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Abstract

We propose a splitting algorithm for solving a coupled system of primal-dual monotone
inclusions in real Hilbert spaces. The weak convergence of the algorithm proposed is proved.
Applications to minimization problems is demonstrated.
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1 Introduction

Various problems in applied mathematics such as evolution inclusions [2], partial differential equa-
tions [1, 30, 32], mechanics [31], variational inequalities [10, 29], Nash equilibria [4], and optimization
problems [6, 16, 22, 27, 37, 43], reduce to solving monotone inclusions. The simplest monotone
inclusion is to find a zero point of a maximally monotone operator A acting on a real Hilbert space
‘H. This problem can be solved efficiently by the proximal point algorithm when the resolvent of
A is easy to implement numerically [41] (see [11, 13, 14, 25, 34, 35, 38] in the context of variable
metric). This problem was then extended to the problem of finding a zero of the sum of a maximally
monotone operator A and a cocoercive operator B. In this case, we can used the forward-backward
splitting algorithm [2, 18, 32, 43] (see [26] in the context of variable metric).

When A has a structure, for examples, mixtures of composite, Lipschitzian or cocoercive, and
parallel-sum type monotone operators as in [23, 26, 44, 45], existing purely primal splitting meth-
ods do not offer satisfactory options to solve the problem due to the appearance of the composite
components and hence alternative primal-dual strategies must be explored. Very recently, these
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frameworks are unified into a system of monotone inclusions with mixtures of composite, Lip-
schitzian, and parallel-sum type monotone operators in [19]. In this paper, we address to the
numerical solutions of coupled system of primal-dual inclusions in real Hilbert spaces.

Problem 1.1 Let m, s be strictly positive integers. For every i € {1,...,m}, let (H;,(-|-)) be a
real Hilbert space, let z; € H;, let A;: H; — 2" be maximally monotone, let Cj: Hix...xXHpm — Hi
be such that

<E|l/0 S ]0, —|—OO[> <V($i)1§i§m eHy X... X Hm> (V(y@'hgigm € Hyx...X /Hm)

(2

For every k € {1,...,s}, let (G, (-|-)) be a real Hilbert space, let 7, € G, let By: G, — 29 be
maximally monotone, let Si: G1 X ... X G — G be such that

<E|uo €10, +OO[> <V(vk)1§k§s €GI X...x gs> (V(wk)lgkgs €G X...x gs>

(@i — i | Cix, . mm) = Ciyr, - ym)) = v0 D Cil@r, . 2m) = Cilyn, -y ym) 1P (11)
=1 i=1

s

S (op = w | Se(on, - 00) — Sk, w) > 10 S [Sk(vns -y 00) — Syl w2 (1.2)
k=1 k=1

For every i € {1,...,m} and every k € {1,...,s}, let Ly ;: H; = Gi be a bounded linear operator.
The problem is to solve the following system of primal-dual inclusions:

find 1 € H1,...,Tm € Hyp and U1 € Gy, ...,Ts € G, such that

( S m
21 — ZLZJ% € A1z + C1(T1, ..., ZTm) ZLl,z‘Tz‘ — 11 € By + S1(v1,...,70s)
k=1 i—1
and :
S m
Zm = Y Lh T € AT + Con(T1, .. T, > Ly iFi — s € By + (T, .., Ts).
k=1 i—1
(1.3)

We denote by Q the set of solutions to (1.3).

In the case when every linear operators ((Lg,i)1<k<s)i<i<m are zeros, we can use the algorithm
in [2] to solve the inclusions in the left hand side and in the right hand side of (1.3) separately. Let
us note that the non-linear coupling terms (Cj)1<i<m and (Si)1<k<s are introduced in [2] and they
are cocoercive operators which often play a central role; see for instance [2, 10, 17, 18, 29, 30, 31, 32,
42, 43, 46]. Let us add that the general algorithm in [19] can solve Problem 1.1 for the case when C;
and Sy are univariate, monotone and Lipschitzian. Furthermore, the primal-dual algorithm in [26,
Section 6] can solve Problem 1.1 for the case when m = 1 and each S are univariate, monotone
and Lipschitzian. To sum up, the recent general frameworks can solve special cases of the above
problem and no existing algorithm can solve it in the general case.

In the present paper, we propose a primal-dual splitting algorithm for solving Problem 1.1 in
Section 3. We recall some notations and background on the monotone operator theory in Section 2.
In Section 4, we provide application to coupled system of monotone inclusions in duality. Section
5 is devoted to applications to minimization problems. In the last section, an application to multi-
dictionary signal representation is presented.



2 Notation and background, and technical results

2.1 Notation and background

Throughout, #, G, and (G;)1<i<m are real Hilbert spaces. Their scalar products and associated
norms are respectively denoted by (- | -) and ||-||. We denote by B (#,G) the space of bounded linear
operators from H to G. The adjoint of L € B (H,G) is denoted by L*. We set B(H) = B (H,H).
The symbols — and — denote respectively weak and strong convergence, and Id denotes the identity
operator, we denote by £1 (N) the set of summable sequences in [0, +oo[ and by (2(K) (@ # K C N)
the set of square summable sequences, indexed by K, in R.

Let M; and M, be self-adjoint operators in B (H), we write My > M, if and only if (Vo €
H) (Myz | z) > (Max | x). Let a € ]0, +00[. We set

Pa(H)y={M eBH)|M" =M and M > ald}. (2.1)

The square root of M in P,(H) is denoted by VM. Moreover, for every M € P,(H), we define
respectively a scalar product and a norm by

(VeeH)(VyeM) (z|y)y=Mzly) and |z]y = (Mz|z), (2.2)
and, for any L € B (H), we define

ILllar = sup [[Lz|ar. (2.3)

lzllar <1

Let A: H — 2" be a set-valued operator. The domain of A is dom A = {x eEH | Ax # @},
and the graph of A is graA = {(z,u) € H x H | u € Az}. The set of zeros of A is zer A =
{zx € H|0€ Az}, and the range of Aisran A= {u € H | (3z € H) u € Az}. The inverse of A is
A7 i H = 2% ws {o € H | u € Az}, and the resolvent of A is

Ja=(Id+A)". (2.4)
Moreover, A is monotone if
(V(z,y) € H x H)(V(u,v) € Az x Ay) (r—y|u—v) >0, (2.5)

and maximally monotone if it is monotone and there exists no monotone operator B: H — 2%
such that gra A C gra B and A # B. A single-valued operator B: ‘H — H is -cocoercive, for some
B €10, +ool, if

(Ve € H)(Vy € H) (¢ —y| Bz — By) > S| Bz — By|*. (2.6)

The parallel sum of A: H — 2% and B: H — 2" is
AoB=(A14+BHL (2.7)

Let T'g(H) be the class of proper lower semicontinuous convex functions from H to |—oo, +oc|. For

any U € Po(H) and f € T'o(H), we define

. 1
Ju-1p5 = pI‘OXJ(cJS H—=>H:z— aryger;}lm (f(y)+ §Hx — ). (2.8)



and

. 1
Jof =proxs: H —H: x> argr;}lm (fly) + §Hm —yl%), (2.9)
ye

and the conjugate function of f is

f*rarsup ({a]z)— f(z)). (2.10)
xeH
Note that,
(VfeToM)(z e H)(y e H) yedf(x) e xecdf(y), (2.11)
or equivalently,
(Vf €To(H)) (0f)~" =af" (2.12)
The infimal convolution of the two functions f and g from H to |—o0, +00] is
fOg:x— inf (f(y) + g(z —y)). (2.13)
yeEH

The indicator function of a nonempty closed convex set C' is denoted by t¢, its dual function is
the support function o¢, the distance function of C is denoted by d¢c. Finally, the strong relative
interior of a subset C' of H is the set of points x € C such that the cone generated by —x + C'is a
closed vector subspace of H.

2.2 Technical results

We recall some results on monotone operators.

Definition 2.1 [2, Definition 2.3] An operator A: H — 27 is demiregular at x € dom A if, for
every sequence ((Tn,un))nen in gra A and every u € Ax such that x,, — = and u, — u, we have
Ty — .

Lemma 2.2 [2, Proposition 2.4] Let A: H — 2" be monotone and suppose that x € dom A. Then
A is demiregular at x in each of the following cases.

(i) A is uniformly monotone at x, i.e., there exists an increasing function ¢: [0, +oo[ — [0, +00]
that vanishes only at 0 such that (Yu € Azx)(¥(y,v) € graA) (x —y | u—v) > ¢(||lz — yl|)-
(ii) A is strongly monotone, i.e., there exists o € 10, +00[ such that A — a1d is monotone.

(iii) Ja is compact, i.e., for every bounded set C C H, the closure of Jao(C) is compact. In
particular, dom A is boundedly relatively compact, i.e., the intersection of its closure with
every closed ball is compact.

(iv) A: H — H is single-valued with a single-valued continuous inverse.

(v) A is single-valued on dom A and Id —A is demicompact, i.e., for every bounded sequence
(n)nen in dom A such that (Axy)nen converges strongly, (zn)nen admits a strong cluster
point.



(vi) A =0f, where f € To(H) is uniformly convex at x, i.e., there exists an increasing function
¢: [0,400[ = [0,+00] that vanishes only at 0 such that (Va € ]0,1[)(Vy € dom f) f(az +
(1-a)y) +a(l —a)é([lz —yl) < af(x) + (1 - a)f(y).

(vii) A=0f, where f € To(H) and, for every { € R, {x € H | f(x) < &} is boundedly compact.

Lemma 2.3 [26, Lemma 3.7] Let A: H — 2" be maximally monotone, let a € 0, +oc[, let U €

Pa(H), and let G be the real Hilbert space obtained by endowing H with the scalar product (z,y) —
(x| y)y-1 = (x| U ty). Then the following hold.

(i) UA: G — 29 is mazimally monotone.
(ii) Jya: G — G is 1-cocoercive, i.e., firmly nonexpansive, hence nonerpansive.
(iii) Jya= (Ut +A)toUL
Lemma 2.4 Let o and 3 be strictly positive reals, let B: H — H be [-cocoercive, let U € P, (H)
such that ||[UY|| < 28 and set P =1d~U"'B. Then,
(VzeH)(y €H) ||Pzx— Pyl <z —ylf — (26 — U] Bz — By|*. (2.14)

Hence, P is nonexpansive with respective to the norm || - ||y.

Proof. Let x € H and y € H. Then using the cocoercivity of B, we have
[Pz — Pyl3 = llz =yl —2(x —y | Bz — By) + U~ (Bx — By)|l;
< |lz =yl - 26||Bx — By|* + (Bx — By | U™ (Bz — By))
< llo —yl§ — (26 = U] Bz - By]]?, (2.15)
which proves (2.14). O

Theorem 2.5 [26, Theorem 4.1] Let IC be a real Hilbert space with scalar product ((- | -)) and the
associated norm ||| - |||. Let A: IC — 2% be mazimally monotone, let o € 10,400, let § € |0, +00],
let B: IC — IC be B-cocoercive, let (n,)nen € (1(N), and let (Uy,)nen be a sequence in Po(IC) such
that
p=sup||Uy| < +oo and (VneN) (1+n,)Upt1 = Upy. (2.16)
neN

Let ¢ € 0,min{1,28/(n+ 1)}], let (A\n)nen be a sequence in [g,1], let (yn)nen be a sequence in
[e, (28 —€)/u], let xg € IC, and let (ap)nen and (by)nen be absolutely summable sequences in IC.
Suppose that

Z =zer(A+ B) # o, (2.17)
and set
Tpyl = Ty + An(J'ynUnA (yn) + ay — xn)
Then the following hold for some T € Z.

(Vn € N) (2.18)

(i) zp, = .
(ii) ZnEN | Bz, — BEHP < +o0.

(iii) Suppose that at every point in Z, A or B is demiregular, then x, — T.



3 Algorithm and convergence

We propose the following algorithm for solving Problem 1.1.

Algorithm 3.1 Let o € |0,400[ and, for every i € {1,...,m} and every k € {1,...,s}, let
(Uin)nen be a sequence in Py (H;) and let (Vi »)nen be a sequence in P (Gy). Set = min{vy, 1o},
and let € € |0, min{1, B}[, let (A,)nen be a sequence in [e, 1]. Let (x;0)1<i<m € Hi X ... X Hpy, and
(Uk,O)lgkgs € Gy X...xGs. Set

For n=0,1,...
For i=1,....m
S
Pin = JUi,nAi <xi,n - Uz,n( Zk:l Lz,ivk,n + Ci,n(xl,rw v 7xm,n) + Cin — zz)) + (2R
Yin = Qpi,n — Tin
| Zing1 = Tin + Nin(Din — Tin)
For k=1,... s
m
Tk = IV, By <vk,n + Ve (01 Liiin — Skn(Vins - - -, Vsin) — dign — Tk)) +bin
L Ykn+1 = Vkn + )‘m-l—k,n(Qk,n - vk,n)a

(3.1)
where, for every ¢ € {1,...,m} and every k € {1,...,s}, the following conditions hold
(i) (Vn € N) Uipns1 = Uiy and Vi iyt = Vi, and
= {10 Ol Wil Vel < 4 (32)
ne

(ii) (Cin)nen are operators from Hy X ... x My, to H; such that

(a) (Cin — Ci)nen are Lipschitz continuous with respective constants (ki p)nen € |0, 4+00]
satisfying > oy Kin < +00.
(b) There exists 5 € Hq X ... X H,y, not depending i such that (Vn € N) C; ;5 = Cj5.

(ili) (Skn)nen are operators from Gy X ... G, to Gy, such that

(a) (Skn — Sk)nen are Lipschitz continuous with respective constants (7., )nen € |0, +00]
satisfying > k,n < +00.
(b) There exists w € G X ... x G, not depending k such that (Vn € N) S ,w = Spw.

(iv) (@jn)nen and (¢;n)nen are absolutely summable sequences in ;.
(v) (bgn)nen and (di n)nen are absolutely summable sequences in Gy.

(vi) (Min)nen and (Ap4kn)nen are in ]0,1] such that

Z <‘)‘27n - )‘n‘ + ’)‘erk,n - )‘n‘) < +00. (3.3)
neN

Remark 3.2 Here are some remarks



(i) Our algorithm has basically a structure of the variable metric forward-backward splitting since
the multi-valued operators are used individually in the backward steps via their resolvents,
the single-valued operators are used individually in the forward steps via their values.

(ii) The algorithm allows the metric to vary over the course of the iterations. Even when restricted
to the constant metric case (which is the case where (U; ,)1<i<m and (Vi n)1<k<s are identity
operators), the algorithm is new.

(iii) Condition (i) is used in [26, 45] while conditions (ii), (iii) and (vi) are used in [2], and
conditions (iv) and (v) which quantify the tolerance allowed in the inexact implementation
of the resolvents and the approximations of single-valued are widely used in the literature.

(iv) Algorithm 3.1 is an extension of [26, Corollary 6.2] where m = 1 and every n € N: C;,, = C
and for every k € {1,...,s}, Spn = D,;l are restricted to univariate and cocoercive, and By,
is replaced by kal, and for every j € {1,...,m+ s}, Aj, = \p.

The main result of the paper can be now stated.

Theorem 3.3 Suppose in Problem 1.1 that Q@ # @& and there exists Ly, ;, # 0 for some ig €
{1,...,m} and ko € {1,...,s}. For everyn € N, set
-1
2
) -1, (3.4)

b = ( S |V bkinTi

1=1 k=1

and suppose that

On 1
= > . 3.5
¢ (14 6n) maxi<i<mi<k<s U Uinll, [Vanll} — 28 —¢ (3:5)

For everyi € {1,...,m} and every k € {1,...,s}, let (T;n)nen and (Vg n)nen be sequences generated
by Algorithm 3.1. Then the following hold for some (T1,...,Tm,01,...,0s) € .

(i) (Vie{l,...,m}) zip —=T; and (Vk € {1,...,s}) vk pn — V.

(i) Suppose that the operator (x;)i1<i<m — (Cj(%i)1<i<m)i<j<m 15 demireqular (see Lemma 2.2
for special cases) at (Zy,...,Tm), then (Vi € {1,...,m}) ;i — T;.

(iii) Suppose that the operator (vi)i<k<s — (S;(Vk)i<k<s)i<j<s 5 demiregular (see Lemma 2.2 for
special cases) at (U1, ...,Us), then (Vk € {1,...,s}) vk pn — U.

(iv) Suppose that there exists j € {1,...,m} and an operator C': H; — H; such that (V(x;)1<i<m €
(Hi)i<i<m) Cj(x1,...,2m) = Cxj and C is demiregular (see Lemma 2.2 for special cases) at
T, then x;, — T;.

(v) Suppose that there exists j € {1,...,s} and an operator D: G; — G; such that (V(vg)i<k<s €
(Gr)i<k<s) Sj(v1,...,vs) = Dv;j and D is demireqular (see Lemma 2.2 for special cases) at
v, then Vjn —> Uj.



Proof. Let us introduce the Hilbert direct sums
H=H1®..OHmn, G6=G&...8G;, and K=HDG. (3.6)

We denote by & = (2)1<i<m, ¥ = (Ui)i<i<m and v = (vg)1<k<s, w = (Wk)i1<k<s the generic
elements in H and G, respectively. The generic elements in K will be in the form p = (x,v). The
scalar product and the norm of H are respectively defined by

m

(1) (zy) = Z (i | i), (3.7)
and
[z = (x| x). (3.8)

The scalar product and the norm of G are defined by the same fashion as those of H,

S

(1) (,w) = > (o | we), (3.9)

k=1

and
|- 1|: v—= /(v ]|v). (3.10)

We next define the scalar product and the norm of K are respectively defined by

(1N (@), (g w) = > (i Ly + > (g | wy) (3.11)
i=1 k=1
and
111l (=) = V(= 0) | (2,0)). (3.12)
Set
A:H— 2"z X;;Aixi s
B:G—529: v xklekvk
C:H—H:xzw (Cix)i<i<m and D:G 2 v (Syv) (3.13)
: Cv v s .
L:H = Goa— (00 Liiti) oo FIEkS
SRS r=(ry,...,rs),
z=(21,--y2m),
and

(VneN) Cp:H—o>H:x— (Cipnx)icicm and Dy: G — G: v (Sgav)i<i<s- (3.14)
Then, it follows from (1.1) that
(Vze H)(y €eH) (xz-y|Cz—-Cy)>un|Cz-Cy|, (3.15)
from (1.2) that

(VweH) (weH) (v—w|Dv— Dw)> pu|Dv— Dw|?, (3.16)



which shows that C and D are respectively vyp-cocoercive and pg-cocoercive and hence they are
maximally monotone [10, Example 20.28]. Moreover, it follows from [10, Proposition 20.23] that
A and B are maximally monotone. Furthermore,

S
L' G- H: v <ZLM@,€> . (3.17)

Then, using (3.13), we can rewrite the system of monotone inclusions (1.3) as a monotone inclusion

in IC,

find (£,7) € KL such that z — L*v € (A+C)Z and LZ —7r € (B+ D)v. (3.18)
Set
M: K — 2% (x,v) — (-2 + Ax,r + Bv)
S: K- K: (x,v) —» (L*v,—Lx) (3.19)
Q: K- K: (zx,v) = (Cz,Dv),
and
Q, K- K: (x,v) — (Cpx,D,v)
(¥n € N) Ay K= K (2,0) = (Nini)i<i<ms Amaknk)1<k<s) (3.20)
U,: K— K: (z,v) = (Uinzi)i<i<m: (VinUk)1<k<s)

VK= K: (z,v) = U, (z,v) — (L*v, Lz).

Then M, S are maximally monotone operators and (3.15), (3.16) implies that Q is S-cocoercive
and hence it is maximally monotone [10, Example 20.28]. Therefore, M + S + Q is maximally
monotone [10, Corollary 24.4]. Furthermore, the problem (3.18) is reduced to find a zero point of
M + S + Q. Note that 2 # & implies that

zet(M+S+Q)#9 (3.21)
Moreover, we also have

(VneN) |Apllv, = max X;, <1 and [[Id—A,lyv,=1—_ min \;, <1  (3.22)

1<j<m+s 1<j<m+s
Hence,
_ — R _ 3 . < .
[Anllv, + 1 =Anllv, =1+ max (o =Aa) = min (hjn=A) S147, (3.23)
where
(Vn e N) 7"221§1;‘n§an}f+5|)\j’"_)\"|' (3.24)

We derive from the condition (vi) in Algorithm 3.1 that

m+s
D <2) 0> [ — An| < Foo. (3.25)
neN Jj=1 neN

We next derive from the condition (i) in Algorithm 3.1 that

p=sup||U,| <400, and (VneN) Up,4 = U, € Py(IK), (3.26)
neN



and it follows from (3.12) and [25, Lemma 2.1(ii)] that

(vn € N)(Vp = (z,v) € K) [lIplll; 1= Z ||90z‘\|2Ui—1 +) ||Uk||%/k—1
‘ =1 "

S
>ZH%H T+ D ol PV |
k=1

> !HpH\2 min__ {|Uinl ™ Vel ™'} (3.27)

1<i<m,1<k<s

Note that (V,)nen are self-adjoint, let us check that (V',),en are strongly monotone. To this end,
let us introduce

T, H—>G: x— (Z?ll \/Vk,nLk,ixi>
1<k<s (3.28)
R,:G—G:v— (\/Vl,n _17}17---7\/‘/;,n _1%)-

Then, by using Cauchy-Schwartz’s inequality, we have

(Vn € N)

s 2

(VneN)(z eH) |Tozl®= Z

\/Vk,nLk,i \/Ul,n \/Ul,n _1$i
=1

(Z\ka,nLM,n ]
> (S Vil ) (X ot
(i by ) 303 | P

‘\/Ui,n 71%'

| /\

)

3

= Bn Z illF, - (3.29)

where we set

S m 2
(Vn eN) B, = Z H\/ VinLkiv/Uinl| (3.30)
which together with (3.4) imply that
1
Vn e N) (146,)8, = . 3.31
(meN) (1+8)0= 5 (3.31)
Moreover,
- -1
(ineN)(weG) Rl =[vVVin ul’
k=1
=3l (3:32)
k=1 ’

10



Therefore, for every p = (x,v) € K, and every n € N, it follows from (3.20), (3.28), (3.31), (3.32)

and (3.27), (3.5) that

(2| Vu)) = llIplliy;: —2 (L | v)
::‘HPH‘ 1 _-2253 <:£: V V%?rLkle’ \/L%vl >
=1llpllly- —2 <\/ 5008 Tow | V5008 Ruv)

2 |||Tn90||| 2

> Pl — w +(1+6,) BZHv I}
Z Py -1 1+ 0n) n kvl

k=1
S
2
- (Z EEEDY Jocl?, -+ )
> Gl

In turn, (V,,)nen are invertible, by [25, Lemma 2.1(iii)] and (3.5),

1
(VneN) [V <—<28-e¢

n

and by [25, Lemma 2.1(1)], (3.26), (vn € N) (Ups1 = U, = U, = U}, =V, =

V- 1

wi1 7 V1), Furthermore, we derive from [25, Lemma 2.1(ii)] that

_ _ 1 _
(vpek) ((Vi'p|p) = |Vall 1|||p|||22;|||10|||2, where p = a™! + || S].

Altogether,
sup [V, M| <28—¢ and (VneN) Vi =V, 'eP,(K).
neN

Moreover, using [25, Lemma 2.1(i)(ii)] and (3.36), we obtain

(Vzdnen €K%) S llzalll <400 & S llzalllyor < +00

neN neN
and
(V(zn)nen € KY) D llznlll <400 & > |llznlllv, < +oo,
neN neN
and

(Vp € K) SUP|||P|||Vn < +oo.
neN

11

(3.33)

(3.34)

‘/n+1 =

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)



Now we can reformulate the algorithm (3.1) as iterations in the space K. We first observe that
(3.1) is equivalent to

For n=0,1...
Fori=1,...,m

U (@i = Pin) = St L Ok = Con(@1n, -, Tmn) €

—2i + Ai(Pin — Qin) + Cin — Uijnlai,n

| Zing1 = Tin + Nin(Din — Tim) (3.40)
For k=1,....,s

Vk_,nl (Uk:,n - Qk,n) - Zgl Lk,i(xi,n - pi,n) - Sk:,n(vl,na cee 7Us,n) €

7%+ Bi(@hn — ben) — Y0ty Licibin + din — Vi b

| Vkn+1 = Vkn + Am—i—k,n(q&n - Uk,n)-

Set

Py = (xl,na «o - TImmn, V1ns--- avs,n) Cn = (Cl,na <o Cmon, dl,na ce ,ds,n)

_ _ -1 —1 -1 —1
Yn = (pl,na e s PmnsQing .- 7QS,n) dn - (U17na1,n7 oo 7Um,nam,n7 Vl,n bl,na B V’s’n bs,n)
ap = (al,rw <o Amon, bl,na SRR bs,n) bn = (S + Vn)a'n +cp — dn

Then, using the same arguments as in [44, Eqgs. (3.22)—(3.35)], using (3.19), (3.20), (3.40) yields

(vn c N) \‘ Vn(pn - yn) - ann S (M + S)(yn - a'n) + San +cp — dn (341)
Pptr1 = Py + An(yn - pn)'
We have
(VneN) Vau(p, —yn) — Qupn € (M + S)(y,, —an) + Sa, +cn —dy
& (VneN) (V,-Q,)p, €« M+S+V,)(y,—an) +(S+Vya,+c, —d,
G (MEN) y, = (M+S+Vy) " (V= Qu)p, — (S+Vi)ay — o+ dy) +an
-1

& (¥nen) y,=(1d+V,'(M+9)) ((1d-V.'Q,)p,—V;'b,) +a,

& (InEN) y, =Ty iares) <(Id ~V'Q,)p, — V,;lbn) +a,. (3.42)
Therefore, (3.41) becomes

(VvneN) p,.1=p,+A, <JVn1(M+S) (pn -v YQ,p, + bn)> +a, — pn>. (3.43)

By setting

M: K — 25 (z,v) » M(z,v) + S(z, v),

P,=1d-V;'Q, and P,=1d-V,'Q,

(WneN) {E,=Q,—-Q and Q, =V, 'E,, (3.44)
€1n = ann + Vr_lena

e, =a,+ ﬁ()\n Id —An) (pn — JV;lﬁ(Pnpn — 61,n) — an),
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we have

(3.43) & (W0 €N) prys =Py + An(Jy 157 (Pupy = Vi '00) + a0 — p,,)
= (Id =Aw)p, + Andy 15 (Pup, — Vi'by) + Anan
= (Id—A,)p,, + A"JV;11\71 (Pnpn — el,n) + Apa, (3.45)

=(1-X\)p, + )‘n<JV;1M(PnPn —e1,) + en). (3.46)

Algorithm (3.46) is a special instance of the variable metric forward-backward splitting (2.18) with
(VneN)~,=1¢€ [5, (26 —¢)/(sup HV;lH)} (see (3.36)). (3.47)
neN

Moreover, since M is maximally monotone, @ is B-cocoercive, and (Vn € N) A\, € [e, 1], since
(3.36) and (3.21) respectively show that (2.16) and (2.17) are satisfied. In view of Theorem 2.5, it
is sufficient to prove that (ej ,)nen and (e )nen are absolutely summable in IC, i.e, we prove that

> lewalll < +oo, (3.48)
neN

and
5 lleall] < +oc. (3.49)
neN

For every i € {1,...,m} and every k € {1,...,s}, since (ain)nen, (Cin)nen and (bpn)nen and

(dk,n)nen are absolutely summable, we have

THIEDS (Z laall + 3 ku,nu) < too, (3.50)
k=1

neN neN »i=1

and . .
S lealll <3 (Z leinll +3° \|dk7nu> < +oo. (3.51)
neN neN =1 k=1

Moreover, for every n € N, U,, € P,(K), it follows from [25, Lemma 2.1(iii)] that |U!|| < o'
Hence,

Yollldalll < a7 lllanll] < +oc. (3.52)

neN neN
and
S bl < p Y Mllanlll + Y (el + [ldnll]) < +oo. (3.53)
neN neN neN

Therefore, (an)nen, (bn)nen, (€n)nen and (d,)nen are absolutely summable in /C. Next it follows
from the conditions (ii), (iii) in Algorithm 3.1 and (3.36), (3.33), (3.5) that, for every p = (z,v) € K
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and g = (y,w) € K,

(Vn € N) H‘an an|HV

<< wp— Enq | V—lEnp - V.'E,q))
IV [ Enp — Engl|?

< (26— a>(u<cn _C)z— (C, - Oy

IN

(D~ D)o — (D, D)wu2>

m

— (28 —2) ( S (Cin — G — (Cin — Copyl?

=1
S
#3510~ (S~ swwu?)
m : S
< @90 (Y rtule —ul+ Yok b0 - wl?)
i=1 k=1
m S
< (25— (ZK 2 4
=1
m S
Skt Zni,n)um— alli%.
k=1

i=1

m s
<(@26-¢) (ZH ,n+2nz,n)mp—qm%n, (3.54)
i=1 k=1

nén)nm— all?
k=1

25_6Cn1

/_\

which implies that Q,, is Lipschitz continuous (in the norm ||| - |||y, ) with respectively constant
=(26—¢) anJan,m, (3.55)
that satisfies
D ki < +o00. (3.56)
neN

Let p = (x,v) € zer(M + S 4+ Q) and noting that (Vn € N) Q,,(s,w) = 0,

(¥neN) llevalllv, < 11Qupulllv, + 1[IV balllv,
< 1Qupy — Quplllv, + 1Qup - Q.G ®)llv,, + [V bulllv,
< tnlllpn = plllv, + #alllp = G@)lv, + IV balllv,
= tinll Py = Plllv, + Fnlllp = 5 @)|l[v, + [[[bnllly -1 (3.57)

Since p € zer(M + S + Q), we have

(VneN) p= JV;IM(Pnp). (3.58)
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Hence, since Jy, and P,, are nonexpansive with respect to the norm ||| |||y, by Lemma 2.3(ii)

—17r
M

n

and Lemma 2.4, on one hand, we have

1y 52 (Pupn — e10) = Blllv,. = 1y 157 (Popn — €10) = Jyr 5z (Pup)llv,
< lpn — plliv, +llleralllv,. (3.59)

which and (3.45), (3.22), (3.23) imply that

(Yn eN) |l[pp11 —Dlllv, < m(ld_A")(pn —P)H\Vn
+[[|[An(Jy 157 (PP, = €1n) = P) |||y, + [[|Ananl|]y,,

< ([[|aa=anllly., + | Anllly:, ) [IPn = 2llly, +[[[Aa]lly., levalllv, + ||| Ananl[|y.,
< (470 + m)lllpn — Plllv, + an, (3.60)

where
(neN) an=ralllp— EBlv, +|[[ballly-s +|[aal]y.. (3.61)

Noting that, by (3.25), (3.56), (3.39), (3.38), (3.37) and (3.53), (3.50), we have

Z an < +oo  and Z(Tn + Kp) < Fo00. (3.62)
neN neN

Therefore, we derive from (3.60) and (Vn € N) V,, = V1 that
(vneN) |[|[pa1 = pllly,,, < @+ 7+ s0)lllp, —plllv., + om, (3.63)
and hence, by [36, Lemma 2.2.2],

sup [||p,, — plllv, < +oo, (3.64)
neN
which and (3.57),(3.56),(3.62), (3.53), (3.37), (3.38), (3.39) imply that

> lllernlllv, < +oo. (3.65)
neN

On the other hand,
11Pn = Jy—157 (Prupn — €10) — anlllv,, < 2lllp, = plllv, + lllevalllv, +lllanlllv,,  (3.66)
which and (3.64), (3.65) imply that

v= sull\)] lllp,, — JV,lﬁ(Pnpn —e1,) — ayl|lv, < +oo. (3.67)
ne n

Now using the condition (vi), (3.67) and the definition of (€1, )nen in (3.44), we obtain

S llealllve < 3 Nanlllv, +ve' 3 (Z M= Al 43 Pk — An\) < oo, (368)
k=1

neN neN neN »i=1
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By using (3.38), we derive from (3.68) and (3.65) that

D lllenlll < 400 and > |llernll] < +oo, (3.69)
neN neN

which prove (3.48) and (3.49).
(i): By Theorem 2.5(i), p,, = P € zer(M + S + Q).
(i) (iii): By Theorem 2.5(ii) and (iii),
11Qp,, — Qpll| — 0, (3.70)
which implies that, for every ¢ € {1,...,m} and every k € {1, ..., s},
Ci(zipy s Tmn) — Ci(T1,...,Tm) = 0 and  Sk(vip,...,vspn) — Sk(01,...,0s) = 0. (3.71)

Moreover, by (i), (Vi € {1,...,m}) z;, — T; and (Vk € {1,...,s}) vgn — V. Therefore, the
conclusions follow from the definition of the demiregular operators.

(iv)(v): The conclusions follow from our assumptions the definition of the demiregular operators.

4 Application to coupled system of monotone inclusions in duality

We provide an application to coupled system of monotone inclusions.

Problem 4.1 Let m, s be strictly positive integers. For every i € {1,...,m}, let (H;,(-|)) be a
real Hilbert space, let z; € H;, let A;: H; — 27 be maximally monotone, let C;: Hix. .. XHy, — Hi
be such that

<E|l/0 S ]0, —|—OO[> <V($i)1§i§m eHy X... X Hm> (V(y@'hgigm € Hyx...X /Hm)

(@i =i | Cilwr, s 2m) = Ciyn, - ym)) 2 w0 Y [[Ci@, -y xm) = Cilyrs- - ym) [P (4.1)
=1

i=1

(2

For every k € {1,...,s}, let (Gi, (- |-)) be a real Hilbert space, let ry € Gy, let Dy: G, — 2%
be maximally monotone and vj-strongly monotone for some v, € |0, 4o00[, let By: Gp — 29 be
maximally monotone. For every ¢ € {1,...,m} and every k € {1,...,s}, let L;: H; — Gj be a
bounded linear operator. The primal problem is to solve the primal inclusion:

find 71 € Hq,...,ZTym € Hym such that

s m
21 € AT+ Z Lz,l <(Dk | Bk) < Z Lkﬂ'fi — V“k>> + Cl(fl, ... ,fm)
=1

k=1
(4.2)

s m
Zm € AmTm + Z Lz,m<(Dk O Bk) < Z Lkﬂ'fi — Tk>> + Cm(fl, ... ,Tm).
i=1

k=1

16



We denote by P the set of solutions to (4.2). The dual problem is to solve the dual inclusion:

find vy € G1,...,Ts € G, such that (I(z;)1<icm € (Hi)i<i<m)

( s "
Z1 — Z Li v, € Ay + Cr(21, ..o ) ZLW%’ —r € BT, + Doy
k=1 =
and :
5 m
Zm = Y Lh T € Am@m + Cin(@1, ..., Tm), " Lygai — 14 € By Y5, + D17,
h=1 i=1
(4.3)

The set of solutions to (4.3) is denoted by D.

Problem 4.1 covers not only a wide class of monotone inclusions and duality frameworks in the
literature [3, 5, 6, 12, 17, 18, 26, 28, 33, 37, 39, 40, 42, 43, 44] and coupled system of monotone
inclusions unified in [2] and the references therein, but also a wide class of minimization formu-
lations, in particular, in the multi-component signal decomposition and recovery [2, 5, 7] and the
references therein.

Algorithm 4.2 Let o € 0,400 and, for every i € {1,...,m} and every k € {1,...,s},
let (Uin)nen be a sequence in Po(H;) and let (Vi ,)nen be a sequence in Po(Gi). Set f =
min{vg, v1,...,vs}, and let € € ]0, min{1, 5}[, let (Ay)nen be a sequence in [e, 1]. Let (xi0)1<i<m €
Hq X ...xH,, and (vkp)lgkgs € G X...x G Set

For n=0,1,...
Fori=1,....m
DPin = JUMLAZ' <xi,n - Ui,n < Zzzl Lzﬂ'vk,n + Ci(xl,na ce axm,n) + Cin — Zz)) + ain
Yion = 2pi,n — Tin (4.4)

| Ting1 = Tip + Nin(Din — Tim)
For k=1,... s

m —1
Gk =y, B (vk,n + Vin < Yoy Liiyfin — Dy ke — dign — Tk)) + bp.m,
L Vkn+1 = Vkn + Am—i—k,n(Qk,n - Uk,n),

where, for every i € {1,...,m} and every k € {1,...,s}, the following conditions hold

(i) (V’I’L S N) Ui,n+1 >~ U@n and Vk,n+1 >~ Vk,n, and

u:Q@wmmwmAwmAAMMwuwmwu<+w. (4.5)
ne

(ii) (a@in)nen and (c;pn)nen are absolutely summable sequences in H;.
(iii) (bg,n)nen and (din)nen are absolutely summable sequences in Gy.

(iv) (Min)nen and (Ap4kn)nen are in ]0,1] such that

Z <‘)‘z,n - )‘n‘ + ’)‘erk,n - )‘n‘) < +00. (46)
neN
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Corollary 4.3 Suppose that P # @& and there exists Ly, ;, # 0 for some ig € {1,...,m} and
ko € {1,...,s}, and (3.5) is satisfied. For every i € {1,...,m} and every k € {1,...,s}, let
(Zin)nen and (Vg n)nen be sequences generated by Algorithm 4.2. Then the following hold for some
(fl,...,fm) € P and (61,...,55) eD.

(i) (Vie{l,...,m}) zjn —=7Z; and (Vk € {1,...,s}) vk n — V.

(ii) Suppose that the operator (x;)i1<i<m — (Cj(zi)i<i<m)i<j<m is demireqular (see Lemma 2.2
for special cases) at (T1,...,Tpy), then (Vi€ {1,...,m}) z;, — T;.

(iii) Suppose that D;l is demiregular at Uj, for some j € {1,...,s}, then v, — ;.

(iv) Suppose that there exists j € {1,...,m} and operator C: H; — H; such that (V(x;)1<i<m €
(Hi)i<i<m) Cj(z1,...,xm) = Cxj and C is demiregular (see Lemma 2.2 for special cases) at
Tj, then Tjn —> Tj.

Proof. Set po = min{vy,...,vs} and define

(Vke{l,...,s}) Sk:glx...gs—)gk:(Ul,...,vs)l—)Dk_lvk. (47)

Then, for every (vg)i<k<s € G1 X ... X G and every (wg)i1<k<s € G1 X ... X G, we obtain

S

Z <Uk — Wk ’ Sk(vl, ce ,US) — Sk(wl, Ce ,w5)> = Z<1}k — Wg ‘ Dk_l?}k — Dk_lwk>

k=1 Pt
S
> " wil|Dy Mo — Dy g
k=1
S
> po Y 1Dy ok — Dy g
k=1

=10 > 1Sk(v1,- .y vs) = Sp(wr, ... ws) [P, (4.8)
k=1

which shows that (1.2) is satisfied. Moreover, upon setting

(Vi S {1,. .. ,m}) Ci,n =C;

(4.9)
(V/{? S {1, R ,8}) Sk,n = Sk,

(Vn € N) {

the conditions (ii) and (iii) in Algorithm 3.1 are satisfied. Note that the conditions (i), (ii), (iii),
and (iv) in Algorithm 4.2 are the same as in Algorithm 3.1. Moreover, the algorithm (3.1) reduces
to (4.4) where By is replaced by B,;l. Next, since P # &, we derive from (4.2) that, for every
ke {1,...,s}, there exists vy € Gy such that

m m
Vg € (Dk O Bk) ( Z Lk,ifi — T’k> = Z Lk,ifi — T € Bk_lﬁk + Dk_lﬁk, (4.10)
i=1 i=1
and i
Vie{l,...,m}) z—> Li € ATi+Ci(T1,. .., Tm), (4.11)
k=1
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which shows that ) # @ and D # @. Inversely, if (Z1,...,ZTm,01,...,0s) € €, then the inclusions
(4.10) and (4.11) are satisfied. Hence (71,...,7s) € D and (Zy,...,Tm) € P. Therefore, the
conclusions follow from Theorem 3.3. O

5 Application to minimization problems

We provide applications to minimization problems involving infimal convolutions, composite func-
tions and coupling.

Problem 5.1 Let m,s be strictly positive integers. For every i € {1,...,m}, let H; be a real
Hilbert space, let z; € H;, let f; € To(H;). For every k € {1,...,s}, let G be a real Hilbert space,
let 7, € Gi, let £, € To(Gx) be vg-strongly convex function, for some v, € |0, +o0], let gx € T'o(G).
For every i € {1,...,m}, and every k € {1,...,s}, let Ly ;: H; — Gj be a bounded linear operator.
Let ¢: Hix...xHy — R be convex differentiable function with v, !_Lipschitz continuous gradient.
The primal problems is to
m S m
minimize Z (fl(.%'l) — <1‘Z ’ ZZ>) + Z (@k g gk) (Z Lk,ixi - Tk> + L,O(m'l, . ,xm), (5.1)
k=1

T1EHL, s Tm EHm 4 -
=1 =1

under the the assumption that,

(Vz’ e{1,... ,m}) z; € ran <8fi + iLZZ o <8€k | ng> o (il’kvj . —rk> + Vi<p>, (5.2)
=1 j=1

where V,p is the ith component of the gradient V¢, and the dual problem is to
m S S
 minimize <<p (Z;f@)) <<Zz ; P &Sm) +; ( 7 (o) + g (vr) + (v | V"k>> (5.3)

In the case when the infimal convolutions are absent, Problem 5.1 often appears in the multi-
components signal decomposition and recovery problems [2, 5, 4] and the references therein.

Example 5.2 Some special cases of this problem are listed in the following;:

(i) In the case when ¢: (21,...,Zm) — > 1oy hi(x;), where for every i € {1,...,m}, hi: H; > R
is a convex differential function with Ti_l—Lipschitz continuous gradient, for some Ti_l €
10, +o0[, Problem 5.1 reduces to the general minimization problem [19, Problem 5.1] which

covers a wide class of the convex minimization problems in the literature.

(ii) In the case when ¢: (21,...,Zm) = 0 and, for every k € {1,...,s}, lx = 1(oy and gy is
differentiable with 7, !_Lipschitz continuous gradient, for some 75, € 10, 4+00[, Problem 5.1
reduces to [5, Problem 1.1].

(iii) In the case when m = 1, Problem 5.1 reduces to [23, Problem 4.1] which is also studied in
[26, 44].
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Algorithm 5.3 Let o € ]0,400] and, for every ¢ € {1,...,m} and every k € {1,...,s},
let (Ujn)nen be a sequence in Po(H;) and let (Vi n)nen be a sequence in Po(Gi). Set f =
min{vy,v1,...,vs}, and let € € |0, min{1, }[, let (A\,)nen be a sequence in [e, 1]. Let (z;0)1<i<m €
Hi X ...x Hy, and (Uk,O)lgkgs €3Gy X ...xGs. Set

For n=0,1,...

Fori=1,....m
-1

U; s
Pin = pTOXf:’n <l“zn - Ui,n ( Zkzl Lz,ivk,n + Vz‘@(ﬂfl,n, e ,l“m,n) + Cin — Z@)) + ain
Yinm = 2pi,n — Tin
| ZTint1 = Tin + Nin(Pin — Tin)
For k=1,...,s

e
Qyn = pTOng’ (vk,n + Vi < Yot Liivin — V&G (Vg n) — dip — Tk)) + bp.m,
L Ykn+1 = Vkn + Am—i—k,n(Qk,n - Uk,n),

(5.4)
where, for every i € {1,...,m} and every k € {1,...,s}, the following conditions hold
(i) (Vn S N) Ui,n+1 ~ Ui,n and Vk,n+1 ~ Vk,m and
= sup{|[Upll, - 1Unnll; [Vinlls - [[Vsnll} < 4oo. (5.5)
neN
(ii) (a@in)nen and (c;pn)nen are absolutely summable sequences in H;.
(ili) (bg,n)nen and (dgn)nen are absolutely summable sequences in Gy.
(iv) (Min)nen and (Ap4kn)nen are in ]0,1] such that

> (i = Al + Ptk = al) < o0, (5.6)

neN

Corollary 5.4 Suppose that there exists Ly, ;, # 0 for some ig € {1,...,m} and ko € {1,...,s},
and (3.5) is satisfied. For everyi € {1,...,m} and every k € {1,...,s}, let (Tsn)nen and (Vg n)nen
be sequences generated by Algorithm 5.5. Then the following hold for some solution (T1,...,Tm)
to (5.1) and (v1,...,0s) to (5.3).

(i) (Vie{l,...,m}) Tin — T; and (VE e {1,...,s}) Vi — Uk-

(i) Suppose that ¢ is defined as in Example 5.2(i) and h; is uniformly convex at T;, for some

je{l,...,m}, then z;, — T;.
(iii) Suppose that 6; is uniformly convex at T;, for some j € {1,...,s}, then v;, — U;.
Proof. Set

{(Vie{l,...,m}) A;=08f; and C; =V, (57)

(Vk‘ S {1, ce ,S}) By =0gr and Dy = 0¢.

Then it follows from [10, Theorem 20.40] that (A;)i<i<m, (Bk)i<k<s, and (Dg)1<k<s are maximally
monotone. Moreover, (C1,...,Cy,) = Vg is yy-cocoercive [8, 9]. Moreover since, for every k €
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{1,...,s}, Uk is yg-strongly convex, Of is vg-strongly monotone. Therefore, every conditions on
the operators in Problem 1.1 are satisfied. Since, for every k € {1,...,s}, dom¢; = G, we next
derive from [10, Proposition 20.47] that

(Vkﬁ € {1, ce ,S}) 8(fk | gk) = Ogy, 0 04y, = By, O Dy,. (5.8)

Let H and G be defined as in the proof of Theorem 3.3, and let L, z and r be defined as in (3.13),
and define
frH = ]—o0,too[r @ 300, fila:)
g: G — ]—o0,+o0[:v =Y 7 gr(vk) (5.9)
0: G —]—o0,+00[: v =Yy lk(vk).

Observe that [10, Proposition 13.27],

ffry— Zfz*(y,), g v Zg;;(vk), and (v Z@Z(vk) (5.10)
i=1 k=1 k=1
We also have i
(Og: v > (6D gr)(vg). (5.11)
k=1

Then the primal problem becomes

migé%ize f®)—(x|z)+(Og)(Lx —r)+ (x), (5.12)

and the dual problem becomes

minimize (¢° 0 f)(z = L) + £'(v) +¢"(v) + (v | 7). (5.13)

Then, let € = (Z1,...,Zm) be a solution to (4.2), i.e., for every i € {1,...,m},

Z; € afl(fz) + Z L,’;ﬂ(((%k O [‘)gk) (Z LkJ’fj — Tk>> + Vz‘(p(fl, R ,fm). (5.14)
k=1 j=1

Then, using (5.7), (5.8), [10, Corollary 16.38(iii)], [10, Proposition 16.8],
0ca(f+(|2)@ +L* (a(e 0 9) (L% — r)) + V(). (5.15)
Therefore, by [10, Proposition 16.5(ii)], we derive from (5.15) that
OE@(f—l—(-]z>+(€Dg)(L-—r)+ap)(E). (5.16)

Hence, by Fermat’s rule [10, Theorem 16.2] that T is a solution to (5.12), i.e, T is a solution to
(5.1). We next let © be a solution to (4.3). Then using [10, Theorem 15.3] and (2.12),

re —L((af + V) (2 — L*ﬁ)) +(8g) "B+ (80) "'
- —L(a(f + o) (2 — L*E)) +9g* (v) + 0" (T)
- _L(a( F o)z — L*ﬁ)) + 0g*(B) + O0* (D). (5.17)
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Therefore, by [10, Proposition 16.5(ii)], we derive from (5.16) that
0€o((¢" D)z =L+ 0 +g" + (| 7)) (@) (5.18)

Hence, by Fermat’s rule [10, Theorem 16.2] that ¥ is a solution to (5.13), i.e, D is a solution to

(4.3).

Now, in view of (2.8), algorithm (5.4) is a special case of the algorithm (4.4). Moreover, every
specific conditions in Corollary 4.3 are satisfied.

(i) It follows from Corollary 4.3(i) that (1 n,...,Zmn) = (Z1,...,Tm) which solves the primal
problem (5.1), and (v1,,...,Vsn) — (T1,...,0s) which solves the dual problem (5.3).

(ii)(iii) The conclusions follow from Corollary 4.3(iii)(iv) and Lemma 2.2(vi). O

Remark 5.5 Here are some remarks

(i) Sufficient conditions which ensure that the condition (5.2) is satisfied are provided in [19,
Proposition 5.3]. For instance, if (5.1) has at least one solution and (ry,...,rs) belongs to
the strong relative interior of

m
E= < Lyizi — )
{ Zl k,ilq Vg 1<k<s
1=

(ii) In the case when m =1 and (Vn € N)(i € {1,...,m+s}) X\j;, = Ay, the algorithm (5.4) is in
[26, Eq.(5.26)] where the connections to existing work are available.

}. (5.19)

(Vie{l,...,m}) x; €domf;
(Vk e {1,...,s}) v € dom gy + dom ¥y,

6 Multi-dictionary signal representation

Dictionary has been used in minimization problems in signal processing in [24, Section 4.3]. Let
us recall that a sequence of unit norm vectors (ox)rex (@ # K C N) in #H is a dictionary with
dictionary constant p in ]0, +oo] if

(Ve eH) Y [z lop)l® < ullzl® (6.1)
keK

Then the dictionary operator is defined by

F:H— 62(]1{): x = (@] ok))kek (6.2)
and its adjoint is
. EQ(K) — H: (wk)keK — Zwkok. (6.3)
keK

Dictionary extends the notion of orthonormal bases and frames which plays an important role
in the theory of signal processing due to their ability to efficiently capture a wide range signal
features [2, 15, 20, 21] and the references therein. The focus of this section is to explore the
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information of the original signals (Z7)1<i<m which are assumed to be available on the coefficients
of dictionaries (((Z | 0;,5))1<i<m)jck and close to (soft constraints) nonempty closed convex subsets
(Ci)1<i<m modeling its prior information. The rest of the information available will be modeled by
potential functions (fi)1<i<m (hard constraints). Furthermore, the data-fitting terms are measured
by non-smooth functions.

Problem 6.1 Let H be a real Hilbert space, let m, s be strictly positive integers such that s > m,
let v € ]0, +00|, and let K be a nonempty subset of N. For every i € {1,...,m}, let G; = /?(K), let
fi € To(H), let (05 5)jex be a dictionary in H with associated dictionary operator F; and dictionary
constant fi;, let (¢; ;)jex be a sequence in I'g(R) such that (Vj € K) ¢; ; > ¢;;(0) = 0, let C; be
a nonempty closed convex subset of H. For every k € {m + 1,...,s}, let Vi be a real Hilbert
space, let r € Vi, let B; be in ]0, +oo[. For every i € {1,...,m} and every k € {m +1,...,s}, let
Ry i: H; — Vi be a bounded linear operator. Set C = X ?;Ci- The primal problems is to

m m
mpimize, 3 fitz) + 323 614w | 0ig)

i—1 jeK
S m

+ Z ﬂkHrk — Z Rmxi + 'ydc(xl, .. ,mm)2/2 (6.4)
k=m-+1 =1

and the dual problem is to

m

1 S
minimize Z ((Jci + %H : ||2) g ff) ( — & — Z RZ,Z‘”’C)

gl GZQ (K)v"-7£m€£2(K)7vm+l Egm+17~~~vs egs i=1 k:m—i-l
lvm+1|<Bm+1,-llvs 1 <Bs
S

+ Y iGN+ Y, (ke lw) . (65)

k=1j€K k=m+1
Lemma 6.2 Problem 6.1 is a special case of Problem 5.1 with
ie{l,....om}) z=0 and ¢=~d%/2, vy="1,

Vke{l,...,m}H@E€{l,...,m}) €=ty and Li;=F; and Ly; = 0 otherwise,

(
(
(Vke{l,...,m}) r=0,Gy =(K) and gp: *(K) = ]—00,+00] : & = >k Pr(Ekj)
(

Vke{m4l....s)) Ge=Y and go=pl-l. and (%ie{L....m}) Ly; = R
(6.6)

Proof. Let us note that, by [10, Corollary 12.30], ¢ is a convex differentiable function with
(V& = (zi)1<icm € (Hi)i<ism) Veo(x) =v(x — Fox) = v(z:i — Po,xi)i1<i<m- (6.7)

Since Id —P¢ is firmly nonexpansive [10, Proposition 4.8], V¢ is v-cocoercive. Next for every
ke {l1,...,s}, Gx is a real Hilbert space and ¢ € I'g(Gx) and by [27, Example 2.19], gx € T'0(Gx).
Hence the conditions imposed on the functions in Problem 5.1 are satisfied. Now we have

(Vv € Gr) (Lk Ogg)(v) = inf (Ek(w) + gr(v — w)) = gr(v). (6.8)

weG

23



Therefore, in view of (6.2) and (6.6), we have

(Vietl. . Hivei € H) Z 0k O gy, (ZLkzxz - Tk> = Z%(szi)
h=1 =1 i=1
=33 duslleil o). (69)
i=1 jeK

We derive from (6.9), (6.6) and (6.8) that (5.1) reduces to (6.4). For every k € {m+1,...,s}, let
By(0; k) be the closed ball of Vg, center at 0 with radius ;. Using [10, Example 13.3(v)], [10,
Proposition 13.27] and [10, Example 13.23], we obtain

gr = Bell - 1) = tBy(0;8,) and (Vi € {1,...,m}) g7 (§ij)jex = Zqﬁf(&',j), (6.10)
jeK
and .
 =oc+ (P2 ol l=oc+ - 17/20)=>_ (oc + 1 IIP/(27)). (6.11)
i=1
Moreover,

e o(X5) =X (o + 1) o) (6.12)
i=1 i=1
We derive from (6.9), (6.6), (6.10), (6.11) and (6.12) that (5.3) reduces to (6.5). O

Lemma 6.2 allows to solve Problem 6.1 by Algorithm 5.3. More precisely,

Algorithm 6.3 Let ¢ € |0,min{1,~v}], let (Ay)nen be a sequence in [e,1], let (7i)1<i<s+m be a
finite sequence in [g, +00] such that

(27 - 5) (1 - Z%Mf)/m—m + Z Z 7@7m+k“Rk l” ) 1<l<m 1<k< {7@77m+k} (6'13)

i=1 k=m+1

For every i € {1,...,m}, let ((an,j)jck)nen be sequences in R such that

>0 D i l? < 4o, (6.14)

neN | jeK

let (@i n)nen be a absolutely summable sequence in #H, let (\;,)nen be sequence in ]0, 1], and for
every k € {1,...,s}, let (Ap4xn)nen be sequence in |0, 1[ such that

Z <’)‘Z,n - )‘n’ + ’)‘erk,n - An’) < +o00. (615)
neN

Let (xi,O)lgiﬁm € Hy X ... X Hyp, and for every i € {1,...,m}, let (fi,O,j)jeK € 52(K) and
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(Uk7o)m+1§k§5 € Gmy1 X ... X Gs. Set

For n=0,1...
Fori=1,...,m
Pin = PIoX,, . (%’,n — Y < ZjeK in,joij + Zzzm_,_l R;ivk,n + ’7($i,n — PCixi,n))) + ain
Yin = 2pi,n — Tin
| Tin+1 = Tin + Nin(Din — Tin)
For k=1,...,m
For every j € K

Eent1,j = Ekng + Amtkon < ProX, ., ¢= (&g + Ymtk Yk | Okj) ) + Qhnj — £k,n,j>

For k=m+1,...,s
Uk + Ytk < >y Rii¥in — T’k)

- Uk,n .
max {ﬁk, Uk + Ytk < Yoy R iin — Tk) H} )

Vkn+1 = Vk,n + )\m+k,n <Bk

(6.16)

Corollary 6.4 Suppose that (6.4) has at least one solution and (0,...,0,7p41,...,7s) belongs to
the strong relative interior of

(Vie{l,...,m}) z; € dom f;
(Vke{l,...,m}) wv € EZ(K),ZJEK ¢j(vg,;) < +o0 },

FE = { (iLMxi — Uk>
i=1

1skss (Vke{erl,...,s}) v € Vg
(6.17)
where Ly, ; is defined as in (6.6). Let (1n,-..sTmn)nen and (Ein,- - &mmns Umtin, - - - Us.n)neN
be sequence generated by Algorithm 6.3. Then (x1y,...,Zmpn) = (T1,...,Tm) @ solution to (6.4),
and (€1, Emms Umatms > Vsn)— (€1, ooy & Ut 15 - - - Us) a solution to (6.5). Furthermore,

if Cj = {0}, for some j € {1,...,m}, then z;, — T;.

Proof. For every i € {1,...,m} and every j € K, we have b7 = Pij (0) = 0. Therefore, we derive
from (6.10) and [10, Proposition 23.31] that

(V€ = (&)jex € *(K))  proxg: & = (proxy: &)jek (6.18)
Next, for every k € {m +1,...,s}, using (6.10) again, we have
(Vo € Gk)  proxg: v = Pp(o,p,)v = Brv/ max{fy, [[v]|}. (6.19)

In view of (6.18), (6.19), (6.7) and the definition of ((Ly ;)i1<k<s)1<i<m in (6.6), the algorithm (6.16)
is a special case of (5.4) with

Uin =7 Id and Vin = Y-tk Id,
(VneN)(Vie{1,...,m})(Vk € {1,...,s}) Cim=0 and dj, =0, (6.20)
bi,n - (ai,n,j)jeK-
Moreover, we derive from (6.14) that the sequences ((b;n)nen)i1<i<m are absolutely summable, and

from (6.13) that (3.5) holds. Finally, since (5.1) has at least one solution and (0, ...,0,7p41,...,7s)
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belongs to the strong relative interior of E, as mentioned in Remark 5.5(i) that (5.2) holds. To
sup up, every specific conditions of Algorithm 5.3 and Corollary 5.4 are satisfied. Therefore, the
conclusions follow from Corollary 5.4(i)(ii). O

Acknowledgement. I thank Professor Patrick L. Combettes for bringing this problem to my
attention and for helpful discussions.
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