionary operator F i and dictionary constant µ i , let (φ i,j ) j∈K be a sequence in Γ 0 (R) such that (∀j ∈ K) φ i,j ≥ φ i,j (0) = 0, let C i be a nonempty closed convex subset of H. 

f i (x i ) + m i=1 j∈K φ i,j ( x i | o i,j ) + s k=m+1 β k r k - m i=1 R k,i x i + γd C (x 1 , . . . , x m ) 2 /2 (72) 
and the dual problem is to minimize (ξ1,...,ξm,vm+1,...,vs)∈W

m i=1 (σ Ci + 1 2γ • 2 ) f * i -F * i ξ i - s k=m+1 R * k,i v k + m k=1 j∈K φ * i,j (ξ i,j ) + s k=m+1 r k | v k , (73) 
where W is defined by 

W := (ξ 1 , . . . , ξ m , v m+1 , . . . , v s ) :      ξ 1 ∈ ℓ 2 (K), . . . , ξ m ∈ ℓ 2 (K), v m+1 ∈ G m+1 , . . . , v s ∈ G s , v m+1 ≤ β m+1 , . . . , v s ≤ β s , . Lemma 
              ((k, i) ∈ {1, . . . , m} 2 ) z i := 0, G k := ℓ 2 (K), r k := 0 and ℓ k := ι {0} , (∀k ∈ {1, . . . , m})(i ∈ {1, . . . , m}) L i,i := F i and L k,i := 0 otherwise, (∀k ∈ {1, . . . , m}) g k : ℓ 2 (K) → ]-∞, +∞] : ξ k → j∈K φ k,j (ξ k,j ), (∀k ∈ {m + 1, . . . , s}) G k := Y k , ℓ k := ι {0} and g k := β k • , (∀k ∈ {m + 1, . . . , s})(∀i ∈ {1, . . . , m}) L k,i := R k,i . (74) 
Proof. Let us note that, by [6, Corollary 12.30], ϕ is a convex differentiable function with 

(∀x ∈ (H i ) 1≤i≤m ) ∇ϕ(x) = γ(x -P C x) = γ(x i -P Ci x i ) 1≤i≤m . (75) 
(∀v ∈ G k ) (ℓ k g k )(v) = inf w∈G k ℓ k (w) + g k (v -w) = g k (v). (76) 
Therefore, in view of (71) and Lemma 6.1, for every i ∈ {1, . . . , m} and every

x i ∈ H, we have m k=1 ℓ k g k m i=1 L k,i x i -r k = m i=1 g i (F i x i ) = m i=1 j∈K φ i,j ( x i | o i,j ). (77) 
We derive from (77), Lemma 6. We derive from (77), Lemma 6.1, (78), ( 79) and ( 80) that (63) reduces to (73). {γ i , γ m+k }.

For every i ∈ {1, . . . , m}, let ((α i,n,j ) j∈K ) n∈N be a sequence in R such that where L k,i is defined in Lemma 6.1. Let (x 1,n , . . . , x m,n ) n∈N and (ξ 1,n , . . . , ξ m,n , v m+1,n , . . . , v s,n ) n∈N be sequences generated by Algorithm 6.1. Then, the following hold for some solution (x 1 , . . . , x m ) to (72) and (ξ 1 , . . . , ξ m , v m+1 , . . . , v s ) to (73).

(a) (x 1,n , . . . , x m,n ) ⇀ (x 1 , . . . , x m ). (b) (ξ 1,n , . . . , ξ m,n , v m+1,n , . . . , v s,n ) ⇀ (ξ 1 , . . . , ξ m , v m+1 , . . . , v s ).

(c) If C j = {0}, for some j ∈ {1, . . . , m}, then x j,n → x j .

Proof. For every i ∈ {1, . . . , m} and every j ∈ K, we have φ * i,j ≥ φ * i,j (0) = 0. Therefore, we derive from (78) and [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 23.31] that (∀ξ := (ξ j ) j∈K ∈ ℓ 2 (K)) prox g * i ξ = (prox φ * i,j ξ j ) j∈K .

Next, for every k ∈ {m + 1, . . . , s}, using (78) again, we have

(∀v ∈ G k ) prox g * k v = P B k (0;β k ) v = β k v/ max{β k , v }. ( 85 
)
In view of (84), ( 85), (75) and the definition of ((L k,i ) 1≤k≤s ) 1≤i≤m in Lemma 6.1, the algorithm (83) is a special case of ( 64 Moreover, we derive from (82) that the sequences ((b i,n ) n∈N ) 1≤i≤m are absolutely summable, and from (81) that ( 12) holds. Finally, since (61) has at least one solution and (0, . . . , 0, r m+1 , . . . , r s ) belongs to the strong relative interior of E, as mentioned in Remark 5.1(a) that (62) holds. To sup up, every specific condition of Algorithm 5.1 and Corollary 5.1 is satisfied. Therefore, the conclusions follow from Corollary 5.1(a)(b).

Conclusions

We have introduced a flexible duality framework to unify various duality frameworks involving cocoercive operators in the literature, and provided new applications beyond the state-of-the art. The problem of choosing the metrics at each iteration for the concrete problems in image processing is open.

Theorem 2 . 1 [ 24 ,

 2124 Theorem 4.1] Let K be a real Hilbert space with scalar product • | • and the associated norm ||| • |||. Let A : K ⇉ K be maximally monotone and B : K → K be β-cocoercive such that

Remark 3 . 1

 31 ) (b k,n ) n∈N and (d k,n ) n∈N are absolutely summable sequences in G k . Here are some remarks. (a) Our algorithm has basically a structure of the variable metric forwardbackward splitting since the multi-valued operators are used individually in the backward steps via their resolvents, the single-valued operators are used individually in the forward steps via their approximation values. (b) The algorithm allows the metric to vary over the course of the iterations.

imply that n∈N |||e 1 ,

 1 n ||| V n < +∞. (51) Therefore, (40) and (41) are proved. (a): By Theorem 2.1(a), p n ⇀ p ∈ zer(M + S + Q). (b)(c): By Theorem 2.1(b) and (c),

  and (c i,n ) n∈N are absolutely summable sequences in H i . (e) (b k,n ) n∈N and (d k,n ) n∈N are absolutely summable sequences in G k .

  ) is satisfied. Note that the conditions (a), (b), (d), and (e) in Algorithm 4.1 are the same as in Algorithm 3.1. Let us check the condition (c) in Algorithm 3.1. For every n ∈ N, define

  5.1 reduces to the general minimization problem [30, Problem 5.1] which covers a wide class of the convex minimization problems in the literature. (b) In the case when ϕ : (x 1 , . . . , x m ) → 0 and, for every k ∈ {1, . . . , s}, ℓ k := ι {0} and g k is a convex differentiable function with τ -1 k -Lipschitz continuous gradient, for some τ k ∈ ]0, +∞[, Problem 5.1 reduces to [41, Problem 1.1]. (c) In the case when m = 1, Problem 5.1 reduces to [27, Problem 4.1] which

σ

  1 and (76) that (61) reduces to (72). For every k ∈ {m + 1, . . . , s}, let B k (0; β k ) be the closed ball of Y k , center at 0 with radius β k . Using [6, Example 13.3(v)], [6, Proposition 13.27] and [6, Example 13.23], we obtain    (∀k ∈ {m + 1, . . . , s}) g * k= (β k • ) * = ι B k (0;β k ) , (∀i ∈ {1, . . . , m}) g * i : (ξ i,j ) j∈K → j∈K φ * i,j (ξ i,j ),(78)andϕ * = σ C + (γ| • | 2 /2) * • • = σ C + • 2 /(2γ) = m i=1 Ci + • 2 /(2γ) .

Lemma 6 .

 6 1 allows to solve Problem 6.1 by Algorithm 5.1. More precisely, we have the following algorithm.Algorithm 6.1 Let ε ∈ ]0, min{1, γ}[, let (λ n ) n∈N be a sequence in [ε, 1], let (γ i ) 1≤i≤s+m be a finite sequence in [ε, +∞[ such that (2γ -ε) 1 -m i=1 γ i µ i γ m+i + m i=1 s k=m+1 γ i γ m+k R k,i 2 ≥ χ,

4 .Corollary 6 . 1

 461 x i,n+1 := x i,n + λ n (p i,n -x i,n ) (ii) For k = 1, . . . , m For every j ∈ K ξ k,n+1,j := ξ k,n,j + λ n prox γ m+k φ * k,j ξ k,n,j + γ m+k y k,n | o k,j +α k,n,j -ξ k,n,j (iii) For k = m + 1, . . . , s 1. w k,n = m i=1 R k,i y i,n 2. v k,n+1 := v k,n + λ n β k v k,n + γ m+k (w k,n -r k ) max β k , v k,n + γ m+k w k,n -r k -v k,n .Suppose that (72) has at least one solution and (0, . . . , 0, r m+1 , . . . , r s ) belongs to the strong relative interior of E defined bym i=1 L k,i x i -v k 1≤k≤s : {1, . . . , m}) x i ∈ dom f i (∀k ∈ {1, . . . , m}) v k ∈ ℓ 2 (K), g k (v k ) < +∞ (∀k ∈ {m + 1, . . . , s}) v k ∈ Y k ,

  ) with(∀n ∈ N)(∀i ∈ {1, . . . , m})(∀k ∈ {1, . . . , s})          U i,n = γ i Id, V k,n = γ m+k Id, c i,n = 0 and d k,n = 0, b i,n = (α i,n,j ) j∈K .

  Then, A is demiregular at x in each of the following cases.

	(a) A is uniformly monotone at x, i.e., there exists an increasing function
	φ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

Definition 2.1 [1, Definition 2.3] An operator A : H ⇉ H is demiregular at x ∈ dom A iff, for every sequence ((x n , u n )) n∈N in gra A and every u ∈ Ax such that x n ⇀ x and u n → u, we have x n → x. Lemma 2.1 [1, Proposition 2.4] Let A : H ⇉ H be monotone and suppose that x ∈ dom A.

  g) A = ∂f , where f ∈ Γ 0 (H) and, for every ξ ∈ R, x ∈ H : f (x) ≤ ξ is boundedly compact.

	Lemma 2.2 [24, Lemma 3.7] Let A : H ⇉ H be maximally monotone, let α ∈ ]0, +∞[, let U ∈ P α (H), and let G be the real Hilbert space obtained by endowing H with the scalar product (x, y) → x | y U -1 := x | U -1 y . Then, the following hold.
	(a) U A : G ⇉ G is maximally monotone. (b) J UA : G → G is 1-cocoercive, i.e., firmly nonexpansive, hence nonexpansive. (c)

  maximally monotone and ν k -strongly monotone for some ν k in ]0, +∞[, let B k : G k ⇉ G k be maximally monotone. For every i ∈ {1, . . . , m} and every k ∈ {1, . . . , s}, let L k,i : H i → G k be a bounded linear operator. The primal inclusion is to find x

  that (A i ) 1≤i≤m , (B k ) 1≤k≤s , and (D k ) 1≤k≤s are maximally monotone. Moreover, (C 1 , . . . , C m ) := ∇ϕ is ν 0cocoercive[START_REF] Baillon | Quelques propriétés des opérateurs angle-bornés et ncycliquement monotones[END_REF][START_REF] Bauschke | The Baillon-Haddad theorem revisited[END_REF]. Since, for every k ∈ {1, . . . , s}, ℓ k is ν k -strongly convex, ∂ℓ k is ν k -strongly monotone. Therefore, every condition on the operators in Problem 2.1 is satisfied. Since, for every k ∈ {1, . . . , s}, dom ℓ * k = G k , we next derive from [6, Proposition 24.27] that ∀k ∈ {1, . . . , s} ∂(ℓ k

  , by Fermat's rule[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Theorem 16.2] that v is a solution to (68), i.e, v is a solution to (54). Now, in view of (4), algorithm (64) is a special case of the algorithm (55). Moreover, every specific condition in Corollary 4.1 is satisfied.(a): It follows from Corollary 4.1(a) that (x 1,n , . . . , x m,n ) ⇀ (x 1 , . . . , x m ) which solves the primal problem (61), and that (v 1,n , . . . , v s,n ) ⇀ (v 1 , . . . , v s ) which solves the dual problem (63).

(b)(c): The conclusions follow from Corollary 4.1(c)(d) and Lemma 2.1(b). Remark 5.1 Here are some remarks. (a) Sufficient conditions, which ensure that the condition (62) is satisfied, are provided in [30, Proposition 5.3]. For instance, if (61) has at least one solution and (r 1 , . . . , r s ) belongs to the strong relative interior of E defined by m i=1 L k,i x i -v k 1≤k≤s : (∀i ∈ {1, . . . , m}) x i ∈ dom f i (∀k ∈ {1, . . . , s}) v k ∈ dom g k + dom ℓ k . (b) In the case when m = 1, the algorithm (64) reduces to [24, Eq.(5.26)] where the connections to existing work are available. 6 Multi-dictionary Signal Representation Dictionaries have been used in the variational signal processing problems [45, Section 4.3]. Let us recall that a sequence of unit norm vectors (o k

  6.1 Problem 6.1 is a special case of Problem 5.1 with ϕ := γd 2 C /2 and ν 0 := γ, and 

  Since Id -P C is firmly nonexpansive[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Proposition 4.8], ∇ϕ is γ-cocoercive. Next, for every k ∈ {1, . . . , s}, G k is a real Hilbert space and ℓ k ∈ Γ 0 (G k ) and by[START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] Example 2.19], g k ∈ Γ 0 (G k ). Hence the conditions imposed on the functions in Problem 5.1 are satisfied. Now we have

  let (a i,n ) n∈N be a absolutely summable sequence in H. Fix (x i,0 ) 1≤i≤m in H 1 × . . . × H m , and for every i ∈ {1, . . . , m}, fix (ξ i,0,j ) j∈K in ℓ 2 (K) and(v k,0 ) m+1≤k≤s in G m+1 × . . . × G s . Then, iterate, for every n ∈ N, (i) For i := 1, . . . , m 1. t i,n = j∈K ξ i,n,j o i,j + s k=m+1 R * k,i v k,n + γ(x i,n -P Ci x i,n ) 2. p i,n = prox γifi (x i,n -γ i t i,n ) + a i,n 3. y i,n = 2p i,n -x i,n

	n∈N	j∈K	|α i,n,j | 2 < +∞,	(82)
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