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Abstract –Partial Bitstream Relocation (PBR) has been introduced in 
recent years, as a means to overcome the limitations of the traditional 
Xilinx Partial Reconfiguration flow, particularly in terms of the limited 
module placement, a fact that can greatly reduce the memory footprint 
of applications which require multiple implementations of the same 
module... However, PBR consumes scarce resources in hardware 
implementations, and introduces a prohibitive time overhead when done 
in software. This is particularly true in applications such as large 
scalable systems, which typically require multiple copies of the same 
module to accelerate a task, but in which the relocation time overhead 
might proof prohibitive. In order to find the best compromise between 
these approaches, we make use of the OORBIT tool (Offline /Online 
Relocation of Bitstreams) which helps us to accelerate the PBR 
considerably. In this paper, we compare the developed tool to others in 
previous works, specifically in the context of many-core applications; we 
give a particular importance to the reduction in the relocation time, 
which must to increase the time overhead already incurred by using 
partial reconfiguration. In this paper, we show how the tool has been 
used in this context, and a comparative analysis is detailed to highlight 
the significant relocation speedups that might help in making the 
relocation process more amenable.  
   Index Terms—Partial Reconfiguration, Bitstream Relocation, 
FPGA, Embedded Systems 
 

1. INTRODUCTION 
 
    In recent years, a great deal of research has been carried 
out in extending the capability of reconfigurable SoC via 
partial reconfiguration [1, 2].  The basic idea is that specific 
areas of the FPGA can be used to map hardware tasks on-
demand, effectively promoting hardware tasks 
virtualization.  These hardware tasks are stored in the form 
of “pre-compiled” bitstreams, usually in external memory, 
where can be loaded by the processor. They can be updated 
remotely in applications where it’s impossible to access the 
platform, in many cases to carry out a change of the 
intended mission of the module. Other applications might 
require multiple instances of the same module, for instance, 
systems supporting Hot Spot Migration [3] and Fault 
Tolerant Systems [4]. In the case of the first two scenarios, 
multiples copies of the same function could potentially be 
necessary at any given time; in the latter cases, the location 
of the same module would be required to change depending 
on the physical conditions of the system. 
   However, module relocation requires being able to map a 
bitstream in any available reconfigurable area, which is not 

possible with the standard DPR design flow. Previous DPR 
design flows described by Xilinx [5] limit the location of 
the PR modules (PRMs) to predefined reconfigurable 
regions (PRRs). The research community has found this 
methodology too limiting to implement more complex 
systems and functionalities. Limitations in the PDR Flow 
are manifold, most of them arising from the fact that PRMs 
are restricted to specific PRRs, which increases the memory 
footprint necessary when multiple copies of the same 
module are required (e.g. highly scalable DPR systems).  
      In recent years, an interest on overcoming this problem 
has lead to the development of a series of techniques and 
approaches, which can be globally denominated as Partial 
Bitstream Relocation (PBR). By manipulating the bitstream 
location related information, a PRM can be mapped to 
different PRRs. This process can be carried out by using 
only hardware implementations, or by running the 
relocation process in a processor. However, PBR can most 
important aspect is to keep the relocation time overhead as 
low as possible, given that DPR systems suffer already of a 
time penalty introduced by the reconfiguration process. In 
this paper we introduce a comparative study carried out by 
using the OORBIT methodology [6], and comparing the 
relocation times with previous approaches, to demonstrate 
its advantages in the context of many-core applications. 
    The rest of this paper is organized as follows: in Section 
II we discuss the motivation for using PBR, specifically in 
the context of multiple cores used to build highly scalable 
DPR applications. Section III presents the previous works 
in PBR, while section IV we introduces the deployed PBR 
framework. In section V we discuss the used case study, 
and in Section VI we present a benchmark against previous 
approaches, focusing in the relocation time needed, and 
how this impacts the DPR application they are intended for. 
Finally, Section VII concludes the paper. 

 
2. MOTIVATION 

 
PBR techniques have been used in the past to be able to 
map the same PRM in different PRRs. The basic motivation 
is to reduce the on-off chip or off-chip memory storage 



requirements, which is one of the downsides of using DPR 
techniques in general. This is achieved through the use of a 
module, the Bitstream Relocator (BR), as depicted in Figure 
1; this module is in charge of parsing the bitstream during 
the reconfiguration process and modifying the information 
related to the bitstream placement, effectively re-mapping 
its functionalities to a different PRR. However, the BR must 
be designed in such a way that the relocation time overhead 
is reduced as much as possible. This typically implies the 
use of a hardware implementation, which can led to an 
increased FPGA resource utilization. In this paper, we 
make use of a software-based approach, we exploit the 
processor already required to manage the DPR process, to 
perform the PBR-related tasks. This is achieved through the 
use of a combination of an off-line partial bitstream 
modification, followed by the utilization of an optimized 
PBR approach. We look at minimizing the time overhead 
necessary for relocation the partial bitstreams, while 
keeping the resource utilization to a minimum. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.   Bitstream Relocation Capable System 
 
   PBR techniques are better exploited in scenarios where 
several implementations of the same core are required. The 
discussion that follows aims at emphasizing the importance 
of reducing the relocation time as much as possible, which 
is the goal of this work. 
 Let us consider for instance applications in which 
functional scalability is a necessity. Some examples in the 
state of the art of functional scalable cores are Discrete 
Wavelet Transform (DWT) and the variable-size Discrete 
Cosine Transform (DCT). A direct approach to create 
variable- size scaling cores would be to implement the same 
task in several cores, with different performance and area 
requirements, and load the most suitable one in the system 
depending on the available hardware resources. 
   Other approaches overcome this problem by using highly 
parallel, modular and regular architectures as alternatives 
to reduce the overhead of the adapting process. These 
architectures can be scaled, in advance of the execution of a 
task, by means of the addition and removal of parallel 
blocks, resulting in lower adaptation times.  

Among the suitable architectures to implement scalable 
solutions based on dynamic and partial reconfiguration, 
systolic arrays [7] are the most widely used. Systolic 
architectures can solve full computing-intensive tasks in a 
broad range of fields. For instance, authors in [8] present a 
scalable FPGA-based architecture for DCT computation.  It 
achieves quality scalability by performing 2D-DCT 
operations for different zones, i.e., from 1 × 1 to 8 × 8. 
Their scalable architecture is adjusted through DPR to 
perform different types of DCT zonal coding. Therefore, 
using the traditional DPR techniques would incur in the 
aforementioned issues: large memory storage requirements, 
increased memory accesses, among others. 

 
3. RELATED WORKS 

 
In this section we briefly introduce the approaches 

proposed in the literature, discussing its advantages and 
drawbacks. We divide the approaches in two camps: HW 
and SW implementations. For a most complete discussion 
in the technological aspects of the PBR techniques, the 
reader is directed elsewhere. 

In the hardware camp, the authors in [9] propose a 
hardware relocation module, REPLICA that modifies the 
bitstream while it is being downloaded from off-chip 
memory. BiRF [10, 11] is yet another hardware-based 
relocation filter that communicates to the ICAP via a 
custom wrapper. These hardware approaches are efficient 
in terms of time overhead but suffer from the fact of using 
additional logic resources needed for the BR, especially for 
calculating the Cyclic Redundancy Check (CRC) value.  

On the other hand, software approaches typically use of 
some kind of soft-processor, taking care of the DPR 
management, and in addition, performing the relocation-
related tasks. The approach presented in [12] transforms 
the relocatable bitstream on an embedded MicroBlaze 
processor. The same applies for the work in [13] which uses 
a software driver for the HWICAP core that parses the 
stored bitstreams, identifies and modifies the frame 
addresses, and relocates it to a destination PRR.  
  Authors in [14] have described two options of realizing 
this architecture on Xilinx Virtex 4 FPGAs: (a) hardware 
based accelerated relocation circuit (ARC) [15] and (b) a 
software solution executed on MicroBlaze.  

All previous methodologies offer advantages or 
drawbacks regarding the FPGA resource utilization or the 
reconfiguration time overhead. In this work we perform a 
series on benchmarks to compare our PBR methodology 
with other PBR in the literature to demonstrate the 
feasibility of our approach; we perform this analysis in the 
context of large-scale systems, which require a very low 
PBR time overhead to produce systems that can effectively 
exploit DPR. We show how by using our approach, PBR 
can potentially be used in a broader set of scenarios. 



4. DEPLOYED RELOCATION METHODOLOGY. 
 
   In order to make the relocation process less costly in 
terms of modification time, we make use of the OORBIT 
methodology (for Off-line/On-line Relocation of 
Bitstreams), based on a combination of off-line and on-line 
PBR approaches [6]. For the off-line stage, we have 
developed a tool that enables us, in the first place, in the 
analysis of the bitstreams obtained through the PR Design 
Flow. The configuration FAR addresses and PRRs are 
obtained in order to specify all the possible relocatable 
areas in the design. Secondly, to calculate the new FAR 
addresses and the CRC values for each of the obtained 
possible allocations. This information is subsequently added 
to the original bitstream in the form of an addendum. The 
modified bitstream supporting PBR will be utilized during 
the application execution by an on-line relocation module, 
considered as a new service of the OS and executed in an 
embedded processor. Therefore, the bitstream relocation 
consists in modifying the old FAR addresses and CRC 
values of the original bitstream (stored in the 
reconfiguration memory) with the values calculated offline 
which correspond to the new desired allocation. 
   The Bitstream Analysis is the first phase of the tool (see 
top part of Figure 2). It allows performing a series of 
functions upon the bitstream file created by the Xilinx DPR 
design flow. The first function accesses the configuration 
file and extracts from its header the several configuration 
parameters.  The two main parameters of interest are the 
FPGA part to which this partial bitstream is targeted and 
the size of the data included in the file.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.   Bitstream Off-line bitstream relocation tool flow  
 
The second function is bitstream Parser, which decodes all 
bitstream words used for configuration. It is capable of 
distinguishing between commands and data, and reading 
and writing commands; it searches for the FAR and CRC 
write commands in the bitstream, because the following 
data words have to be changed in the relocation process.  
   The relocation phase is in charge of creating the 
relocatable partial bitstream through a series of 

modifications. The first step is to store the parameters NFAR 
and   NREL as new configuration parameters in the header of 
bitstream; the time parameter can be ignored without 
affecting the integrity of the bitstream.  These two 
parameters are to be used in the online bitstream relocation 
tool to perform the PBR at-run time. 
   Once all new FARs registers have been computed for the 
first relocation, they will replace the old ones in the original 
bitstream at the previously identified positions. This 
substitution is done in order to compute the new Cyclic 
Redundancy Check, CRC.  As relocation changes a part of 
the bitstream (FARs), the CRC has to be recalculated to 
prevent error recognition by the FPGA and allows the 
reconfiguration process to be successfully completed.  
 

 
 
 

 
 
 
 
 
 
 
 

Fig 3.  Framework for demonstrating the proposed PBR approach 
 

The relocation on-line module (relocator) is a software 
program executed on an embedded processor (MicroBlaze), 
which manages the modified partial bitstream files 
generated by OORBIT, as depicted in Figure 3. In order to 
accelerate the relocation operation, an initialization stage is 
necessary at the beginning of the application. This 
operation consists in transferring all the necessary 
bitstreams from the non-volatile memory (i.e. FLASH or 
Compact Flash) to the SDRAM memory of the system. By 
doing so, the access to the configuration data and its 
manipulation becomes not only easier, but faster. During 
the transfer operation, the main configuration parameters 
are extracted from the bitstream header, specifically the 
number of possible relocations NREL, the number of FAR 
addresses and the size of the configuration data chunk.  

The relocation module is executed following a demand 
of placement; it receives as inputs the desired location for 
the bitstream and the relocation parameters mentioned 
before. The relocator reads the parameters stored at the end 
of the modified bitstream, which describe the positions and 
the information contained in the FARs and CRC registers 
related to the desired relocation partition. This process is 
less costly in terms of relocation time, which is a necessity 
in real applications of PBR, in which the placement of 
several modules can seriously increase the total 
reconfiguration time, and impact the system performance. 



5. CASE STUDY 
 

In this section, we present a framework for 
demonstrating how our PBR methodology can decrease the 
relocation time compared to previous approaches.. For this, 
we have created an on-demand DPR system. The utilized 
architecture (as depicted in Figure 3) is based on a 
MicroBlaze embedded soft-processor and it has been 
implemented in a series of FPGAs, Virtex 5 and 6. The 
processor facilitates the creation of systems in which the 
dynamic reconfiguration process is performed.     

The static part consists of a MicroBlaze processor and 
the associated data and program memories, connected to a 
series of IP peripherals via the PLB bus. These peripherals 
give support to several of the tasks of the system. The 
System ACE module charges the configuration bitstreams 
and the modified partial bitstreams, which are stored in a 
Compact Flash memory. The DDR2 controller manages the 
read/write operations of an external DDR2 memory; it is in 
this memory where the modified partial bitstreams are 
recorded to speed up the modification of the FARs and 
CRC values, and the configuration process itself.  
  The partial dynamic reconfiguration component of the 
system is carried out by the modules in grey, namely the 
ICAP module and the Partial Reconfigurable Regions 
(PRR1 to PRRn).  The ICAP module receives the partial 
bitstreams and uses this configuration data to modify the 
behaviour of the PRR by means of PR. The partial modules 
are separated from the static logic through the use of 
partition pins, as it was explained in Section 2.6; these 
partition pins are located in the same relative positions to 
perform the PBR. They don’t have to be controlled by the 
processor as with the previously utilized bus macros, but 
the logic has to be reset after configuration to avoid any 
unexpected behaviours. This is done directly by the 
processor, which uses the Bus2IP reset signal after charging 
the partial bitstream in the defined PRR. 
   The architecture in Figure 3 is synthesized in the EDK.  
Afterwards, the design files are imported to PlanAhead, 
where the areas are defined for the PRRs and where the 
initial information of the partition pins is obtained. This 
information is used to relocate the partition pins and to 
insert the blocker macros before moving to the final MAP 
and PAR phases. Figure 4 depicts the organization of the 
PRRs modules in the left side of the FPGA. We have 
chosen this area of the FPFA since it contains both BRAM 
and DSP modules and due to the fact that the underlying 
resources are more homogenous. Each PRR occupies a 
whole FPGA row, and it has to be noted that this particular 
physical implementation is only for validation purposes. 
We have made use of placement constrains in the rest of the 
modules for the MAP tool to locate these functionalities in 
particular areas of the FPGA and to facilitate the 
methodology. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Physical block location for PRRs and modules in the system 
 

6. RESULTS AND DISCUSSION. 
 

In this section we embark in a thorough discussion of a set 
of experiments performed to validate the performance of 
our approach. This section is also intended to give more 
insight into the importance of certain parameters used to 
compare our approach to the existing solutions, in 
particular the relocation time. We start by providing an 
analytical calculation of the relocation time for multiple 
instances of a module, providing the minimum and 
maximum relocation time. Using this information, we 
compared our approach with previous approaches, using 
three modules as benchmarks. We make use of these 
modules to discuss how the relocation time might impact he 
performance of very large scalable systems, in which a 
module has to be mapped to multiple PRRs; this is an 
special case of relocation, in which minimizing the 
relocation time is critical.  
 
6.1. Relocation time of our approach. 

 
Each partial bitstream is used to configure a portion of 

FPGA composed by a defined number of rows. Only up to 
two FAR addresses are assigned to each row in the 
bitstream.  The first address is used to access normal 
configuration frames while the second FAR address is 
specific to the BRAM contents and it is used only if BRAM 
are configured in the row. The time consumed by the 
relocation module to change the original bitstream stored in 
memory with another possible location in the FPGA is 
relatively simple to calculate. This time corresponds to the 
number of cycles used to modify all the FARs and CRC 
registers in the bitstream by those corresponding to the new 
location. The new values of these registers for each possible 
location are stored at the bottom of bitstream. In our case, 
we use an external DDR2 memory to store all relocatable 
bitstreams. The relocation time needed to process all 
register modifications is estimated as: 



Trelocation = Tread_pos + Tred_regs + Nregs x Twrite_reg                       (1) 
 

Where Tread_pos is the time necessary to read all the position 
values of the FARs and CRC registers from the bitstream, 
Tread_regs is the time needed to read the values of FARs and 
CRC registers for the new location, Nregs is the number of 
registers to be modified, and Twrite_reg is the time needed to 
write each register in the bitstream. The transfer time 
needed to read/write from/to DDR2 memory in burst mode 
is equal to the latency time of the memory (estimated as 19 
clock cycles),  plus one clock cycle per word.  

 
6.2. Benchmarks against competing approaches.  
 
In order to emphasize the performance of our approach in 
terms of relocation time, we make use of the reconfigurable 
modules studied in [29] for the same platform. The three 
modules are: Discrete Cosine Transform (DCT), Discrete 
Wavelet Transform (DWT), and Color Space Conversion 
(CSC).  The processor performs the relocation and writes the 
configuration in burst mode to HWICAP module, which 
transfers it simultaneously to the ICAP for reconfiguration at 
the speed of 100MB/s. We provide in Table 1 the resource 
utilization, the bitstream size, and the number of rows 
occupied by each of these modules in the FPGA.  We 
compare also the times needed for each bitstream relocation 
between the ARC [29] method, in both two versions (SW 
and HW) of the BIRF approach [22] and our approach 
(OORBIT). We give finally in the last column the 
reconfiguration time of each bitstream.   
 

Table 1.  Resource usage and partial bitstream size per module. 

 
In terms of relocation time, we can observe from Table 2 an 
average speed-up of more than 3000x and 8000x over HW-
BiRF and SW-BiRF, respectively. This great speed-up with 
OORBIT is due to the fact that for both HW-BiRF and SW-
BiRF, an excessive time is required during relocation to 
recalculate CRC value. Similarly, the obtained results show 
an average speed-up more than 300x over ARC, which can 
be attributed mainly to additional time taken by this 
approach to read back all configuration frames before 
relocation.  

 
Table 2.  Relocation times benchmark for different approaches. 

 
Furthermore, the relocation times of bitstreams through 
OORBIT are almost negligible compared with their 
reconfiguration times; they are more than 100 times less on 
average. This fast relocation allows reaching the ICAP 
reconfiguration speed limit of 100MB/s unlike the other 
approaches, where their relocation process degrade the 
reconfiguration speed to 7.3 MB/s and 2.6 MB/s 
respectively for HW-BiRF and SW-BiRF and  to less than  
30 MB/s in average for ARC. This factor is considerably 
considered in many cases where performance-critical 
applications require fast switching of IP cores through 
partial reconfiguration.  
   Figure 5 summarizes previous discussion; it shows 
comparison of the different relocation approaches regarding 
relocation and reconfiguration times for one DCT module. 
The reconfiguration times remain relatively constant, whilst 
the relocation time varies depending on the approach, as it 
can be observed OORBIT surpasses the other approaches 
performance. 
 

 
Figure5. Relocation plus configuration time for one DCT module   

 
6.3. Discussion on very large scalable systems. 
 
If we take the implementations for the DCT provided in 
Table 3, we will have memory requirements, only for DCT 
bitstreams storage, of 44KB x 8 PRRs. The total 
reconfiguration time for the 8 PRR would be 3.52ms.  
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Using PBR the total storage would represent only 44KB 
plus some words added by our approach; however, the 
relocation time for each of the bitstreams has to be keep as 
low as possible to minimize the degradation of the QoS of 
the application, as explained before.    
    The objective of all the PRB relocation methodologies is 
therefore reducing the time overhead incurred during the 
relocation process for each of the partial bitstreams to be 
mapped in the FPGA. If we take the comparative data in 
Table 2 and use in the context of the previous discussion, 
we can compute the total time needed to map the PRM to 
the 8 PRRs. The results for one DCT are depicted in Figure 
6, where it can be observed that the proposed approach 
clearly surpasses the previous approaches. 
   Furthermore, we can observe that both versions of BIRF 
surpass by a large amount the configuration time for the 8 
modules (48.24ms and 133.84ms for HW and SW versions, 
respectively). ARC performs slightly better in this regard, 
but introduces a time overhead the doubles of the 
configuration time for each module and deals only with 
configuration through ICAP read-back capture. In many 
dynamic partial reconfiguration applications, the 
configuration time itself might be considered as a penalty; 
therefore, introducing additional time is prohibitive. We 
can see that OORBIT introduces a very low time overhead, 
almost negligible. One of the novelties of the approach is 
that this is achieved without introducing any extra 
hardware resources, which is an important aspect in 
reconfigurable systems using DPR. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Relocation time for the mapping into 8 PRRs of the same module 
 

7. CONCLUSIONS. 
 
     In this paper, we have presented a comparative approach 
between several implementations of the Partial Bitstream 
Relocation approach. The aim of the paper was to introduce 
the technique in the context of large-scalable systems that 
might take advantage of Dynamic Partial Reconfiguration. 
In such a scenario, multiple copies of the same module 
implementation are usually, and their mapping to different 
reconfigurable areas directly leads to the use of PBR 
techniques. However, to make any practical implementation 
in this context, the relocation time overhead has to been 

greatly minimized. This is especially true considering that a 
major factor in avoiding the adoption of DPR in many 
applications is due to the penalty incurred by the 
reconfiguration time overhead. 

Using OORBIT, the relocation process is limited to a 
few substitution operations in the bitstream, up to 20 words 
in total. The relocation time is equivalent to the time 
necessary to read these words from a location in memory 
and to write them back in predefined locations in the 
bitstream. We have shown how our method significantly 
decreases the relocation time when compared to previous 
approaches. Furthermore, we have performed several 
benchmarks using highly scalable image processing IPs 
(DCT and DWT) to make clear how an improved relocator 
can impact in the overall reconfiguration time and its 
applicability in real-time embedded systems. 
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