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Abstract We propose a splitting algorithm for solving a coupled system of
primal-dual monotone inclusions in real Hilbert spaces. The proposed algo-
rithm has a structure identical to that of the forward-backward algorithm
with variable metric. The operators involved in the problem formulation are
used separately in the sense that single-valued operators are used individu-
ally and approximately in the forward steps and multi-valued operators are
used individually via their generalization resolvent in the backward steps. The
weak convergence of the algorithm proposed is proved. Applications to cou-
pled system of monotone inclusions in duality and minimization problems, and
multi-dictionary signal representation are demonstrated.
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1 Introduction

Various problems in applied mathematics such as evolution inclusions [1], par-
tial differential equations [2–4], mechanics [5], variational inequalities [6,7],
Nash equilibria [8], and optimization problems [9–14], reduce to solving mono-
tone inclusions. The simplest monotone inclusion is to find a zero point of a
maximally monotone operator acting on a real Hilbert space. This problem
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can be solved efficiently by the proximal point algorithm when the resolvent
of the operator is easy to implement numerically [15] (see [16–22] in the con-
text of variable metric). The problem was then extended to the problem of
finding a zero point of the sum of a maximally monotone operator and a
cocoercive operator. In this case, we can use the forward-backward splitting
algorithm [1,4,14,23] (see [24] in the context of variable metric). When the
cocoercive operator is relaxed to be Lipschitzian and monotone, the problem
can be solved by the forward-backward-forward splitting algorithm in [9,25]
(see [26] for the variable metric extension of this algorithm). We also note that
when the single-valued operator is replaced by any maximally monotone and
multi-valued operator, we also have Douglas-Rachford splitting method; see
[23] and the references therein.

The first composite monotone inclusion was studied in [9] for the sum of a
composite operator and a maximally monotone operator. They have proposed
a new primal-dual splitting algorithm to solve it as well as its dual problem.
This framework was then extended to the inclusion with mixtures of com-
posite, Lipschitzian, and parallel-sum type monotone operators [27]. In the
special cases of [27], for instance, when the Lipschitzian monotone operator
is either cocoercive or maximally monotone and multi-valued operator, alter-
native algorithms were also proposed [28], [29] (the variable metric versions
of the algorithms in [27] and [28] were presented [26] and [24], respectively).
Very recently, these frameworks have been unified into a system of monotone
inclusions with mixtures of composite, Lipschitzian, and parallel-sum type
monotone operators in [30].

Observe that when the problem has a structure, for examples, mixtures of
composite, Lipschitzian or cocoercive, and parallel-sum type monotone oper-
ators as in [24,26–28], existing purely primal splitting methods do not offer
satisfactory options to solve the problem due to the appearance of the com-
posite components and hence alternative primal-dual strategies must be ex-
plored. In this paper, motivated by coupled monotone inclusions and systems
of monotone inclusions, we address the numerical solutions of coupled system
of primal-dual inclusions in real Hilbert spaces. We develop a flexible algo-
rithm to solve this problem, analyze its asymptotic behavior, and show that
it can solve several problems beyond the state of the art.

In the present paper, we state the coupled system of monotone inclusions
under investigation and recall some notations and background on the mono-
tone operator theory in Section 2. We propose a primal-dual splitting algo-
rithm for solving this problem in Section 3. In Section 4, we provide application
to coupled system of monotone inclusions in duality. Section 5 is devoted to
applications to minimization problems. Section 6 is an application to multi-
dictionary signal representation.
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2 Problem Formulation and Technical Results

2.1 Problem Formulation

In this paper, we focus on solving the following coupled system of monotone
inclusions.

Problem 2.1 Let m and s be strictly positive integers, let ν0 and µ0 be in
]0,+∞[. For every i ∈ {1, . . . ,m}, let (Hi, 〈· | ·〉) be a real Hilbert space, let
zi ∈ Hi, let Ai : Hi ⇉ Hi be maximally monotone, let Ci : H1×. . .×Hm → Hi

be such that, for every x := (xi)1≤i≤m and y := (yi)1≤i≤m in H1 × . . .×Hm,

m∑

i=1

〈xi − yi | Cix− Ciy〉 ≥ ν0

m∑

i=1

‖Cix− Ciy‖2. (1)

For every k ∈ {1, . . . , s}, let (Gk, 〈· | ·〉) be a real Hilbert space, let rk ∈ Gk,
let Bk : Gk ⇉ Gk be maximally monotone, let Sk : G1 × . . .× Gs → Gk be such
that, for every v := (vk)1≤k≤s and w := (wk)1≤k≤s in G1 × . . .× Gs,

s∑

k=1

〈vk − wk | Skv − Skw〉 ≥ µ0

s∑

k=1

‖Skv − Skw‖2. (2)

For every i ∈ {1, . . . ,m} and for every k ∈ {1, . . . , s}, let Lk,i : Hi → Gk

be a bounded linear operator. The problem is to find x := (x1, . . . , xm) in
H1 × . . .×Hm and v := (v1, . . . , vs) in G1 × . . .× Gs such that





z1 −
s∑

k=1

L∗
k,1vk ∈ A1x1 + C1x

...

zm −
s∑

k=1

L∗
k,mvk ∈ Amxm + Cmx

and





m∑

i=1

L1,ixi − r1 ∈ B1v1 + S1v

...
m∑

i=1

Ls,ixi − rs ∈ Bsvs + Ssv.

(3)
We denote by Ω the set of solutions to (3).

In the case when ((Lk,i)1≤k≤s)1≤i≤m are zero, we can use the algorithm
in [1] to solve the inclusions on the left hand side and the right hand side
of (3) separately. Let us note that the non-linear coupling terms (Ci)1≤i≤m

and (Sk)1≤k≤s were introduced in [1] and they are cocoercive operators which
often play a central role; see for instance [1,3–7,14,23,31–33]. Let us add that
the general algorithm in [30] can solve Problem 2.1 for the case when Ci and
Sk are univariate, monotone and Lipschitzian. The algorithm proposed in [34]
can solve Problem 2.1 for the case when s = m, and (Ai)1≤i≤m are zero,
(Si)1≤i≤m are univariate, and for each (k, i) ∈ {1, . . . ,m}2 with k 6= i, Lk,i

is zero. Furthermore, the primal-dual algorithm in [24, Section 6] can solve
Problem 2.1 for the case when m = 1 and each Sk is univariate, cocoercive.
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To sum up, recent frameworks can solve special cases of Problem 2.1 and no
existing algorithm can solve it in the general case.
Notation and background. Throughout, H and G, and (Gi)1≤i≤m are real
Hilbert spaces. Their scalar products and associated norms are respectively
denoted by 〈· | ·〉 and ‖ · ‖. We denote by B (H,G) the space of bounded linear
operators from H to G. The adjoint of L ∈ B (H,G) is denoted by L∗. We
set B (H) := B (H,H). The symbols ⇀ and → denote respectively weak and
strong convergence, and Id denotes the identity operator, we denote by ℓ1+(N)
the set of summable sequences in [0,+∞[ and by ℓ2(K) (∅ 6= K ⊂ N) the set
of square summable sequences, indexed by K, in R.

Let M1 and M2 be self-adjoint operators in B (H), we write

M1 < M2 iff (∀x ∈ H) 〈M1x | x〉 ≥ 〈M2x | x〉 .

Let α ∈ ]0,+∞[. We set

Pα(H) :=
{
M ∈ B (H) : M∗ = M and M < α Id

}
.

The square root of M in Pα(H) is denoted by
√
M . Moreover, for every M in

Pα(H), we define respectively a scalar product and a norm by

(∀x ∈ H)(∀y ∈ H) 〈x | y〉M := 〈Mx | y〉 and ‖x‖M :=
√
〈Mx | x〉.

Let A : H ⇉ H be a set-valued operator. The domain and the graph of A are
respectively defined by

domA :=
{
x ∈ H : Ax 6= ∅

}
and graA :=

{
(x, u) ∈ H ×H : u ∈ Ax

}
.

The set of zeros and the range of A are respectively defined by

zerA :=
{
x ∈ H : 0 ∈ Ax

}
and ranA :=

{
u ∈ H : (∃ x ∈ H) u ∈ Ax

}
.

The inverse of A and the resolvent of A are respectively defined by

A−1 : H ⇉ H : u 7→
{
x ∈ H : u ∈ Ax

}
and JA := (Id+A)−1.

Moreover, A is monotone iff

(∀(x, y) ∈ H ×H)(∀(u, v) ∈ Ax×Ay) 〈x− y | u− v〉 ≥ 0,

and maximally monotone iff it is monotone and there exists no monotone
operator B : H ⇉ H such that graA ⊂ graB and A 6= B. A single-valued
operator B : H → H is β-cocoercive, for some β ∈ ]0,+∞[, iff

(∀x ∈ H)(∀y ∈ H) 〈x− y | Bx −By〉 ≥ β‖Bx−By‖2.

The parallel sum of A : H ⇉ H and B : H ⇉ H is

A � B := (A−1 +B−1)−1.
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Let Γ0(H) be the class of proper lower semicontinuous convex functions from
H to ]−∞,+∞]. For any U ∈ Pα(H) and f ∈ Γ0(H), we define

JU−1∂f := proxUf : H → H : x 7→ argmin
y∈H

(
f(y) +

1

2
‖x− y‖2U

)
, (4)

and

J∂f := proxf : H → H : x 7→ argmin
y∈H

(
f(y) +

1

2
‖x− y‖2

)
,

and the conjugate function of f is

f∗ : a 7→ sup
x∈H

(
〈a | x〉 − f(x)

)
.

Note that,

(∀f ∈ Γ0(H))(x ∈ H)(y ∈ H) y ∈ ∂f(x) ⇔ x ∈ ∂f∗(y),

or equivalently,

(∀f ∈ Γ0(H)) (∂f)−1 = ∂f∗. (5)

The infimal convolution of the two functions f and g from H to ]−∞,+∞] is

f � g : x 7→ inf
y∈H

(f(y) + g(x− y)).

The indicator function of a nonempty, closed and convex set C is denoted by
ιC , its conjugate is the support function σC , the distance function of C is
denoted by dC . Finally, the strong relative interior of a subset C of H is the
set of points x ∈ C such that the cone generated by −x+C is a closed vector
subspace of H.

2.2 Technical Results

We recall some results on monotone operators.

Definition 2.1 [1, Definition 2.3] An operator A : H ⇉ H is demiregular at
x ∈ domA iff, for every sequence ((xn, un))n∈N in graA and every u ∈ Ax
such that xn ⇀ x and un → u, we have xn → x.

Lemma 2.1 [1, Proposition 2.4] Let A : H ⇉ H be monotone and suppose
that x ∈ domA. Then, A is demiregular at x in each of the following cases.

(a) A is uniformly monotone at x, i.e., there exists an increasing function
φ : [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(∀u ∈ Ax)(∀(y, v) ∈ graA) 〈x− y | u− v〉 ≥ φ(‖x− y‖).

(b) A is strongly monotone, i.e., there exists α ∈ ]0,+∞[ such that A − α Id
is monotone.
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(c) JA is compact, i.e., for every bounded set C ⊂ H, the closure of JA(C)
is compact. In particular, domA is boundedly relatively compact, i.e., the
intersection of its closure with every closed ball is compact.

(d) A : H → H is single-valued with a single-valued continuous inverse.
(e) A is single-valued on domA and Id−A is demicompact, i.e., for every

bounded sequence (xn)n∈N in domA such that (Axn)n∈N converges strongly,
(xn)n∈N admits a strong cluster point.

(f) A = ∂f , where f ∈ Γ0(H) is uniformly convex at x, i.e., there exists an
increasing function φ : [0,+∞[ → [0,+∞] that vanishes only at 0 such
that, for every α ∈ ]0, 1[ and every y ∈ dom f,

f
(
αx + (1− α)y

)
+ α(1 − α)φ(‖x− y‖) ≤ αf(x) + (1− α)f(y).

(g) A = ∂f , where f ∈ Γ0(H) and, for every ξ ∈ R,
{
x ∈ H : f(x) ≤ ξ

}
is

boundedly compact.

Lemma 2.2 [24, Lemma 3.7] Let A : H ⇉ H be maximally monotone, let
α ∈ ]0,+∞[, let U ∈ Pα(H), and let G be the real Hilbert space obtained by
endowing H with the scalar product (x, y) 7→ 〈x | y〉U−1 :=

〈
x | U−1y

〉
. Then,

the following hold.

(a) UA : G ⇉ G is maximally monotone.
(b) JUA : G → G is 1-cocoercive, i.e., firmly nonexpansive, hence nonexpansive.
(c) JUA = (U−1 +A)−1 ◦ U−1.

Lemma 2.3 Let α and β be strictly positive reals, let B : H → H be β-
cocoercive, let U ∈ Pα(H) be such that ‖U−1‖ < 2β and set P := Id−U−1B.
Then,

(∀x ∈ H)(y ∈ H) ‖Px−Py‖2U ≤ ‖x− y‖2U − (2β−‖U−1‖)‖Bx−By‖2. (6)

Hence, P is nonexpansive with respect to the norm ‖ · ‖U .

Proof. Let x ∈ H and y ∈ H. Then, using the cocoercivity of B, we have

‖Px− Py‖2U = ‖x− y‖2U − 2 〈x− y | Bx−By〉+ ‖U−1(Bx−By)‖2U
≤ ‖x− y‖2U − 2β‖Bx− By‖2 +

〈
Bx−By | U−1(Bx−By)

〉

≤ ‖x− y‖2U − (2β − ‖U−1‖)‖Bx−By‖2,

which proves (6).

Theorem 2.1 [24, Theorem 4.1] Let K be a real Hilbert space with scalar
product 〈〈· | ·〉〉 and the associated norm ||| · |||. Let A : K ⇉ K be maximally
monotone and B : K → K be β-cocoercive such that

Z := zer(A+B) 6= ∅. (7)

Let α ∈ ]0,+∞[, let β ∈ ]0,+∞[, let (ηn)n∈N be a sequence in ℓ1+(N), and let
(Un)n∈N be a sequence in Pα(K) such that

µ := sup
n∈N

‖Un‖ < +∞ and (∀n ∈ N) (1 + ηn)Un+1 < Un. (8)
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Let ε ∈ ]0,min{1, 2β/(µ+ 1)}], let (λn)n∈N be a sequence in [ε, 1], let (γn)n∈N

be a sequence in [ε, (2β − ε)/µ], let x0 ∈ K, and let (an)n∈N and (bn)n∈N be
absolutely summable sequences in K. Then, iterate, for every n ∈ N,

1. yn := xn − γnUn(Bxn + bn)
2. xn+1 := xn + λn

(
JγnUnA(yn) + an − xn

)
.

(9)

Then, the following hold for some x ∈ Z.

(a) xn ⇀ x.
(b)

∑
n∈N

|||Bxn −Bx|||2 < +∞.
(c) Suppose that at every point in Z, A or B is demiregular, then xn → x.

3 Algorithm and Convergence

We propose the following algorithm for solving Problem 2.1.

Algorithm 3.1 Let α ∈ ]0,+∞[ and, for every i ∈ {1, . . . ,m} and every
k ∈ {1, . . . , s}, let (Ui,n)n∈N be a sequence in Pα(Hi) and let (Vk,n)n∈N be a se-
quence in Pα(Gk). Set β := min{ν0, µ0}, and let ε ∈ ]0,min{1, β}[, let (λn)n∈N

be a sequence in [ε, 1]. Fix (xi,0)1≤i≤m in H1 × . . . × Hm and (vk,0)1≤k≤s in
G1 × . . .× Gs. Then, iterate, for every n ∈ N,

(i) For i = 1, . . . ,m
1. ti,n :=

∑s
k=1 L

∗
k,ivk,n + Ci,n(x1,n, . . . , xm,n) + ci,n

2. pi,n := JUi,nAi

(
xi,n − Ui,n(ti,n − zi)

)
+ ai,n

3. yi,n := 2pi,n − xi,n

4. xi,n+1 := xi,n + λn(pi,n − xi,n)
(ii) For k = 1, . . . , s

1. wk,n :=
∑m

i=1 Lk,iyi,n − Sk,n(v1,n, . . . , vs,n)− dk,n

2. qk,n := JVk,nBk

(
vk,n + Vk,n

(
wk,n − rk

))
+ bk,n

3. vk,n+1 := vk,n + λn(qk,n − vk,n),

(10)

where, for every i ∈ {1, . . . ,m} and every k ∈ {1, . . . , s}, the following condi-
tions hold.

(a) (∀n ∈ N) Ui,n+1 � Ui,n and Vk,n+1 � Vk,n, and

µ := sup
n∈N

{‖U1,n‖, . . . , ‖Um,n‖, ‖V1,n‖, . . . , ‖Vs,n‖} < +∞.

(b) (Ci,n)n∈N are operators from H1 × . . .×Hm to Hi such that
(b1) (Ci,n−Ci)n∈N are Lipschitz continuous with respective constants (κi,n)n∈N

∈ ]0,+∞[ satisfying ∑

n∈N

κi,n < +∞.



8 B`̆ang Công Vũ

(b2) There exists s ∈ H1 × . . .×Hm not depending on i such that

(∀n ∈ N) Ci,ns = Cis.

(c) (Sk,n)n∈N are operators from G1 × . . .× Gs to Gk such that
(c1) (Sk,n−Sk)n∈N are Lipschitz continuous with respective constants (ηk,n)n∈N

∈ ]0,+∞[ satisfying ∑

n∈N

ηk,n < +∞.

(c2) There exists w ∈ G1 × . . .× Gs not depending on k such that

(∀n ∈ N) Sk,nw = Skw.

(d) (ai,n)n∈N and (ci,n)n∈N are absolutely summable sequences in Hi.
(e) (bk,n)n∈N and (dk,n)n∈N are absolutely summable sequences in Gk.

Remark 3.1 Here are some remarks.

(a) Our algorithm has basically a structure of the variable metric forward-
backward splitting since the multi-valued operators are used individually
in the backward steps via their resolvents, the single-valued operators are
used individually in the forward steps via their approximation values.

(b) The algorithm allows the metric to vary over the course of the iterations.
Even when restricted to the constant metric case (which is the case where
(Ui,n)1≤i≤m and (Vk,n)1≤k≤s are identity operators), the algorithm is new.

(c) Condition (a) was used in [24,26], while conditions (b) and (c) were used
in [1], and conditions (d) and (e) which quantify the tolerance allowed in
the inexact implementation of the resolvents and the approximations of
single-valued operators are widely used in the literature.

(d) Algorithm 3.1 is an extension of [24, Corollary 6.2] where m = 1 and every
n ∈ N: C1,n = C and for every k ∈ {1, . . . , s}, Sk,n = D−1

k is restricted to
be univariate and cocoercive, and Bk is replaced by B−1

k .

The main result of the paper can be now stated.

Theorem 3.1 Suppose in Problem 2.1 that Ω 6= ∅ and there exists Lk0,i0 6= 0
for some i0 ∈ {1, . . . ,m} and k0 ∈ {1, . . . , s}. For every n ∈ N, set

δn :=

(√√√√
m∑

i=1

s∑

k=1

∥∥∥
√
Vk,nLk,i

√
Ui,n

∥∥∥
2
)−1

− 1, (11)

and suppose that

ζn :=
δn

(1 + δn)max1≤i≤m,1≤k≤s{‖Ui,n‖, ‖Vk,n‖}
≥ 1

2β − ε
. (12)

For every i ∈ {1, . . . ,m} and every k ∈ {1, . . . , s}, let (xi,n)n∈N and (vk,n)n∈N

be sequences generated by Algorithm 3.1. Then, the following hold for some
(x1, . . . , xm, v1, . . . , vs) ∈ Ω.
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(a) (∀i ∈ {1, . . . ,m}) xi,n ⇀ xi and (∀k ∈ {1, . . . , s}) vk,n ⇀ vk.
(b) Suppose that the operator (xi)1≤i≤m 7→ (Cj(xi)1≤i≤m)1≤j≤m is demiregu-

lar (see Lemma 2.1 for special cases) at (x1, . . . , xm), then (∀i ∈ {1, . . . ,m})
xi,n → xi.

(c) Suppose that the operator (vk)1≤k≤s 7→ (Sj(vk)1≤k≤s)1≤j≤s is demiregular
(see Lemma 2.1 for special cases) at (v1, . . . , vs), then (∀k ∈ {1, . . . , s}) vk,n
→ vk.

(d) Suppose that there exists j ∈ {1, . . . ,m} and an operator C : Hj → Hj such
that (∀(xi)1≤i≤m ∈ (Hi)1≤i≤m) Cj(x1, . . . , xm) = Cxj and C is demiregu-
lar (see Lemma 2.1 for special cases) at xj, then xj,n → xj.

(e) Suppose that there exists j ∈ {1, . . . , s} and an operator D : Gj → Gj such
that (∀(vk)1≤k≤s ∈ (Gk)1≤k≤s) Sj(v1, . . . , vs) = Dvj and D is demiregular
(see Lemma 2.1 for special cases) at vj, then vj,n → vj.

Proof. Let us introduce the Hilbert direct sums

H := H1 ⊕ . . .⊕Hm, G := G1 ⊕ . . .⊕ Gs, and K := H⊕ G.

We denote by x := (xi)1≤i≤m, y := (yi)1≤i≤m the generic elements in H, and
by v := (vk)1≤k≤s, w := (wk)1≤k≤s the generic elements in G. The generic
elements in K will be denoted by p := (x,v). The scalar product and the
norm of H are respectively defined by

〈· | ·〉 : (x,y) 7→
m∑

i=1

〈xi | yi〉 and ‖ · ‖ : x 7→
√
〈x | x〉.

The scalar product and the norm of G are defined by the same fashion as those
of H,

〈· | ·〉 : (v,w) 7→
s∑

k=1

〈vk | wk〉 and ‖ · ‖ : v 7→
√
〈v | v〉.

We next define respectively the scalar product and the norm of K by

〈〈· | ·〉〉 :
(
(x,v), (y,w)

)
7→

m∑

i=1

〈xi | yi〉+
s∑

k=1

〈vk | wk〉

and
||| · ||| : (x,v) 7→

√
〈〈(x,v) | (x,v)〉〉. (13)

Set 



A : H ⇉ H : x 7→×m

i=1Aixi

B : G ⇉ G : v 7→×s

k=1Bkvk

C : H → H : x 7→ (Cix)1≤i≤m

D : G ⇉ G : v 7→ (Skv)1≤k≤s

L : H → G : x 7→
(∑m

i=1 Lk,ixi

)
1≤k≤s

z := (z1, . . . , zm)

r := (r1, . . . , rs),

(14)
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and for every n ∈ N,

Cn : H → H : x 7→ (Ci,nx)1≤i≤m and Dn : G → G : v 7→ (Sk,nv)1≤k≤s.

Then, it follows from (1) that

(∀x ∈ H)(y ∈ H) 〈x− y | Cx−Cy〉 ≥ ν0‖Cx−Cy‖2, (15)

from (2) that

(∀v ∈ G)(w ∈ G) 〈v −w | Dv −Dw〉 ≥ µ0‖Dv −Dw‖2, (16)

which shows that C and D are respectively ν0-cocoercive and µ0-cocoercive
and hence they are maximally monotone [6, Example 20.28]. Moreover, it
follows from [6, Proposition 20.23] that A and B are maximally monotone.
Furthermore,

L∗ : G → H : v 7→
( s∑

k=1

L∗
k,ivk

)

1≤i≤m

.

Then, using (14), we can rewrite the system of monotone inclusions (3) as a
monotone inclusion in K,

find (x,v) ∈ K such that
(
z−L∗v,Lx−r

)
∈
(
(A+C)x, (B+D)v

)
. (17)

Set 



M : K ⇉ K : (x,v) 7→ (−z +Ax, r +Bv)

S : K → K : (x,v) 7→ (L∗v,−Lx)

Q : K → K : (x,v) 7→ (Cx,Dv),

(18)

and for every n ∈ N,





Qn : K → K : (x,v) 7→ (Cnx,Dnv)

Un : K → K : (x,v) 7→
(
(Ui,nxi)1≤i≤m, (Vk,nvk)1≤k≤s

)

V n : K → K : (x,v) 7→ U−1
n (x,v)− (L∗v,Lx).

(19)

Then, M and S are maximally monotone, and (15), (16) imply that Q is β-
cocoercive and hence it is maximally monotone [6, Example 20.28]. Therefore,
M + S + Q is maximally monotone [6, Corollary 24.4]. Furthermore, the
problem (17) reduces to find a zero point of M + S + Q. Note that Ω 6= ∅

implies that

zer(M + S +Q) 6= ∅. (20)

We next derive from the condition (a) in Algorithm 3.1 that

µ := sup
n∈N

‖Un‖ < +∞, and (∀n ∈ N) Un+1 � Un ∈ Pα(K), (21)
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and it follows from (13) and [19, Lemma 2.1(ii)] that, for every n ∈ N and
every p := (x,v) ∈ K,

|||p|||2
U

−1
n

=

m∑

i=1

‖xi‖2U−1

i,n

+

s∑

k=1

‖vk‖2V −1

k,n

≥
m∑

i=1

‖xi‖2‖U−1
i,n ‖+

s∑

k=1

‖vk‖2‖V −1
k,n‖

≥
( m∑

i=1

‖xi‖2 +
s∑

k=1

‖vk‖2
)

min
1≤i≤m,1≤k≤s

{‖Ui,n‖−1, ‖Vk,n‖−1}

= |||p|||2 min
1≤i≤m,1≤k≤s

{‖Ui,n‖−1, ‖Vk,n‖−1}. (22)

Note that (V n)n∈N are self-adjoint, let us check that (V n)n∈N are strongly
monotone. To this end, let us introduce

(∀n ∈ N)





T n : H → G : x 7→
(∑m

i=1

√
Vk,nLk,ixi

)

1≤k≤s

Rn : G → G : v 7→
(√

V1,n
−1

v1, . . . ,
√
Vs,n

−1
vs

)
.

(23)

We note that, for every i ∈ {1, . . . ,m} and every n ∈ N,

(∀x ∈ Hi)
〈
x | U−1

i,n x
〉
=
〈√

Ui,n
−1

x |
√
Ui,n

−1
x
〉
= ‖
√
Ui,n

−1
x‖2.

Then, by using Cauchy-Schwarz’s inequality, for every n ∈ N and every x ∈ H,
we have

‖T nx‖2 =
s∑

k=1

∥∥∥∥
m∑

i=1

√
Vk,nLk,i

√
Ui,n

√
Ui,n

−1
xi

∥∥∥∥
2

≤
s∑

k=1

( m∑

i=1

∥∥∥
√
Vk,nLk,i

√
Ui,n

∥∥∥
∥∥∥
√
Ui,n

−1
xi

∥∥∥
)2

≤
s∑

k=1

( m∑

i=1

∥∥∥
√
Vk,nLk,i

√
Ui,n

∥∥∥
2
)( m∑

i=1

∥∥∥
√
Ui,n

−1
xi

∥∥∥
2
)

=

( m∑

i=1

‖xi‖2U−1

i,n

) s∑

k=1

m∑

i=1

∥∥∥
√
Vk,nLk,i

√
Ui,n

∥∥∥
2

= βn

m∑

i=1

‖xi‖2U−1

i,n

, (24)

where we set

(∀n ∈ N) βn :=
s∑

k=1

m∑

i=1

∥∥∥
√
Vk,nLk,i

√
Ui,n

∥∥∥
2

,
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which together with (11) imply that

(∀n ∈ N) (1 + δn)βn =
1

1 + δn
. (25)

Moreover,

(∀n ∈ N)(v ∈ G) ‖Rnv‖2 =

s∑

k=1

∥∥√Vk,n
−1

vk
∥∥2

=
s∑

k=1

‖vk‖2V −1

k,n

. (26)

Therefore, for every p := (x,v) ∈ K and every n ∈ N, it follows from (19),
(23), (25), (26) and (22), (12) that

〈〈p | V np〉〉 = |||p|||2
U

−1
n

− 2 〈Lx | v〉

= |||p|||2
U

−1
n

− 2
s∑

k=1

〈
m∑

i=1

√
Vk,nLk,ixi |

√
Vk,n

−1
vk

〉

= |||p|||2
U

−1
n

− 2
〈√

(1 + δn)βn

−1
T nx |

√
(1 + δn)βnRnv

〉

≥ |||p|||2
U

−1
n

−
(

|||T nx|||2
(1 + δn)βn

+ (1 + δn)βn‖Rnv‖2
)

≥ |||p|||2
U

−1
n

−
(∑m

i=1 ‖xi‖2U−1

i,n

(1 + δn)
+ (1 + δn)βn

s∑

k=1

‖vk‖2V −1

k,n

)

=
δn

1 + δn

( m∑

i=1

‖xi‖2U−1

i,n

+

s∑

k=1

‖vk‖2V −1

k,n

)

≥ ζn|||p|||2. (27)

In turn, (V n)n∈N are invertible, by [19, Lemma 2.1(iii)] and (12),

(∀n ∈ N) ‖V −1
n ‖ ≤ 1

ζn
≤ 2β − ε,

and by [19, Lemma 2.1(i)], (21), for every n ∈ N,

Un+1 < Un ⇒ U−1
n < U−1

n+1 ⇒ V n < V n+1 ⇒ V −1
n+1 < V −1

n .

Furthermore, for every p ∈ K, we derive from [19, Lemma 2.1(ii)] that

〈〈V −1
n p | p〉〉 ≥ ‖V n‖−1|||p|||2 ≥ 1

ρ
|||p|||2, where ρ := α−1 + ‖S‖. (28)

Altogether,

sup
n∈N

‖V −1
n ‖ ≤ 2β − ε and (∀n ∈ N) V −1

n+1 < V −1
n ∈ P1/ρ(K). (29)
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Moreover, using [19, Lemma 2.1(i)(ii)] and (29), we obtain
(
∀(zn)n∈N ∈ K

N
) ∑

n∈N

|||zn||| < +∞ ⇔
∑

n∈N

|||zn|||V −1
n

< +∞ (30)

and
(
∀(zn)n∈N ∈ K

N
) ∑

n∈N

|||zn||| < +∞ ⇔
∑

n∈N

|||zn|||V n
< +∞, (31)

and
(∀p ∈ K) sup

n∈N

|||p|||V n
< +∞. (32)

Now we can reformulate the algorithm (10) as iterations in the space K. We
first observe that (10) is equivalent to

(i) For i = 1, . . . ,m
1. U−1

i,n (xi,n − pi,n)−
∑s

k=1 L
∗
k,ivk,n − Ci,n(x1,n, . . . , xm,n) ∈

−zi +Ai(pi,n − ai,n) + ci,n − U−1
i,n ai,n

2. xi,n+1 = xi,n + λn(pi,n − xi,n)
(ii) For k = 1, . . . , s

1. V −1
k,n (vk,n − qk,n)−

∑m
i=1 Lk,i(xi,n − pi,n)− Sk,n(v1,n, . . . , vs,n) ∈

rk +Bk(qk,n − bk,n)−
∑m

i=1 Lk,ipi,n + dk,n − V −1
k,n bk,n

2. vk,n+1 = vk,n + λn(qk,n − vk,n).
(33)

Set 



pn := (x1,n, . . . , xm,n, v1,n, . . . , vs,n)

yn := (p1,n, . . . , pm,n, q1,n, . . . , qs,n)

an := (a1,n, . . . , am,n, b1,n, . . . , bs,n)

cn := (c1,n, . . . , cm,n, d1,n, . . . , ds,n)

dn :=
(
(U−1

i,n ai,n)1≤i≤m, (V −1
k,n bk,n)1≤k≤m

)

bn := (S + V n)an + cn − dn.

Then, using the same argument as in [28, Eqs. (3.22)–(3.35)], using (18), (19),
(33) yields

(∀n ∈ N)

⌊
V n(pn − yn)−Qnpn ∈ (M + S)(yn − an) + San + cn − dn

pn+1 = pn + λn(yn − pn).
(34)

For every n ∈ N, we have

V n(pn − yn)−Qnpn ∈ (M + S)(yn − an) + San + cn − dn

⇔ (V n −Qn)pn ∈ (M + S + V n)(yn − an) + (S + V n)an + cn − dn

⇔ yn =
(
M + S + V n

)−1
(
(V n −Qn)pn − (S + V n)an − cn + dn

)
+ an

⇔ yn =
(
Id+ V −1

n (M + S)
)−1((

Id− V −1
n Qn

)
pn − V −1

n bn

)
+ an

⇔ yn = J
V

−1
n (M+S)

((
Id− V −1

n Qn

)
pn − V −1

n bn

)
+ an. (35)
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Therefore, for every n ∈ N, (34) becomes

pn+1 = pn + λn

(
J
V

−1
n (M+S)

(
pn − V −1

n (Qnpn + bn)
)
+ an − pn

)
. (36)

By setting, for every n ∈ N,





M̃ : K ⇉ K : (x,v) 7→ M (x,v) + S(x,v),

P̃ n := Id−V −1
n Qn and P n := Id−V −1

n Q,

En := Qn −Q and Q̃n := V −1
n En,

e1,n := Q̃npn + V −1
n bn,

(37)

we have

(36) ⇔ pn+1 = pn + λn

(
J
V

−1
n M̃

(
P̃ npn − V −1

n bn
)
+ an − pn

)

= (1− λn)pn + λnJV −1
n M̃

(
P̃ npn − V −1

n bn
)
+ λnan

= (1− λn)pn + λnJV −1
n M̃

(
P npn − e1,n

)
+ λnan (38)

= (1− λn)pn + λn

(
J
V

−1
n M̃

(
P npn − e1,n

)
+ an

)
. (39)

Algorithm (39) is a special instance of the variable metric forward-backward
splitting (9) with

(∀n ∈ N) γn = 1 ∈
[
ε, (2β − ε)/(sup

n∈N

‖V −1
n ‖)

]
(see (29)).

Note that M̃ is maximally monotone, Q is β-cocoercive, and (λn)n∈N in [ε, 1].
Moreover, (29) and (20) show respectively that (8) and (7) are satisfied. There-
fore, in view of Theorem 2.1, it is sufficient to prove that (e1,n)n∈N and (en)n∈N

are absolutely summable in K, i.e, we prove that

∑

n∈N

|||e1,n||| < +∞, (40)

and ∑

n∈N

|||an||| < +∞. (41)

For every i ∈ {1, . . . ,m} and every k ∈ {1, . . . , s}, since (ai,n)n∈N, (ci,n)n∈N

and (bk,n)n∈N and (dk,n)n∈N are absolutely summable, we have





∑

n∈N

|||an||| ≤
∑

n∈N

( m∑

i=1

‖ai,n‖+
s∑

k=1

‖bk,n‖
)

< +∞,

∑

n∈N

|||cn||| ≤
∑

n∈N

( m∑

i=1

‖ci,n‖+
s∑

k=1

‖dk,n‖
)
< +∞.

(42)
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Moreover, for every n ∈ N, Un ∈ Pα(K), it follows from [19, Lemma 2.1(iii)]
that ‖U−1

n ‖ ≤ α−1. Hence,





∑

n∈N

|||dn||| ≤ α−1
∑

n∈N

|||an||| < +∞,

∑

n∈N

|||bn||| ≤ (ρ+ ‖S‖)
∑

n∈N

|||an|||+
∑

n∈N

(
|||cn|||+ |||dn|||

)
< +∞.

Therefore, (an)n∈N, (bn)n∈N, (cn)n∈N and (dn)n∈N are absolutely summable
in K. Next it follows from the conditions (b), (c) in Algorithm 3.1 and (29),
(27), (12) that, for every p := (x,v) ∈ K and every q := (y,w) ∈ K, and
every n ∈ N,

∣∣∣∣∣∣Q̃np− Q̃nq
∣∣∣∣∣∣2

V n
= 〈〈Q̃np− Q̃nq | V n

(
Q̃np− Q̃nq

)
〉〉

= 〈〈Enp−Enq | V −1
n Enp− V −1

n Enq〉〉
≤ ‖V −1

n ‖ |||Enp−Enq|||2

≤ (2β − ε)

(
‖(Cn −C)x− (Cn −C)y‖2

+ ‖(Dn −D)v − (Dn −D)w‖2
)

= (2β − ε)

( m∑

i=1

‖(Ci,n − Ci)x− (Ci,n − Ci)y‖2

+

s∑

k=1

‖(Sk,n − Sk)v − (Sk,n − Sk)w‖2
)

≤ (2β − ε)

( m∑

i=1

κ2
i,n‖x− y‖2 +

s∑

k=1

η2k,n‖v −w‖2
)

≤ (2β − ε)

( m∑

i=1

κ2
i,n +

s∑

k=1

η2k,n

)
|||p− q|||2

≤ (2β − ε)ζ−1
n

( m∑

i=1

κ2
i,n +

s∑

k=1

η2k,n

)
|||p− q|||2V n

≤ (2β − ε)2
( m∑

i=1

κ2
i,n +

s∑

k=1

η2k,n

)
|||p− q|||2

V n
, (43)

which implies that Q̃n is Lipschitz continuous (in the norm ||| · |||V n
) with

respectively constant

κn := (2β − ε)

√√√√
m∑

i=1

κ2
i,n +

s∑

k=1

η2k,n,
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that satisfies ∑

n∈N

κn < +∞. (44)

Let p := (x,v) ∈ zer(M + S +Q) and noting that (∀n ∈ N) Q̃n(s,w) = 0,

|||e1,n|||V n
≤ |||Q̃npn|||V n

+ |||V −1
n bn|||V n

≤ |||Q̃npn − Q̃np|||V n
+ |||Q̃np− Q̃n(s,w)|||V n

+ |||V −1
n bn|||V n

≤ κn|||pn − p|||V n
+ κn|||p− (s,w)|||V n

+ |||V −1
n bn|||V n

= κn|||pn − p|||V n
+ κn|||p− (s,w)|||V n

+ |||bn|||V −1
n
. (45)

Since p ∈ zer(M + S +Q), we have

(∀n ∈ N) p = J
V

−1
n M̃

(P np).

Hence, for each n ∈ N, since J
V

−1
n M̃

and P n are nonexpansive with respect

to the norm ||| · |||V n
by Lemma 2.2(b) and Lemma 2.3, we have

|||J
V

−1
n M̃

(
P npn − e1,n

)
− p|||V n

= |||J
V

−1
n M̃

(
P npn − e1,n

)

− J
V

−1
n M̃

(P np)|||V n

≤ |||pn − p|||V n
+ |||e1,n|||V n

,

which and (38) imply that

|||pn+1 − p|||V n
≤
∣∣∣∣∣∣(1 − λn)

(
pn − p

)∣∣∣∣∣∣
V n

+
∣∣∣∣∣∣λn

(
J
V

−1
n M̃

(
P npn − e1,n

)
− p

)∣∣∣∣∣∣
V n

+
∣∣∣∣∣∣λnan

∣∣∣∣∣∣
V n

≤
(
1− λn + λn

)∣∣∣∣pn − p
∣∣∣∣
V n

+ |||e1,n|||V n

+
∣∣∣∣∣∣λnan

∣∣∣∣∣∣
V n

≤ (1 + κn)|||pn − p|||V n
+ αn, (46)

where

(∀n ∈ N) αn := κn|||p− (s,w)|||V n
+
∣∣∣∣∣∣bn

∣∣∣∣∣∣
V

−1
n

+
∣∣∣∣∣∣an

∣∣∣∣∣∣
V n

. (47)

Noting that (32), (31), (30) and (43), (42), we have

∑

n∈N

αn < +∞. (48)

Therefore, we derive from (46) and (∀n ∈ N) V n � V n+1 that

(∀n ∈ N)
∣∣∣∣∣∣pn+1 − p

∣∣∣∣∣∣
V n+1

≤ (1 + κn)|||pn − p|||V n
+ αn, (49)

and hence, by [35, Lemma 2.2.2],

sup
n∈N

|||pn − p|||V n
< +∞, (50)
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which and (45),(44),(48), (43), (30), (31), (32) imply that

∑

n∈N

|||e1,n|||V n
< +∞. (51)

Therefore, (40) and (41) are proved.

(a): By Theorem 2.1(a), pn ⇀ p ∈ zer(M + S +Q).

(b)(c): By Theorem 2.1(b) and (c),

|||Qpn −Qp||| → 0,

which implies that, for every i ∈ {1, . . . ,m} and every k ∈ {1, . . . , s},
{
Ci(x1,n, . . . , xm,n)− Ci(x1, . . . , xm) → 0,

Sk(v1,n, . . . , vs,n)− Sk(v1, . . . , vs) → 0.

Moreover, by (a), we obtain, for every i ∈ {1, . . . ,m}, xi,n ⇀ xi and for every
k ∈ {1, . . . , s}, vk,n ⇀ vk. Therefore, the conclusions follow from the definition
of the demiregular operators.

(d)(e): The conclusions follow from our assumptions and the definition of
the demiregular operators.

4 Application to Coupled System of Monotone Inclusions in
Duality

We provide an application to coupled system of monotone inclusions. Our
problem formulation covers not only a wide class of monotone inclusions and
duality frameworks in the literature (see [9,13,14,23,24,28,29,31,32,36–40]
and the references therein), and coupled system of monotone inclusions unified
in [1], but also a wide class of minimization formulations, in particular, in
the multi-component signal decomposition and recovery; see [1,41,42] and the
references therein.

Problem 4.1 Let m and s be strictly positive integers, and let ν0 be in
]0,+∞[. For every i ∈ {1, . . . ,m}, let (Hi, 〈· | ·〉) be a real Hilbert space, let
zi ∈ Hi, let Ai : Hi ⇉ Hi be maximally monotone, let Ci : H1×. . .×Hm → Hi

be such that for every x := (xi)1≤i≤m and y := (yi)1≤i≤m in H1 × . . .×Hm,

m∑

i=1

〈xi − yi | Cix− Ciy〉 ≥ ν0

m∑

i=1

‖Cix− Ciy‖2. (52)

For every k ∈ {1, . . . , s}, let (Gk, 〈· | ·〉) be a real Hilbert space, let rk ∈ Gk, let
Dk : Gk ⇉ Gk be maximally monotone and νk-strongly monotone for some νk
in ]0,+∞[, let Bk : Gk ⇉ Gk be maximally monotone. For every i ∈ {1, . . . ,m}
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and every k ∈ {1, . . . , s}, let Lk,i : Hi → Gk be a bounded linear operator. The
primal inclusion is to find x := (x1, . . . , xm) in H1 × . . .×Hm such that




z1 ∈ A1x1 +

s∑

k=1

L∗
k,1

(
(Dk � Bk)

( m∑

i=1

Lk,ixi − rk

))
+ C1x

...

zm ∈ Amxm +
s∑

k=1

L∗
k,m

(
(Dk � Bk)

( m∑

i=1

Lk,ixi − rk

))
+ Cmx.

(53)

We denote by P the set of solutions to (53). The dual inclusion is to find
v1 ∈ G1, . . . , vs ∈ Gs such that
(
∃x := (xi)1≤i≤m ∈ (Hi)1≤i≤m

)




z1 −
s∑

k=1

L∗
k,1vk ∈ A1x1 + C1x

...

zm −
s∑

k=1

L∗
k,mvk ∈ Amxm + Cmx,

and





m∑

i=1

L1,ixi − r1 ∈ B−1
1 v1 +D−1

1 v1

...
m∑

i=1

Ls,ixi − rs ∈ B−1
s vs +D−1

s vs.

(54)

The set of solutions to (54) is denoted by D.

Remark 4.1 In Problem 4.1, there are two types of coupling. The first one is
the smooth coupling modeled by (Ci)1≤i≤m. The second one is the non-smooth
coupling involving the parallel sums modeled by the second terms in (53). The
frameworks in [30] and [34] consider respectively non-smooth coupling and
smooth coupling only. The condition on (Ci)1≤i≤m is relaxed to be monotone
and Lipschitzian in [34] but the algorithm proposed has an additional forward
step even when (Ci)1≤i≤m are restricted to be cocoercive. This double coupling
model can be easily solved by using our duality framework.

Algorithm 4.1 Let α ∈ ]0,+∞[ and, for every i ∈ {1, . . . ,m} and every
k ∈ {1, . . . , s}, let (Ui,n)n∈N be a sequence in Pα(Hi) and let (Vk,n)n∈N be a
sequence in Pα(Gk). Set β := min{ν0, ν1, . . . , νs}, and let ε ∈ ]0,min{1, β}[,
let (λn)n∈N be a sequence in [ε, 1]. Let (xi,0)1≤i≤m ∈ H1 × . . . × Hm and
(vk,0)1≤k≤s ∈ G1 × . . .× Gs. Then, iterate, for every n ∈ N,

(i) For i = 1, . . . ,m
1. ti,n :=

∑s
k=1 L

∗
k,ivk,n + Ci,n(x1,n, . . . , xm,n) + ci,n

2. pi,n := JUi,nAi

(
xi,n − Ui,n(ti,n − zi)

)
+ ai,n

3. yi,n := 2pi,n − xi,n

4. xi,n+1 := xi,n + λn(pi,n − xi,n)
(ii) For k = 1, . . . , s

1. wk,n :=
∑m

i=1 Lk,iyi,n − S̃k,nvk,n − dk,n
2. qk,n := JVk,nB−1

k

(
vk,n + Vk,n(wk,n − rk)

)
+ bk,n

3. vk,n+1 := vk,n + λn(qk,n − vk,n),

(55)



A Splitting Algorithm for Coupled System of Primal–Dual Monotone Inclusions 19

where, for every i ∈ {1, . . . ,m} and every k ∈ {1, . . . , s}, the following condi-
tions hold.

(a) (∀n ∈ N) Ui,n+1 � Ui,n and Vk,n+1 � Vk,n, and

µ := sup
n∈N

{‖U1,n‖, . . . , ‖Um,n‖, ‖V1,n‖, . . . , ‖Vs,n‖} < +∞.

(b) (Ci,n)n∈N are operators from H1 × . . .×Hm to Hi such that
(b1) (Ci,n−Ci)n∈N are Lipschitz continuous with respective constants (κi,n)n∈N

∈ ]0,+∞[ satisfying
∑

n∈N

κi,n < +∞.

(b2) There exists s ∈ H1 × . . .×Hm not depending on i such that

(∀n ∈ N) Ci,ns = Cis.

(c) (S̃k,n)n∈N are operators from Gk to Gk such that

(c1) (S̃k,n − D−1
k )n∈N are Lipschitz continuous with respective constants

(ηk,n)n∈N ∈ ]0,+∞[ satisfying

∑

n∈N

ηk,n < +∞.

(c2) There exists w := (wj)1≤j≤s ∈ G1 × . . .× Gs not depending on k such
that

(∀n ∈ N) S̃k,nwk = D−1
k wk.

(d) (ai,n)n∈N and (ci,n)n∈N are absolutely summable sequences in Hi.
(e) (bk,n)n∈N and (dk,n)n∈N are absolutely summable sequences in Gk.

Corollary 4.1 Suppose that P 6= ∅ and there exists Lk0,i0 6= 0, for some i0 in
{1, . . . ,m} and k0 in {1, . . . , s}, and (12) is satisfied. For every i ∈ {1, . . . ,m}
and every k ∈ {1, . . . , s}, let (xi,n)n∈N and (vk,n)n∈N be sequences generated
by Algorithm 4.1. Then, the following hold for some (x1, . . . , xm) ∈ P and
(v1, . . . , vs) ∈ D.

(a) (∀i ∈ {1, . . . ,m}) xi,n ⇀ xi and (∀k ∈ {1, . . . , s}) vk,n ⇀ vk.
(b) Suppose that the operator (xi)1≤i≤m 7→ (Cj(xi)1≤i≤m)1≤j≤m is demiregu-

lar (see Lemma 2.1 for special cases) at (x1, . . . , xm), then (∀i ∈ {1, . . . ,m})
xi,n → xi.

(c) Suppose that D−1
j is demiregular (see Lemma 2.1 for special cases) at vj,

for some j ∈ {1, . . . , s}, then vj,n → vj.
(d) Suppose that there exists j ∈ {1, . . . ,m} and operator C : Hj → Hj such

that (∀(xi)1≤i≤m ∈ (Hi)1≤i≤m) Cj(x1, . . . , xm) = Cxj and C is demiregu-
lar (see Lemma 2.1 for special cases) at xj, then xj,n → xj.
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Proof. Set µ0 := min{ν1, . . . , νs} and define

(∀k ∈ {1, . . . , s}) Sk : G1 × . . .× Gs → Gk : (v1, . . . , vs) 7→ D−1
k vk. (56)

Then, for every v := (vk)1≤k≤s in G1 × . . .× Gs and every w := (wk)1≤k≤s in
G1 × . . .× Gs, we obtain

s∑

k=1

〈vk − wk | Skv − Skw〉 =
s∑

k=1

〈
vk − wk | D−1

k vk −D−1
k wk

〉

≥
s∑

k=1

νk‖D−1
k vk −D−1

k wk‖2

≥ µ0

s∑

k=1

‖D−1
k vk −D−1

k wk‖2

= µ0

s∑

k=1

‖Skv − Skw‖2, (57)

which shows that (2) is satisfied. Note that the conditions (a), (b), (d), and (e)
in Algorithm 4.1 are the same as in Algorithm 3.1. Let us check the condition
(c) in Algorithm 3.1. For every n ∈ N, define

(∀k ∈ {1, . . . , s}) Sk,n : G1 × . . .× Gs → Gk : (v1, . . . , vs) 7→ S̃k,nvk. (58)

Since (S̃k,n − D−1
k )n∈N are Lipschitz continuous with respective constants

(ηk,n)n∈N, for every v := (vk)1≤k≤s in G1 × . . . × Gs, w := (wk)1≤k≤s in
G1 × . . .× Gs, and every n ∈ N, k ∈ {1, . . . , s}, we have

‖(Sk,n − Sk)v − (Sk,n − Sk)w‖2 = ‖(S̃k,n −D−1
k )vk − (S̃k,n −D−1

k )wk‖2

≤ η2k,n‖vk − wk‖2

≤ η2k,n

s∑

j=1

‖vj − wj‖2

= η2k,n‖v −w‖2.

Moreover, it follows from (56), (58) and the condition (c2) in Algorithm 4.1
that

(∀n ∈ N)(k ∈ {1, . . . , s}) Sk,nw = S̃k,nwk = D−1
k wk = Skw.

Hence, the condition (c) in Algorithm 3.1 is also satisfied. Furthermore, the
algorithm (10) reduces to (55) whereBk is replaced byB−1

k . Next, since P 6= ∅,
we derive from (53) that, for every k ∈ {1, . . . , s}, there exists vk ∈ Gk such
that

vk ∈ (Dk � Bk)

( m∑

i=1

Lk,ixi − rk

)
⇔

m∑

i=1

Lk,ixi − rk ∈ B−1
k vk +D−1

k vk, (59)
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and

(∀i ∈ {1, . . . ,m}) zi −
s∑

k=1

L∗
k,ivk ∈ Aixi + Ci(x1, . . . , xm), (60)

which show that Ω 6= ∅ and D 6= ∅. Inversely, if (x1, . . . , xm, v1, . . . , vs) ∈ Ω,
then the inclusions (59) and (60) are satisfied. Hence (v1, . . . , vs) ∈ D and
(x1, . . . , xm) ∈ P . Therefore, the conclusions follow from Theorem 3.1.

5 Application to Minimization Problems

We provide applications to minimization problems involving infimal convolu-
tions, composite functions and couplings. In the classic setting, the coupling
is often modeled by the constraints of the form

(∀k ∈ {1, . . . , s})
m∑

i=1

Lk,ixi ∈ Dk,

where (Dk)1≤k≤s are nonempty, closed and convex subsets of Gk. The degree
of violation of each hard constraint is measured by ιDk

. However, due to the
imprecise prior information or unmodeled dynamics in the data formation
process, there are inaccuracies in the definition of the several sets in the family
(Dk)1≤k≤s. Therefore, instead of coupling by hard constraints, some authors
use soft constraints by forcing

∑m
i=1 Lk,ixi to be close to Dk. This forcing is

often measured by distance functions. This strategy was used in [41]. Here we
follow the approach of [30], we use the parallel sums to model the coupling but
we separate the smooth components and they are modeled by a differentiable
function ϕ ∈ Γ0(H1 × . . .×Hm).

Problem 5.1 Letm and s be strictly positive integers. For every i ∈ {1, . . . ,m},
let Hi be a real Hilbert space, let zi ∈ Hi, let fi ∈ Γ0(Hi). For every
k ∈ {1, . . . , s}, let Gk be a real Hilbert space, let rk ∈ Gk, let ℓk ∈ Γ0(Gk)
be νk-strongly convex function, for some νk ∈ ]0,+∞[, let gk ∈ Γ0(Gk). For
every i ∈ {1, . . . ,m} and every k ∈ {1, . . . , s}, let Lk,i : Hi → Gk be a bounded
linear operator. Let ϕ : H1 × . . .×Hm → R be convex differentiable function
with ν−1

0 -Lipschitz continuous gradient. The primal problem is to

minimize
x1∈H1,...,xm∈Hm

m∑

i=1

(
fi(xi)− 〈xi | zi〉

)
+

s∑

k=1

(
ℓk � gk

)( m∑

i=1

Lk,ixi − rk

)

+ϕ(x1, . . . , xm),
(61)

under the assumption that there exists x := (x1, . . . , xm) such that, for every
i ∈ {1, . . . ,m},

zi ∈ ∂fi(xi) +

s∑

k=1

L∗
k,i ◦

(
∂ℓk � ∂gk

)
◦
( m∑

j=1

Lk,jxj − rk

)
+∇iϕ(x), (62)



22 B`̆ang Công Vũ

where ∇iϕ is the ith component of the gradient ∇ϕ, and the dual problem is
to

minimize
v1∈G1,...,vs∈Gs

(
ϕ∗

�

( m∑

i=1

f∗
i

))((
zi −

s∑

k=1

L∗
k,ivk

)
1≤i≤m

)

+
s∑

k=1

(
ℓ∗k(vk) + g∗k(vk) + 〈vk | rk〉

)
.

(63)

In the case when the infimal convolutions are absent, Problem 5.1 often appears
in the multi-components signal decomposition and recovery problems; see [1,
8,41] and the references therein.

Example 5.1 Some special cases of this problem are listed in the following.

(a) In the case when ϕ : (x1, . . . , xm) 7→ ∑m
i=1 hi(xi), where, for every i in

{1, . . . ,m}, hi : Hi → R is a convex differentiable function with τ−1
i -

Lipschitz continuous gradient, for some τi ∈ ]0,+∞[, Problem 5.1 reduces
to the general minimization problem [30, Problem 5.1] which covers a wide
class of the convex minimization problems in the literature.

(b) In the case when ϕ : (x1, . . . , xm) 7→ 0 and, for every k ∈ {1, . . . , s},
ℓk := ι{0} and gk is a convex differentiable function with τ−1

k -Lipschitz
continuous gradient, for some τk ∈ ]0,+∞[, Problem 5.1 reduces to [41,
Problem 1.1].

(c) In the case when m = 1, Problem 5.1 reduces to [27, Problem 4.1] which
was also studied in [24,28].

Algorithm 5.1 Let α ∈ ]0,+∞[ and, for every i ∈ {1, . . . ,m} and every
k ∈ {1, . . . , s}, let (Ui,n)n∈N be a sequence in Pα(Hi) and let (Vk,n)n∈N be a
sequence in Pα(Gk). Set β := min{ν0, ν1, . . . , νs}, and let ε ∈ ]0,min{1, β}[,
let (λn)n∈N be a sequence in [ε, 1]. Let (xi,0)1≤i≤m ∈ H1 × . . . × Hm and
(vk,0)1≤k≤s ∈ G1 × . . .× Gs. Then, iterate, for every n ∈ N,

(i) For i = 1, . . . ,m
1. ti,n :=

∑s
k=1 L

∗
k,ivk,n +∇iϕn(x1,n, . . . , xm,n) + ci,n

2. pi,n := prox
U−1

i,n

fi

(
xi,n − Ui,n(ti,n − zi)

)
+ ai,n

3. yi,n := 2pi,n − xi,n

4. xi,n+1 := xi,n + λn(pi,n − xi,n)
(ii) For k = 1, . . . , s

1. wk,n :=
∑m

i=1 Lk,iyi,n −∇ℓ̃k,n(vk,n)− dk,n

2. qk,n := prox
V −1

k,n

g∗

k

(
vk,n + Vk,n(wk,n − rk)

)
+ bk,n

3. vk,n+1 := vk,n + λn(qk,n − vk,n),

(64)

where, for every i ∈ {1, . . . ,m} and every k ∈ {1, . . . , s}, the following condi-
tions hold.
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(a) (∀n ∈ N) Ui,n+1 � Ui,n and Vk,n+1 � Vk,n, and

µ := sup
n∈N

{‖U1,n‖, . . . , ‖Um,n‖, ‖V1,n‖, . . . , ‖Vs,n‖} < +∞.

(b) (ϕn)n∈N are differentiable functions in Γ0(H1 × . . .×Hm) such that
(b1) (∇iϕn − ∇iϕ)n∈N are Lipschitz continuous with respective constants

(κi,n)n∈N ∈ ]0,+∞[ satisfying

∑

n∈N

κi,n < +∞.

(b2) There exists s ∈ H1 × . . .×Hm not depending on i such that

(∀n ∈ N) ∇iϕn(s) = ∇iϕ(s).

(c) (ℓ̃k,n)n∈N are differentiable functions in Γ0(Gk) such that

(c1) (∇ℓ̃k,n − ∇ℓ∗k)n∈N are Lipschitz continuous with respective constants
(ηk,n)n∈N ∈ ]0,+∞[ satisfying

∑

n∈N

ηk,n < +∞.

(c2) There exists w := (wj)1≤j≤s ∈ G1 × . . .× Gs not depending on k such
that

(∀n ∈ N) ∇ℓ̃k,n(wk) = ∇ℓ∗k(wk).

(d) (ai,n)n∈N and (ci,n)n∈N are absolutely summable sequences in Hi.
(e) (bk,n)n∈N and (dk,n)n∈N are absolutely summable sequences in Gk.

Corollary 5.1 Suppose that there exists Lk0,i0 6= 0, for some i0 ∈ {1, . . . ,m}
and k0 ∈ {1, . . . , s}, and (12) is satisfied. For every i ∈ {1, . . . ,m} and every
k ∈ {1, . . . , s}, let (xi,n)n∈N and (vk,n)n∈N be sequences generated by Algo-
rithm 5.1. Then, the following hold for some solution (x1, . . . , xm) to (61) and
(v1, . . . , vs) to (63).

(a) (∀i ∈ {1, . . . ,m}) xi,n ⇀ xi and (∀k ∈ {1, . . . , s}) vk,n ⇀ vk.
(b) Suppose that ϕ is defined as in Example 5.1(a) and hj is uniformly convex

at xj, for some j ∈ {1, . . . ,m}, then xj,n → xj.
(c) Suppose that ℓ∗j is uniformly convex at vj, for some j ∈ {1, . . . , s}, then

vj,n → vj.

Proof. Set
{
(∀i ∈ {1, . . . ,m}) Ai := ∂fi and Ci := ∇iϕ, Ci,n = ∇iϕn

(∀k ∈ {1, . . . , s}) Bk := ∂gk and Dk := ∂ℓk, S̃k,n = ∇ℓ̃k,n.
(65)

Then, it follows from [6, Theorem 20.40] that (Ai)1≤i≤m, (Bk)1≤k≤s, and
(Dk)1≤k≤s are maximally monotone. Moreover, (C1, . . . , Cm) := ∇ϕ is ν0-
cocoercive [43,44]. Since, for every k ∈ {1, . . . , s}, ℓk is νk-strongly convex,
∂ℓk is νk-strongly monotone. Therefore, every condition on the operators in
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Problem 2.1 is satisfied. Since, for every k ∈ {1, . . . , s}, dom ℓ∗k = Gk, we next
derive from [6, Proposition 24.27] that

(
∀k ∈ {1, . . . , s}

)
∂(ℓk � gk) = ∂gk � ∂ℓk = Bk � Dk. (66)

Let H and G be defined as in the proof of Theorem 3.1, and let L, z and r be
defined as in (14), and define





f : H → ]−∞,+∞[ : x 7→
∑m

i=1 fi(xi)

g : G → ]−∞,+∞[ : v 7→∑s
k=1 gk(vk)

ℓ : G → ]−∞,+∞[ : v 7→
∑s

k=1 ℓk(vk).

Observe that [6, Proposition 13.27],

f∗ : y 7→
m∑

i=1

f∗
i (yi), g∗ : v 7→

s∑

k=1

g∗k(vk), and ℓ∗ : v 7→
s∑

k=1

ℓ∗k(vk).

We also have

ℓ � g : v 7→
s∑

k=1

(ℓk � gk)(vk).

Then, the primal problem becomes

minimize
x∈H

f(x)− 〈x | z〉+ (ℓ � g)(Lx− r) + ϕ(x), (67)

and the dual problem becomes

minimize
v∈G

(ϕ∗
� f∗)(z −L∗v) + ℓ∗(v) + g∗(v) + 〈v | r〉 . (68)

Then, by (62), x = (x1, . . . , xm) is a solution to (53), i.e., for every i in
{1, . . . ,m},

zi ∈ ∂fi(xi) +
s∑

k=1

L∗
k,i

((
∂ℓk � ∂gk

)( m∑

j=1

Lk,jxj − rk

))
+∇iϕ(x).

Then, using (65), (66), [6, Corollary 16.38(iii)], [6, Proposition 16.8],

0 ∈ ∂
(
f + 〈· | z〉

)
(x) +L∗

(
∂(ℓ � g)(Lx− r)

)
+∇ϕ(x). (69)

Therefore, by [6, Proposition 16.5(ii)], we derive from (69) that

0 ∈ ∂
(
f + 〈· | z〉+ (ℓ � g)(L · −r) + ϕ

)
(x).
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Hence, by Fermat’s rule [6, Theorem 16.2] that x is a solution to (67), i.e,
x is a solution to (61). We next let v be a solution to (54). Then, using [6,
Theorem 15.3] and (5),

−r ∈ −L
(
(∂f +∇ϕ)−1(z −L∗v)

)
+ (∂g)−1(v) + (∂ℓ)−1(v)

= −L
(
∂(f + ϕ)∗(z −L∗v)

)
+ ∂g∗(v) + ∂ℓ∗(v)

= −L
(
∂(f∗

� ϕ∗)(z −L∗v)
)
+ ∂g∗(v) + ∂ℓ∗(v). (70)

Therefore, by [6, Proposition 16.5(ii)], we derive from (70) that

0 ∈ ∂
(
(ϕ∗

� f∗)(z −L∗·) + ℓ∗ + g∗ + 〈· | r〉
)
(v).

Hence, by Fermat’s rule [6, Theorem 16.2] that v is a solution to (68), i.e, v is
a solution to (54). Now, in view of (4), algorithm (64) is a special case of the
algorithm (55). Moreover, every specific condition in Corollary 4.1 is satisfied.

(a): It follows from Corollary 4.1(a) that (x1,n, . . . , xm,n) ⇀ (x1, . . . , xm)
which solves the primal problem (61), and that (v1,n, . . . , vs,n) ⇀ (v1, . . . , vs)
which solves the dual problem (63).

(b)(c): The conclusions follow from Corollary 4.1(c)(d) and Lemma 2.1(b).

Remark 5.1 Here are some remarks.

(a) Sufficient conditions, which ensure that the condition (62) is satisfied, are
provided in [30, Proposition 5.3]. For instance, if (61) has at least one
solution and (r1, . . . , rs) belongs to the strong relative interior of E defined
by

{( m∑

i=1

Lk,ixi − vk

)
1≤k≤s

:

{
(∀i ∈ {1, . . . ,m}) xi ∈ dom fi

(∀k ∈ {1, . . . , s}) vk ∈ dom gk + dom ℓk

}
.

(b) In the case when m = 1, the algorithm (64) reduces to [24, Eq.(5.26)] where
the connections to existing work are available.

6 Multi-dictionary Signal Representation

Dictionaries have been used in the variational signal processing problems [45,
Section 4.3]. Let us recall that a sequence of unit norm vectors (ok)k∈K ⊂ H
(∅ 6= K ⊂ N) is a dictionary with dictionary constant µ in ]0,+∞[ if

(∀x ∈ H)
∑

k∈K

| 〈x | ok〉 |2 ≤ µ‖x‖2.

Then, the dictionary operator is defined by

F : H → ℓ2(K) : x 7→ (〈x | ok〉)k∈K (71)
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and its adjoint is

F ∗ : ℓ2(K) → H : (ωk)k∈K 7→
∑

k∈K

ωkok.

Dictionary extends the notion of orthonormal bases and frames which play
a significant role in the theory of signal processing. It is mainly due to their
ability to efficiently capture a wide range of signal features; see [1,46–48] and
the references therein. The focus of this section is to explore the information
of the original signals (xi)1≤i≤m which are assumed to be available on the co-
efficients of dictionaries ((〈xi | oi,j〉)1≤i≤m)j∈K and close to (soft constraints)
nonempty, closed and convex subsets (Ci)1≤i≤m modeling their prior infor-
mation. The rest of the information available will be modeled by potential
functions (fi)1≤i≤m (hard constraints). Furthermore, the data-fitting terms
are measured by non-smooth functions.

Problem 6.1 Let H be a real Hilbert space, let m and s be strictly positive
integers such that s > m, let γ ∈ ]0,+∞[, and let K be a nonempty subset of
N. For every i ∈ {1, . . . ,m}, let Gi := ℓ2(K), let fi ∈ Γ0(H), let (oi,j)j∈K be a
dictionary in H with associated dictionary operator Fi and dictionary constant
µi, let (φi,j)j∈K be a sequence in Γ0(R) such that (∀j ∈ K) φi,j ≥ φi,j(0) = 0,
let Ci be a nonempty closed convex subset of H. For every k ∈ {m+1, . . . , s},
let Yk be a real Hilbert space, let rk ∈ Yk, let βk be in ]0,+∞[. For every
i ∈ {1, . . . ,m} and every k ∈ {m+ 1, . . . , s}, let Rk,i : Hi → Yk be a bounded

linear operator. Set C :=×m

i=1Ci. The primal problem is to

minimize
x1∈H,...,xm∈H

m∑

i=1

fi(xi) +

m∑

i=1

∑

j∈K

φi,j(〈xi | oi,j〉)

+
s∑

k=m+1

βk

∥∥∥rk −
m∑

i=1

Rk,ixi

∥∥∥+ γdC(x1, . . . , xm)2/2

(72)

and the dual problem is to

minimize
(ξ1,...,ξm,vm+1,...,vs)∈W

m∑

i=1

(
(σCi

+
1

2γ
‖ · ‖2) � f∗

i

)(
− F ∗

i ξi −
s∑

k=m+1

R∗
k,ivk

)

+

m∑

k=1

∑

j∈K

φ∗
i,j(ξi,j) +

s∑

k=m+1

〈rk | vk〉 ,

(73)

where W is defined by

W :=

{
(ξ1, . . . , ξm, vm+1, . . . , vs) :





ξ1 ∈ ℓ2(K), . . . , ξm ∈ ℓ2(K),

vm+1 ∈ Gm+1, . . . , vs ∈ Gs,

‖vm+1‖ ≤ βm+1, . . . , ‖vs‖ ≤ βs,

}
.
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Lemma 6.1 Problem 6.1 is a special case of Problem 5.1 with ϕ := γd2C/2
and ν0 := γ, and




((k, i) ∈ {1, . . . ,m}2) zi := 0,Gk := ℓ2(K), rk := 0 and ℓk := ι{0},

(∀k ∈ {1, . . . ,m})(i ∈ {1, . . . ,m}) Li,i := Fi and Lk,i := 0 otherwise,

(∀k ∈ {1, . . . ,m}) gk : ℓ2(K) → ]−∞,+∞] : ξk 7→∑
j∈K

φk,j(ξk,j),

(∀k ∈ {m+ 1, . . . , s}) Gk := Yk, ℓk := ι{0} and gk := βk‖ · ‖,
(∀k ∈ {m+ 1, . . . , s})(∀i ∈ {1, . . . ,m}) Lk,i := Rk,i.

(74)

Proof. Let us note that, by [6, Corollary 12.30], ϕ is a convex differentiable
function with

(∀x ∈ (Hi)1≤i≤m) ∇ϕ(x) = γ(x− PCx) = γ(xi − PCi
xi)1≤i≤m. (75)

Since Id−PC is firmly nonexpansive [6, Proposition 4.8], ∇ϕ is γ-cocoercive.
Next, for every k ∈ {1, . . . , s}, Gk is a real Hilbert space and ℓk ∈ Γ0(Gk)
and by [12, Example 2.19], gk ∈ Γ0(Gk). Hence the conditions imposed on the
functions in Problem 5.1 are satisfied. Now we have

(∀v ∈ Gk) (ℓk � gk)(v) = inf
w∈Gk

(
ℓk(w) + gk(v − w)

)
= gk(v). (76)

Therefore, in view of (71) and Lemma 6.1, for every i ∈ {1, . . . ,m} and every
xi ∈ H, we have

m∑

k=1

(
ℓk � gk

)( m∑

i=1

Lk,ixi − rk

)
=

m∑

i=1

gi(Fixi)

=

m∑

i=1

∑

j∈K

φi,j(〈xi | oi,j〉). (77)

We derive from (77), Lemma 6.1 and (76) that (61) reduces to (72). For every
k ∈ {m + 1, . . . , s}, let Bk(0;βk) be the closed ball of Yk, center at 0 with
radius βk. Using [6, Example 13.3(v)], [6, Proposition 13.27] and [6, Example
13.23], we obtain




(∀k ∈ {m+ 1, . . . , s}) g∗k = (βk‖ · ‖)∗ = ιBk(0;βk),

(∀i ∈ {1, . . . ,m}) g∗i : (ξi,j)j∈K 7→
∑

j∈K

φ∗
i,j(ξi,j),

(78)

and

ϕ∗ = σC +(γ| · |2/2)∗ ◦ ‖ · ‖ = σC + ‖ · ‖2/(2γ) =
m∑

i=1

(
σCi

+ ‖ · ‖2/(2γ)
)
. (79)

Moreover,

ϕ∗
�

( m∑

i=1

f∗
i

)
=

m∑

i=1

((
σCi

+ ‖ · ‖2/(2γ)
)
� f∗

i

)
. (80)
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We derive from (77), Lemma 6.1, (78), (79) and (80) that (63) reduces to (73).

Lemma 6.1 allows to solve Problem 6.1 by Algorithm 5.1. More precisely,
we have the following algorithm.

Algorithm 6.1 Let ε ∈ ]0,min{1, γ}[, let (λn)n∈N be a sequence in [ε, 1], let
(γi)1≤i≤s+m be a finite sequence in [ε,+∞[ such that

(2γ − ε)

(
1−

√√√√
m∑

i=1

γiµiγm+i +

m∑

i=1

s∑

k=m+1

γiγm+k‖Rk,i‖2
)

≥ χ, (81)

where
χ := max

1≤i≤m,1≤k≤s
{γi, γm+k}.

For every i ∈ {1, . . . ,m}, let ((αi,n,j)j∈K)n∈N be a sequence in R such that

∑

n∈N

√∑

j∈K

|αi,n,j |2 < +∞, (82)

let (ai,n)n∈N be a absolutely summable sequence in H. Fix (xi,0)1≤i≤m in
H1 × . . . × Hm, and for every i ∈ {1, . . . ,m}, fix (ξi,0,j)j∈K in ℓ2(K) and
(vk,0)m+1≤k≤s in Gm+1 × . . .× Gs. Then, iterate, for every n ∈ N,

(i) For i := 1, . . . ,m
1. ti,n =

∑
j∈K

ξi,n,joi,j +
∑s

k=m+1 R
∗
k,ivk,n + γ(xi,n − PCi

xi,n)

2. pi,n = proxγifi(xi,n − γiti,n) + ai,n
3. yi,n = 2pi,n − xi,n

4. xi,n+1 := xi,n + λn(pi,n − xi,n)
(ii) For k = 1, . . . ,m

For every j ∈ K

ξk,n+1,j := ξk,n,j + λn

(
proxγm+kφ∗

k,j

(
ξk,n,j + γm+k 〈yk,n | ok,j〉

)

+αk,n,j − ξk,n,j

)

(iii) For k = m+ 1, . . . , s
1. wk,n =

∑m
i=1 Rk,iyi,n

2. vk,n+1 := vk,n + λn

(
βk

(
vk,n + γm+k(wk,n − rk)

)

max
{
βk,
∥∥∥vk,n + γm+k

(
wk,n − rk

)∥∥∥
} − vk,n

)
.

(83)

Corollary 6.1 Suppose that (72) has at least one solution and (0, . . . , 0, rm+1,
. . . , rs) belongs to the strong relative interior of E defined by

{( m∑

i=1

Lk,ixi − vk

)

1≤k≤s

:





(∀i ∈ {1, . . . ,m}) xi ∈ dom fi

(∀k ∈ {1, . . . ,m}) vk ∈ ℓ2(K), gk(vk) < +∞
(∀k ∈ {m+ 1, . . . , s}) vk ∈ Yk

}
,
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where Lk,i is defined in Lemma 6.1. Let (x1,n, . . . , xm,n)n∈N and (ξ1,n, . . . , ξm,n,
vm+1,n, . . . , vs,n)n∈N be sequences generated by Algorithm 6.1. Then, the fol-
lowing hold for some solution (x1, . . . , xm) to (72) and (ξ1, . . . , ξm, vm+1, . . . , vs)
to (73).

(a) (x1,n, . . . , xm,n) ⇀ (x1, . . . , xm).
(b) (ξ1,n, . . . , ξm,n, vm+1,n, . . . , vs,n) ⇀ (ξ1, . . . , ξm, vm+1, . . . , vs).
(c) If Cj = {0}, for some j ∈ {1, . . . ,m}, then xj,n → xj.

Proof. For every i ∈ {1, . . . ,m} and every j ∈ K, we have φ∗
i,j ≥ φ∗

i,j(0) = 0.
Therefore, we derive from (78) and [6, Proposition 23.31] that

(∀ξ := (ξj)j∈K ∈ ℓ2(K)) proxg∗

i
ξ = (proxφ∗

i,j
ξj)j∈K. (84)

Next, for every k ∈ {m+ 1, . . . , s}, using (78) again, we have

(∀v ∈ Gk) proxg∗

k
v = PBk(0;βk)v = βkv/max{βk, ‖v‖}. (85)

In view of (84), (85), (75) and the definition of ((Lk,i)1≤k≤s)1≤i≤m in Lemma
6.1, the algorithm (83) is a special case of (64) with

(∀n ∈ N)(∀i ∈ {1, . . . ,m})(∀k ∈ {1, . . . , s})





Ui,n = γi Id,

Vk,n = γm+k Id,

ci,n = 0 and dk,n = 0,

bi,n = (αi,n,j)j∈K.

Moreover, we derive from (82) that the sequences ((bi,n)n∈N)1≤i≤m are abso-
lutely summable, and from (81) that (12) holds. Finally, since (61) has at least
one solution and (0, . . . , 0, rm+1, . . . , rs) belongs to the strong relative interior
of E, as mentioned in Remark 5.1(a) that (62) holds. To sup up, every spe-
cific condition of Algorithm 5.1 and Corollary 5.1 is satisfied. Therefore, the
conclusions follow from Corollary 5.1(a)(b).

7 Conclusions

We have introduced a flexible duality framework to unify various duality frame-
works involving cocoercive operators in the literature, and provided new ap-
plications beyond the state-of-the art. The problem of choosing the metrics at
each iteration for the concrete problems in image processing is open.
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