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Abstract

A stochastic algorithm is proposed, finding the set of generalized means associated to a proba-
bility measure v on a compact Riemannian manifold and a continuous cost function x on M x M.
Generalized means include p-means for p € (0,0), computed with any continuous distance func-
tion, not necessarily the Riemannian distance. They also include means for lengths computed from
Finsler metrics, or for divergences.

The algorithm is fed sequentially with independent random variables (Y},)nen distributed ac-
cording to v and this is the only knowledge of v required. It evolves like a Brownian motion
between the times it jumps in direction of the Y,,. Its principle is based on simulated annealing
and homogenization, so that temperature and approximations schemes must be tuned up. The
proof relies on the investigation of the evolution of a time-inhomogeneous L2 functional and on the
corresponding spectral gap estimates due to Holley, Kusuoka and Stroock.

Keywords: Stochastic algorithms, simulated annealing, homogenization, probability mea-
sures on compact Riemannian manifolds, intrinsic means, instantaneous invariant measures, Gibbs
measures, spectral gap at small temperature.
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1 Introduction

The purpose of this paper is to present a stochastic algorithm finding the generalized means of a
probability measure v defined on a compact manifold M. A Riemannian metric is used, only for
the algorithm.

Algorithms for finding means, medians or minimax centers have been the object of many inves-
tigations, see e.g. [20], [25], [13], [14], [7], [26], [9], [1], [5], [10], [6]. In these references a gradient
descent algorithm is used, or a stochastic version of it avoiding to compute the gradient of the
functional to minimize. Either the functional to minimize has only one local minimum which is
also global, or ([9]) a local minimum is seeked. The case of Karcher means in the circle is investi-
gated in [11] and [16]. In this special situation the global minimum of the functional can be found
by more or less explicit formula.

For generalized means on compact manifolds the situation is different since the functional (1)
to minimize may have many local minima, and no explicit formula for a global minimum can be
expected. In [2] the case of compact symmetric spaces has been investigated and a continuous
inhomogeneous diffusion process has been constructed which converges in probability to the set of
p-means. In [3] the case of p-means on the circle is treated. A Markov process is constructed which
has Brownian continuous part and more and more frequent jumps in the direction of independent
random variables with law v. It is proven that it converges in probability to the set of p-means
of v. Both [2] and [3] use simulated annealing techniques.

The purpose of this paper is to extend the construction in [3] to all compact manifolds, and to
all generalized means.

So let be given v a probability measure on M, a compact Riemannian manifold. Denote by
k: M x M — R a continuous function and consider the continuous mapping

U:M>2~— JM k(z,y) v(dy). (1)

A global minimum of U is called a x-mean or generalized mean of v and let M be their set, which
is non-empty in the above compact setting.

In practice the knowledge of v is often given by a sequence Y := (Y},)nen of independent random
variables, identically distributed according to v. So let us present a stochastic algorithm using
this data and enabling to find some elements of M. It is based on simulated annealing and
homogenization procedures. Thus we will need respectively an inverse temperature evolution S :
R4 — R4, an inverse speed up evolution o : Ry — R* and a regularization function § : Ry — R%.
Typically, 5; is non-decreasing, «; and J; are non-increasing and we have lim; ., o 6 = 40,
lim; ,yonr = 0 and lim; 1 0y = 0, but we are looking for more precise conditions so that the
stochastic algorithm we describe below finds M.

For finding M, we will use a regularization of x with the heat kernel p(d,z,z). So define for

§ > 0 Rrs(z,y) = f p(d,x, z)k(z,y) A(dz) where A denotes the Lebesgue measure (namely the
M

unnormalized Riemannian measure) and
Us: M>x r—»f ks(z,y) v(dy). (2)
M

Notice any other regularization which would satisfy the estimates (16) and (23) below and
which would be easier to compute could be used instead of the heat kernel.

Let N = (Ny)i=0 be a standard Poisson process: it starts at 0 at time 0 and has jumps
of length 1 whose interarrival times are independent and distributed according to exponential
random variables of parameter 1. The process N is assumed to be independent from the chain Y.
We define the speeded-up process N(®) = (Nt(a))t>0 via

Ve=0, N = Np 1 gy (3)

0 as



Consider the time-inhomogeneous Markov process X = (X});>¢ which evolves in M in the following
way: if T > 0 is a jump time of N(® then X jumps at the same time, from X7_ to Xp =
¢s(Bror, Xr_, Y ), where

SH¢5(S’x,y)EM (4)

is the value at time s of the flow started at x of the vector field z — f%vzm(-, y). In particular

Bh(s,2,9) = —5 Vs ) (6505, 2,1) @

where ¢ denotes the derivative with respect to the first variable.
Typically we will have tligl aft||VEs, |0 = 0, so that for sufficiently large jump-times 7', X1
— 400

will be "between” X7p_ and YN(a) and quite close to X7_. To proceed with the construction, we
T

require that between consecutive jump times (and between time 0 and the first jump time), X
evolves as a Brownian motion, relatively to the Riemannian structure of M (see for instance the
book of Tkeda and Watanabe [19]) and independently of ¥ and N. Informally, the evolution of the
algorithm X can be summarized by the It6 equation (in centers of exponential charts)

Vi=0, dX; = o(Xy)dBy + Xy ¢s, (/BtataXt_aYNt(a)) dNt(a)

where (Bi)i>0 is a Brownian motion on some R™, for all x € M o(z) : R™ — T, M is linear

satisfying oo* = id, z +— o(x) is smooth, and where (YN(Q))QO should be interpreted as a fast
t

auxiliary process. The law of X is then entirely determined by the initial distribution my = £(Xj).
More generally at any time t > 0, denote by m; the law of X;.

We will prove that the above algorithm X finds in probability at large times the set of means
M. Let us define a constant b > 0, coming from the theory of simulated annealing (cf. for instance
Holley, Kusuoka and Stroock [15]) in the following way. For any x,y € M, let C,, be the set of
continuous paths p = (p(t))o<i<1 going from p(0) = z to p(1) = y. The elevation U(p) of such a
path p relatively to U is defined by

Ulp) = e U(p(t))

and the minimal elevation U(x,y) between x and y is given by

U(z,y) = min U(p).
PECy y
Then we consider
b(U) = max U(x,y) —U(z) —U(y) + minU (6)
z,yeM M

This constant can also be seen as the largest depth of a well not encountering a fixed global
minimum of U. Namely, if 5 € M, then we have

b(U) = maxU(zo,y) —Ul(y) (7)
yeM
independently of the choice of xy € M.
With these notations, the main result of this paper is:

Theorem 1 For any scheme of the form

i = (1 + t)_l
Vit=0, B = ¢ tn(l+1) (8)
(5,5 = ln(2 + t)il

where ¢ > b(U), we have for any neighborhood N of M and for any my,

t—+00



Thus to find a element of M with an important probability, one should pick up the value of X
for sufficiently large times t.

A crucial ingredient of the proof of this convergence are the Gibbs measures associated to the
potentials Us. They are defined as the probability measures pg s given for any 8 > 0 by

postr) = TPIOED) (10)
5,0

where Zg 5 = { exp(—BUs(x)) A(dz) is the normalizing factor.
Indeed we will show that £(X;) and pug, 5, become closer and closer as t > 0 goes to infinity in the
sense of L2 variation.

By uniform continuity of x we can easily prove that Us converges uniformly to U as § — 0. As
a consequence, for any neighbourhood N of M, pgs(N) converges to 1 as 3 — o0, uniformly in
d < & for some §y > 0 depending on N. All this will prove the theorem.

The main difference in the method between the present work and [3] concerns the definition
of the jumps. Instead of following the geodesic from the current position to a realization of v,
the process jumps to ¢s, (ﬂtataXt—7YNt(a))- The calculations are much easier, and this allows to

consider more general cost functions k. The drawback is that the implementation may be more
complicated.

The cost functions k are only assumed to be continuous. So this includes distances at the power
p, pP, which lead to p-means, for all p € (0,00). Notice the case p € (0,1) has never been considered
in previous works. This also includes lengths for Finsler metrics, all divergences for parametric
statistical models (Kullback-Leibler, Jeffrey, Chernoff, Hellinger...).

The paper is constructed on the following plan. In Section 2 we obtain an estimate of L:’; g5l
where LZ,B#S is the adjoint of L, g s in LQ(,um;), L, g, is the generator of the process X; described
above but with constant «, 3,9. The proof of Theorem 1 is given in Section 3. For this proof, the
estimate of Section 2 is crucial to see how close is the instantaneous invariant measure associated
to the algorithm at large times ¢ > 0 to the Gibbs measures associated to the potential Us, and to
the inverse temperature 3, L

2 Regularity issues

Let us consider a general probability measure v on M. For any a« > 0, > 0 and § > 0, we are
interested into the generator L, s defined for f from C?(M) via

VoM, Logslfl) = A7)+ [(FGsBasny) ~ @) vidy) ()

We will prove in Section 3 that £(X;) gets closer and closer to the Gibbs distribution fg, 5, as
t — o0. Since for large 8 > 0, pg s concentrates around M uniformly in § sufficiently small, this
will be sufficient to establish Theorem 1.

The remaining part of this section is devoted to a quantification of what separates pg s from
being an invariant probability of L, gs, for @ > 0, 0 > 0 and § > 0. As it will become clearer
in the next section, a practical way to measure this discrepancy is through the evaluation of
1ssl(Lh 5.5 [1])?], where Ly, 55 1s the dual operator of L, g5 in L%(ugp 5) and where 1 is the constant
function taking the value 1. Indeed, it can be seen that L} ;5[1] = 0 in L?(ups) if and only if
pg,s is invariant for L, gs. Before being more precise about the definition of Lzﬂ s> we need an
elementary result, where we will use the following notations: for any s € R, T, , is the operator
acting on measurable functions f defined on M via

VxeM, Tsysf(x) = flos(s,z,y)) (12)



Lemma 2 For any y € M, any s € [0,1) and any measurable and bounded functions f,g, we have

j 9(2)Th o f (x) A(dz) = f )T sg()| T 5=, ) |(2) A(d2)
M M

where dx and dz denote Lebesque measure on M and Jps(—s,-,y)(z) is the determinant at z of
the Jacobian matriz of ¢s(—s,-,y).

Proof

Just make the change of variable z = ¢;(s, z,y) in the first integral, which yields x = ¢5(—s, z,y).
|

This lemma has for consequence the next result, where D is the subspace of L2(\) consisting
of functions whose second derivatives in the distribution sense belongs to LL2()\) (or equivalently to
L?(up,s) for any B> 0 and & > 0).

Lemma 3 Fora >0, 3> 0 and é > 0, the domain of the mazimal extension of Lo g5 on L?(ug.s)

1s D. Furthermore the domain of its dual operator L255 mn LQ(M@(S) 1s also D and we have for
any feD,

Ly sl

= 5 ep(BU)Alexp(—4U) ]

1+ SO [, slexol(—509) 11 765(—p. )] ) — £

Proof

With the previous definitions, we can write for any @ > 0, § > 0 and ¢ > 0,

1 1 I
Lops = A+~ JT&y,aﬁ v(dy) -~

where [ is the identity operator. Note furthermore that the identity operator is bounded from L2(\)
to L2(up,s) and conversely. Thus to get the first assertion, it is sufficient to show that § T, o5 v(dy)
is bounded from IL?(\) to itself, or even only that ||T57y7a5||L2()\)® is uniformly bounded in y € M.
To see that this is true, consider a bounded and measurable function f and assume that a5 > 0.
Since (Toégf)2 = aﬁfQ, we can apply Lemma 2 with s = a8, ¢ = 1 and f replaced by f? to get
that

f(Té,y,aﬁf)Q(x) Adz) = ij(Z)T&y,aB]lu%(_@ﬁa 5 y)|(2) AMdz)

A

Js.0 f f2d\

with Js oo = sup |Jes(—aB,-,y)|(z). This quantity is finite, since 4(-, -) belongs to the class C*°,
z,yeM

due to its definition by convolution with a smooth kernel. Next to see that for any f, g e C*(M),

fgLaﬂ,éf dugs = ff Ly, 569 d1g s (13)

where L* 5618 the operator defined in the statement of the lemma, we note that, on one hand,

[98sduss = 23} [ exp(-sUsgarax

f £ exp(BUs)Alexp(—BUs)g] dus s

bt



and on the other hand, for any y e M,

ngé,y,aﬁf dpss = Z3; fexp(—BUs)gTs,y,a/sf d\

2% || #7505 (exp(=3Us)g) 705~ )l (2) A(da)

by Lemma 2. After an additional integration with respect to v(dy), (13) follows without difficulty.
To conclude, it is sufficient to see that for any f € L%(ugs), LY ssf € L%(ups) (where L g5l is
first interpreted as a distribution) if and only if f € D. This is done by adapting the arguments
given in the first part of the proof, in particular we get that

exp(BUs) j 2 _ Jg’oo exp(25osc(U5)).
a

Ts .y, —aplexp(—BUs) - || T gs(—aB, -, y)| v(dy)

~

2
L2(\)5 @

For any @ > 0 and 8 > 0, denote n = af. As a consequence of the previous lemma, we get
that for any x € M,

Ly gesl(z) = %exp(ﬁUg(x))A exp(—BUs(x)) — %
—i—w ng,y,n[exp(—ﬁUg)](m)U(b(;(_n’ S )|(@) v(dy)

2
= 29U - Lavs@) - ¢

' fM exp(B[Us (x) — Us(¢s(—n, 2, y))DITés (=, - y)|(@) v(dy)  (14)

It appears that L} 3 51 is continuous. The next result evaluates the uniform norm of this function.

Proposition 4 There exists a constant C > 0, depending on M and ||, such that for any
B=1,0¢€(0,1] and a € (0,6%/(28%)) we have

|25t < Caplo™

Proof

In view of the expression of L} 3 s1(z) given before the statement of the proposition, we want to
estimate for any fixed x € T, the quantity

fM exp(B[Us(x) — Us(a(—n, 2, y))])[Tds (—n, - v)|(x) v(dy).

Consider the function
U(s) = Us(z) — Us(¢s(s,2,)).
It has derivative 1
V(s) = 5(VUs, VAs () (05 (s, 2,9))

and second derivative

1 1
P'(s) = — Hess Us (Vs () (05(s, ,9)), Vrs () (95(s,2,9))) — (VUs, Vs )65 (5,00 VES (0 4) ) -

For any n = af3, there exists s € [0,7] such that

2

(=) = $(0) =y (0) + Tv” (—s).



This yields
—B
8 (Us(x) = Us(é(—n. z,))) = —(VUs, Vrs(-,y))(x)
2
- % (Hess U5 (VK(S(W y)(¢5(*5, xz, y))’ VK(', y)(% (*5, x, y))) + <VU(5’ VVR(-,y)((bg(fs,m,y))V“(', y)>)
Observe that for any a,b € R, we can find u,v € (0,1) such that

exp(a +b) = (1 + a + a® exp(ua)/2)(1 + bexp(vb)). (15)

Apply this equality with
a = _TM<VU5,V/€5('7?/)>(9C)

and
5 2
b= 7% (Hess Us (Vis(y)(¢s(s, 2, 1)), Vs (- y) (06 (—5,2,9))) + {VUs, Vigus ()65 (—s.0)) Vs () )) -
Using the bounds
Cl !
V620, |Vinp(p)(@)] < = and |Vdlpsy)@)] < (16)

for some C” > 0 (see e.g. [17]), writing

Vis(y)(x) = vamp(&, - 2)p(6,2, 2)r(z, ) A(d2),

we get

and  |Vdrs(9)(0)] < < (17)

¥ §>0, IVis(,y)(x)] < 52

> Q

with C' = 2C"||k|| s, together with

C C
[VUs(2)| < = and  [VdUs(z)| < (18)

5 62
It follows that |a] = O(aB?072) and [b] = O(a?p35~%), so in conjunction with the assumption
3?2672 < 1/2, we can write with (15) that

exp(F[Us(x) ~ Us(@s(-m ) = 1= SV05 Vsl ule) + 0?6457, (19)

Integrating this expression, we get that

JM exp(B[Us(z) — Us(¢(=n,z,y)) )| ¢ (—n, -, y)|(x) v(dy)

_ fMu%(—n,-,yn(x)u(dy)

_ %f <VU5,v1<é5(-7y)>(x)‘J¢5(_n’.7y)‘(1.)y(dy)+O(a2/845_4)
M

where we used the fact that |J¢s(—n, -, y)|(x) is uniformly bounded (see (20) below). We can now
return to (14) and we obtain that for any z € M,

’ 2 B 1
Lapol(@) = = |VUs(2)] —§AU5<w>+5fM<\J¢a<—n,-,y>\<m>—1> v(dy)
2
[ PO R @165 ()@ v(d) + Ol
M

7



Note that for /0 > 0 small enough (up to a universal factor, less than the injection radius of M),
we have

1
¢s(—n, 2, y) = exp, (gvﬂa(-,y)(m) + 7’ fo (log, o¢s)" (—sn,z,y)(1 — s) dS))

where log, is the inverse function of exp, and (log, o¢s)” is the second derivative in the first
variable. From this equality, in conjunction with (5) and (17), we get

[Té5(=n.- 9l (@) = 1+ J Ars (- y) (&) + O(*6 ) (20)

first for a3/6% small enough and next by a compactness argument for all «,3,d in the range
described in the statement of Proposition 4. It also appears that |J¢s(—n,-,y)|(x) is uniformly
bounded when af?6~2 < % This yields

| wssn i@ - v viay) - f Ars(9)(@) v(dy) + OB
M

= AUa( )+ O(ap?5™ ).
Notice the first term in the right cancels with the second in the right of (14). We also have
52
5| U VrsC @I85 (@) via)
- ﬁQ 35—4
= VUs, Vﬁg y)(z)v(dy) ) + O(af’0 ")

fﬁ2
——|VU;s(@)|* + O(ap?s™").

Here the first term in the right cancels with the first term in the right of (14). The bound announced
in the lemma follows at once.

In particular, under the hypotheses of the previous proposition we get

Vsl g 51?1 < Caplo™ (21)

The Lh.s. will be used in the next section, when o8*5~* is small, as a discrepancy for the fact that
1p,s is not necessarily an invariant measure for L g 5.

3 Proof of Theorem 1

This is the main part of the paper: we are going to prove Theorem 1 by the investigation of the
evolution of a L2 type functional.

On M consider the algorithm X = (X;);>¢ described in the introduction. For the time being,
the schemes o : Ry — R%, 8 : Ry — Ry and 0 : Ry — RY are assumed to be continuously
differentiable. Only later on, in Proposition 9, will we present the conditions insuring the wanted
convergence (9). On the initial distribution mg, the last ingredient necessary to specify the law
of X, no hypothesis is made. We also denote m; the law of X;, for any ¢ > 0. We have that m;
admits a C! density with respect to ), which is equally written m; (for a proof we refer to the
appendix of [3]). As it was mentioned in the previous section, we want to compare these temporal
marginal laws with the corresponding instantaneous Gibbs measures, which were defined in (10)

8



with respect to the potentials Uy given in (2). A convenient way to quantify this discrepancy is
to consider the variance of the density of m; with respect to ug, 5, under the probability measure

HB,6:+

2
V t> 07 It = f ( il - 1> dﬂﬁt,ét (22)

Hpe, 8¢

Our goal here is to derive a differential inequality satisfied by this quantity, which implies its
convergence to zero under appropriate conditions on the schemes o and 5. More precisely, our
purpose is to obtain:

Proposition 5 There exists two constants c1, co > 0 such that for any t > 0 with 8; = 1 and
2672 < 1/2, we have

I < e [(B07 )™ exp(—b(U)By) — cuBo; — |B1] — Bioy 2 |o]]
+ C9 [Oét521515_4 + ‘5{‘ + /Btét_Q ’5”] \/Tt

where b(U) was defined in (6).

Proof

At least formally, there is no difficulty to differentiate the quantity I; with respect to the time
t > 0. For a rigorous justification of the following computations, we refer to the appendix of [3],
where the regularity of the temporal marginal laws in presence of jumps is discussed in detail (it is
written in the situation considered there of the circle but can be extended to compact manifolds).
Thus we get at any time t > 0,

my Oy my
t HBy.5¢ 3,5 Bt,0t 145, 5, Mﬁtﬁt B0t Bt,0t

+ ( 1> Ot ln Mﬁt 0t d:u'ﬁtﬁt
HBt,6¢

2
— 1) opmy dX — J < - 1) OrIn(pp, s5,) dpg,.s,
Mﬁtﬁt HBe,6

m
- 2 ( ¢ 1) Oy ln :U'ﬁt,& d/’l/ﬁt,(st

2
m ¢
—1 atmt dX + H@t ln(,uﬁt 5t)H j < t 1) d,ughgt + 2[ ’ - 1‘ d,uﬁt &t
HBt,64 M6t

2f< me 1) amu dX + |0 (g, 5,) L, (1 + 2T

HBt,6¢

N
w

N

where we used the Cauchy-Schwarz inequality. The last term is easy to deal with:

Lemma 6 There exists Cy = 0, depending on K, such that for any t = 0, we have

[0 (56, < Co (|8] + Be 7] ,2) -

Proof

Since for any ¢ > 0 we have

Voe M. W(ua)e) = AU~ [exp(- AU M)



it appears that ¥V x € M,
01 n(115,) (@)
= B f Us, (y) — Us, () pp, 5. (dy)
600, [ [ [ (0010,2005 10p(01,0:.2) = D6 )05 100, 2)) o) o), ()2
so that

[0 In(ug) < osc(Us,) ] + 2816105 n plloo - ] o-

Clearly osc(Us,) < 2|k|s. To finish the proof we are left to use the bound

"

105 Inp(0, x,y)| < 57

for some C” > 0 (see e.g. [17]).

Denote for any t > 0, f; := my/ug, 5. If this function was to be C?%, we would get, by the
martingale problem satisfied by the law of X, that

f < UL — 1) atmt d\
KB 61

fLat,ﬁtﬁt [ft - 1] dmy

jLOétyﬁtvét [ft - 1] ft d,uﬁhét

where Ly, g, s,, described in the previous section, is the instantaneous generator at time ¢ > 0 of
X. The interest of the estimate (21) comes from the decomposition of the previous term into

JLat76t76t [ft - 1] (ft - 1) dlu’ﬁhét + JLat,Bt75t [ft - 1] dﬂﬁt,ét
= jLat,ﬁtﬁt [ft - 1] (ft - 1) duﬁt,&s + j(ft - 1)L:¢t,ﬁt,6t []1] duﬁt,&s

< [ a1 = 100 = 1) dits, 4V T fts (2, [1D7)

It follows from these bounds that to prove Proposition 5, it remains to treat the first term in the
above r.h.s. A first step is:

Lemma 7 There exists a constant c3 > 0, such that for any o > 0 and B = 1 such that aB?62 <
1/2, we have, for any f € C3(M),

JLa,ﬁ,é [f=10(f—Ddpss < — (% — Csaﬁ353> f(\Vf\)2 dpg,s + c3aB>67° f(f —1)%dug,s

Proof

For any oo > 0, 8 > 0 and 6 > 0, we begin by decomposing the generator L, g s into
Lapgs = Lps+ Raps (24)

where

Lys = 5(8~(VUVY) (25)

10



and where R, g s is the remaining operator. An immediate integration by parts leads to

fLﬁ,é Lf =1 (f = 1) dugs = — %fIV(f — D)2 duss
(26)

1

=-3 j IV fI? dps,s

Thus our main task is to find a constant c3 > 0, such that for any o > 0, 8 > 1 and § > 0 with
aB?672 < 1/2, we have, for any f e C*(M),

URaﬁ,é [f=1(f — Dpsgs| < esap®6~ ( f V2 dpg g+ f(f 1y d#ﬁ,&) (27)

By definition, we have for any f € C%(M) (but what follows is valid for f e C*(M)),

VoM, Ropslfle) = o [ £és(a,n) - @) vidy) + S(VU@). V(e

(07

To evaluate this quantity, on one hand, recall that we have for any = € M,
VUs(x f Vis(-, dy)

and on the other hand, write that for any z,y € M,
os(ap) ~ 1@) = a8 | 1 (V1(6s(asua )~ Vrs)és(apu, s ) ) du
It follows that
[ Resslr =11 = 1) dss
- j du [ vldy) [ maolds) (V1. Vrs(c.9)(a)) = V£, Do) 0slaBu 2. ) () = 1)
-7 fo du [ vldy) | Moo, Vﬁa(’,y)(:v»[(f(w) — Dups(a)

— (f(#s(—aBu,z,y)) — 1) g s(¢s(—apu, x,y))| J s (—aBu, -, y)|(z)
where we used the change of variable z — ¢s(—a/Su, z,y) for the second term in the right. So
jRaﬁé[f 1 (f = 1) dus,s

_ 8 f du j (dy) J (d)(V £, Vs (- y) (@) s (0 Bu, 2, y)

where
I5(s,z,y) = |[Jds(—s, - y)|(@) {(f(2) — Dpgs(®) — (f(¢s(—s,2,9) — Dugs(ps(—s,2,9))}
+ (f(2) = Dpps(x)(1 = [Jds(=s, -, y)|(2)).
Write

[ Resslr =117 = 1) dsss = 1+ 1
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where J; is the integral containing the term (1 — |J¢s(—s, -, y)|(z)). From the validity of

1
¢5(_87 xz, y) = €XPy (8 f (logx O(b(g),(—’vs, xz, y) dU)
0
for s small enough, we get that for any s,
11— [Ts(=s,y)|(x)] < casd™
for some ¢4 > 0, which yields
1 !
I < gesads 7 [ du [[uldy) | (i) | Vueslc V512 - £ (@)~ 1]
0
<

408252V 155 oV 2 f (f — 1)2 dyug

<

== N )

craff?67 (”Vfi?(pﬁ,é) + J(f —1)? d:“ﬁﬁ)

~ a5 (1911, + [0 = 0P aas)

with ¢5 = Les, using again (17). Moreover, we have

1

n-5f du | vtan) [ fussla)dac £, Vst o) @) és(~aBu. )l @)—apu) | o

0

<<Vf, _%V:‘%(-’ y)(ds (—afuv, x, y))\/ﬂﬁ,&(%(—aﬂuv, z, y))\/ﬂﬁﬁ(%iﬁj(ﬂ;)v, z,y))

+ f(@a(—auv,2,9)) — 1T W a5, ~5 Vs ) (B5(—upuv, 2,1)

" B 115,6(¢s(—afuv, z,y))
\/Mﬁﬁ(%( B ,,y))\/ s(@) )

1p,5(ds(—aBuv, z,y))
11p,5(2)

since a3%26~2 < 1/2. Putting the integral with respect to v on the left, using Cauchy-Schwartz

inequality for the integral in the right and making the change of variable z = ¢s(—afuv, x,y) we

get

are uniformly bounded,

Recalling (20), notice that |J¢s(—afu, -, y)|(z) and \/

Jo < c6a 8|V 1ks %V £ 2 5) (Vf”]m(,w,é) + 5||V1H6||oo\/f(f —1)? d#ﬁ,é)
(28)

1 1
< coad[Tunsls, | (14 5019l ) 191+ 019 08sE2 [(F = 12 s |

where ¢g = 0 is a constant independent from «, 5,9. Up to a change of this constant, we obtain

< a5 (191 gy + [ = 17 dis) (29)

where we used (17).
So putting together (26) with the bounds for J; and J; we get the wanted result.
|

To conclude the proof of Proposition 5, we must be able to compare, for any § > 0 and any
f € CL(M), the energy ugps[|Vf|?] and the variance Var(f, ugs). This task was already done by
Holley, Kusuoka and Stroock [15], let us recall their result:

12



Proposition 8 Let U be aC? function on a compact Riemannian manifold M of dimension m > 1.
Let b(U) = 0 be the associated constant as in (6). For any 8 = 0, consider the Gibbs measure [ig
given similarly to (10). Then there exists a constant Cpy > 0, depending only on M, such that the

following Poincaré inequalities are satisfied:
VB0,V feCH M),  Var(fijis) < Cullv(8|VT| "2 expb(@)B)isl VP

We can now come back to the study of the evolution of the quantity I, = Var(f:, ug,s,), for
t > 0. Indeed applying Lemma 7 and Proposition 8 with a@ = oy, 8 = 5¢, 0 = & and f = f;, we
get at any time ¢ > 0 such that 8; > 1, §; € (0,1] and ;26,2 < 1/2,

JLat,ﬁt,ét [fe — 1] (ft — 1) dpg, s,

—er(Be6; 1) exp(—b(Us, ) B) (1 — 230486, %) I + escu 376, ° 1y

<
<~ [er(Bedy 2P exp(—b(Us, ) Br) — eseu 36, Iy

for some constants c7,cg > 0.
Taking into account Lemma 6, the computations preceding Lemma 7 and (21), one can find con-
stants c1, co > 0 such that Proposition 5 is satisfied. This achieves the proof of Proposition 5.

|

This result leads immediately to conditions insuring the convergence toward 0 of the quantity
I, for large times ¢ > 0:

Proposition 9 Let o, § : Ry — R% and B8 : Ry — Ry be schemes as at the beginning of this
section and assume:

lim o0 = 0
t—400
Jim, 6 = oo
t—400
+0
f (1\/(ﬁtéfl))%g’mexp(fb(U(;t)ﬁt)dt = 4w
0

and that for large times t > 0,

4 c—4
max{a 3, 0; ",

Bl B 216} < (Bedy )P0 exp(—b(Us, ) Br)

Then we are assured of

lim I; = 0

t—+00

Proof

The differential equation of Proposition 5 can be rewritten under the form
F < —nFi+e (30)

where for any ¢ > 0,

(B0, )7~ exp(=b(Us, ) Be) — By 6 ° — |By] — Be|07] 6;)/2

(
(cuBis; ™t + 8] + Bed; * [61))/2

€ = C

13



The assumptions of the above proposition imply that for ¢ > 0 large enough, 8; > 1 and a; 525, 2 <
1/2. This insures that there exists 7' > 0 such that (30) is satisfied for any ¢ > T (and also
Fr < +0o0). We deduce that for any t > T,

t t t
F, < Frexp (f Ns d5> +f €5 €XP <f M du) ds (31)
T T s

It appears that lim;_, .4 F; = 0 as soon as

+00
f nsds = 4
T

lim €t/ = 0
t—+00 /77
The above assumptions were chosen to insure these properties.
|

In particular, the schemes given in (8) satisfy the hypotheses of the previous proposition (notice
that b(Us) — b(U) as 6 — 0, due to the uniform convergence of Us to U), so that under the
conditions of Theorem 1, we get

lim I, = 0

t—+00

Let us deduce (9) for any neighborhood N of the set M of the global minima of U. From Cauchy-
Schwartz inequality we have for any ¢ > 0,

lme = wp ol = f\ft — 1] pg, s,

< Vi

An equivalent definition of the total variation norm states that
Ime = ppllyy = 2maxime(A) — pg, 5 (A)l
where 7T is the Borelian o-algebra of M. It follows that (9) reduces to

lim N) =1
B,6~ 11—+ 'uﬁ’é( )
for any neighborhood N of M and ¢ sufficiently small, property which is immediate from the
definition (10) of the Gibbs measures pgs for > 0 and ¢ > 0.

Remark 10 Similarly to the approach presented for instance in [21, 23], we could have studied
the evolution of (E})¢~o, which are the relative entropies of the time marginal laws with respect to
the corresponding instantaneous Gibbs measures, namely

Vi>0, B = Jln< UL )dmt
HBy,64

To get a differential inequality satisfied by these functionals, the spectral gap estimate of Holley,
Kusuoka and Stroock [15] recalled in Proposition 8 must be replaced by the corresponding loga-
rithmic Sobolev constant estimate.
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