
HAL Id: hal-00826524
https://hal.science/hal-00826524

Submitted on 27 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Approach for Accelerating Bitstream
Relocation in Many-core Partially Reconfigurable

Applications
Gilberto Ochoa-Ruiz, Touiza Maamar, El-Bay Bourennane, Abderrezak

Guessoum, Kamel Messaoudi, Mohamed Ali Hajjaji

To cite this version:
Gilberto Ochoa-Ruiz, Touiza Maamar, El-Bay Bourennane, Abderrezak Guessoum, Kamel Messaoudi,
et al.. A Novel Approach for Accelerating Bitstream Relocation in Many-core Partially Reconfig-
urable Applications. IEEE Conference on Control, Decision and Information Technologies, May 2013,
Tunisia. pp.8. �hal-00826524�

https://hal.science/hal-00826524
https://hal.archives-ouvertes.fr

A NOVEL APPROACH FOR ACCELERATING BITSTREAM RELOCATION
IN MANY-CORE PARTIALLY RECONFIGURABLE APPLICATIONS

G. Ochoa-Ruiz1, M. Touiza12, E. Bourennane1, A. Guessoum2, K. Messaoudi1, M.A.Hajjaji1

 1LE2I Laboratory - Burgundy University - 21000 Dijon, France
2LATSI Laboratory, Blida University, BP270 Route de Soumaa, Blida, Algeria

Corresponding author: gilberto_ochoa-ruiz@etu.u-bourgogne.fr

Abstract –Partial Bitstream Relocation (PBR) has been introduced in
recent years, as a means to overcome the limitations of the traditional
Xilinx Partial Reconfiguration flow, particularly in terms of the limited
module placement, a fact that can greatly reduce the memory footprint
of applications which require multiple implementations of the same
module... However, PBR consumes scarce resources in hardware
implementations, and introduces a prohibitive time overhead when done
in software. This is particularly true in applications such as large
scalable systems, which typically require multiple copies of the same
module to accelerate a task, but in which the relocation time overhead
might proof prohibitive. In order to find the best compromise between
these approaches, we make use of the OORBIT tool (Offline /Online
Relocation of Bitstreams) which helps us to accelerate the PBR
considerably. In this paper, we compare the developed tool to others in
previous works, specifically in the context of many-core applications; we
give a particular importance to the reduction in the relocation time,
which must to increase the time overhead already incurred by using
partial reconfiguration. In this paper, we show how the tool has been
used in this context, and a comparative analysis is detailed to highlight
the significant relocation speedups that might help in making the
relocation process more amenable.
 Index Terms—Partial Reconfiguration, Bitstream Relocation,
FPGA, Embedded Systems

1. INTRODUCTION

 In recent years, a great deal of research has been carried
out in extending the capability of reconfigurable SoC via
partial reconfiguration [1, 2]. The basic idea is that specific
areas of the FPGA can be used to map hardware tasks on-
demand, effectively promoting hardware tasks
virtualization. These hardware tasks are stored in the form
of “pre-compiled” bitstreams, usually in external memory,
where can be loaded by the processor. They can be updated
remotely in applications where it’s impossible to access the
platform, in many cases to carry out a change of the
intended mission of the module. Other applications might
require multiple instances of the same module, for instance,
systems supporting Hot Spot Migration [3] and Fault
Tolerant Systems [4]. In the case of the first two scenarios,
multiples copies of the same function could potentially be
necessary at any given time; in the latter cases, the location
of the same module would be required to change depending
on the physical conditions of the system.
 However, module relocation requires being able to map a
bitstream in any available reconfigurable area, which is not

possible with the standard DPR design flow. Previous DPR
design flows described by Xilinx [5] limit the location of
the PR modules (PRMs) to predefined reconfigurable
regions (PRRs). The research community has found this
methodology too limiting to implement more complex
systems and functionalities. Limitations in the PDR Flow
are manifold, most of them arising from the fact that PRMs
are restricted to specific PRRs, which increases the memory
footprint necessary when multiple copies of the same
module are required (e.g. highly scalable DPR systems).
 In recent years, an interest on overcoming this problem
has lead to the development of a series of techniques and
approaches, which can be globally denominated as Partial
Bitstream Relocation (PBR). By manipulating the bitstream
location related information, a PRM can be mapped to
different PRRs. This process can be carried out by using
only hardware implementations, or by running the
relocation process in a processor. However, PBR can most
important aspect is to keep the relocation time overhead as
low as possible, given that DPR systems suffer already of a
time penalty introduced by the reconfiguration process. In
this paper we introduce a comparative study carried out by
using the OORBIT methodology [6], and comparing the
relocation times with previous approaches, to demonstrate
its advantages in the context of many-core applications.
 The rest of this paper is organized as follows: in Section
II we discuss the motivation for using PBR, specifically in
the context of multiple cores used to build highly scalable
DPR applications. Section III presents the previous works
in PBR, while section IV we introduces the deployed PBR
framework. In section V we discuss the used case study,
and in Section VI we present a benchmark against previous
approaches, focusing in the relocation time needed, and
how this impacts the DPR application they are intended for.
Finally, Section VII concludes the paper.

2. MOTIVATION

PBR techniques have been used in the past to be able to
map the same PRM in different PRRs. The basic motivation
is to reduce the on-off chip or off-chip memory storage

requirements, which is one of the downsides of using DPR
techniques in general. This is achieved through the use of a
module, the Bitstream Relocator (BR), as depicted in Figure
1; this module is in charge of parsing the bitstream during
the reconfiguration process and modifying the information
related to the bitstream placement, effectively re-mapping
its functionalities to a different PRR. However, the BR must
be designed in such a way that the relocation time overhead
is reduced as much as possible. This typically implies the
use of a hardware implementation, which can led to an
increased FPGA resource utilization. In this paper, we
make use of a software-based approach, we exploit the
processor already required to manage the DPR process, to
perform the PBR-related tasks. This is achieved through the
use of a combination of an off-line partial bitstream
modification, followed by the utilization of an optimized
PBR approach. We look at minimizing the time overhead
necessary for relocation the partial bitstreams, while
keeping the resource utilization to a minimum.

Fig 1. Bitstream Relocation Capable System

 PBR techniques are better exploited in scenarios where
several implementations of the same core are required. The
discussion that follows aims at emphasizing the importance
of reducing the relocation time as much as possible, which
is the goal of this work.
 Let us consider for instance applications in which
functional scalability is a necessity. Some examples in the
state of the art of functional scalable cores are Discrete
Wavelet Transform (DWT) and the variable-size Discrete
Cosine Transform (DCT). A direct approach to create
variable- size scaling cores would be to implement the same
task in several cores, with different performance and area
requirements, and load the most suitable one in the system
depending on the available hardware resources.
 Other approaches overcome this problem by using highly
parallel, modular and regular architectures as alternatives
to reduce the overhead of the adapting process. These
architectures can be scaled, in advance of the execution of a
task, by means of the addition and removal of parallel
blocks, resulting in lower adaptation times.

Among the suitable architectures to implement scalable
solutions based on dynamic and partial reconfiguration,
systolic arrays [7] are the most widely used. Systolic
architectures can solve full computing-intensive tasks in a
broad range of fields. For instance, authors in [8] present a
scalable FPGA-based architecture for DCT computation. It
achieves quality scalability by performing 2D-DCT
operations for different zones, i.e., from 1 × 1 to 8 × 8.
Their scalable architecture is adjusted through DPR to
perform different types of DCT zonal coding. Therefore,
using the traditional DPR techniques would incur in the
aforementioned issues: large memory storage requirements,
increased memory accesses, among others.

3. RELATED WORKS

In this section we briefly introduce the approaches

proposed in the literature, discussing its advantages and
drawbacks. We divide the approaches in two camps: HW
and SW implementations. For a most complete discussion
in the technological aspects of the PBR techniques, the
reader is directed elsewhere.

In the hardware camp, the authors in [9] propose a
hardware relocation module, REPLICA that modifies the
bitstream while it is being downloaded from off-chip
memory. BiRF [10, 11] is yet another hardware-based
relocation filter that communicates to the ICAP via a
custom wrapper. These hardware approaches are efficient
in terms of time overhead but suffer from the fact of using
additional logic resources needed for the BR, especially for
calculating the Cyclic Redundancy Check (CRC) value.

On the other hand, software approaches typically use of
some kind of soft-processor, taking care of the DPR
management, and in addition, performing the relocation-
related tasks. The approach presented in [12] transforms
the relocatable bitstream on an embedded MicroBlaze
processor. The same applies for the work in [13] which uses
a software driver for the HWICAP core that parses the
stored bitstreams, identifies and modifies the frame
addresses, and relocates it to a destination PRR.
 Authors in [14] have described two options of realizing
this architecture on Xilinx Virtex 4 FPGAs: (a) hardware
based accelerated relocation circuit (ARC) [15] and (b) a
software solution executed on MicroBlaze.

All previous methodologies offer advantages or
drawbacks regarding the FPGA resource utilization or the
reconfiguration time overhead. In this work we perform a
series on benchmarks to compare our PBR methodology
with other PBR in the literature to demonstrate the
feasibility of our approach; we perform this analysis in the
context of large-scale systems, which require a very low
PBR time overhead to produce systems that can effectively
exploit DPR. We show how by using our approach, PBR
can potentially be used in a broader set of scenarios.

4. DEPLOYED RELOCATION METHODOLOGY.

 In order to make the relocation process less costly in
terms of modification time, we make use of the OORBIT
methodology (for Off-line/On-line Relocation of
Bitstreams), based on a combination of off-line and on-line
PBR approaches [6]. For the off-line stage, we have
developed a tool that enables us, in the first place, in the
analysis of the bitstreams obtained through the PR Design
Flow. The configuration FAR addresses and PRRs are
obtained in order to specify all the possible relocatable
areas in the design. Secondly, to calculate the new FAR
addresses and the CRC values for each of the obtained
possible allocations. This information is subsequently added
to the original bitstream in the form of an addendum. The
modified bitstream supporting PBR will be utilized during
the application execution by an on-line relocation module,
considered as a new service of the OS and executed in an
embedded processor. Therefore, the bitstream relocation
consists in modifying the old FAR addresses and CRC
values of the original bitstream (stored in the
reconfiguration memory) with the values calculated offline
which correspond to the new desired allocation.
 The Bitstream Analysis is the first phase of the tool (see
top part of Figure 2). It allows performing a series of
functions upon the bitstream file created by the Xilinx DPR
design flow. The first function accesses the configuration
file and extracts from its header the several configuration
parameters. The two main parameters of interest are the
FPGA part to which this partial bitstream is targeted and
the size of the data included in the file.

Fig 2. Bitstream Off-line bitstream relocation tool flow

The second function is bitstream Parser, which decodes all
bitstream words used for configuration. It is capable of
distinguishing between commands and data, and reading
and writing commands; it searches for the FAR and CRC
write commands in the bitstream, because the following
data words have to be changed in the relocation process.
 The relocation phase is in charge of creating the
relocatable partial bitstream through a series of

modifications. The first step is to store the parameters NFAR
and NREL as new configuration parameters in the header of
bitstream; the time parameter can be ignored without
affecting the integrity of the bitstream. These two
parameters are to be used in the online bitstream relocation
tool to perform the PBR at-run time.
 Once all new FARs registers have been computed for the
first relocation, they will replace the old ones in the original
bitstream at the previously identified positions. This
substitution is done in order to compute the new Cyclic
Redundancy Check, CRC. As relocation changes a part of
the bitstream (FARs), the CRC has to be recalculated to
prevent error recognition by the FPGA and allows the
reconfiguration process to be successfully completed.

Fig 3. Framework for demonstrating the proposed PBR approach

The relocation on-line module (relocator) is a software
program executed on an embedded processor (MicroBlaze),
which manages the modified partial bitstream files
generated by OORBIT, as depicted in Figure 3. In order to
accelerate the relocation operation, an initialization stage is
necessary at the beginning of the application. This
operation consists in transferring all the necessary
bitstreams from the non-volatile memory (i.e. FLASH or
Compact Flash) to the SDRAM memory of the system. By
doing so, the access to the configuration data and its
manipulation becomes not only easier, but faster. During
the transfer operation, the main configuration parameters
are extracted from the bitstream header, specifically the
number of possible relocations NREL, the number of FAR
addresses and the size of the configuration data chunk.

The relocation module is executed following a demand
of placement; it receives as inputs the desired location for
the bitstream and the relocation parameters mentioned
before. The relocator reads the parameters stored at the end
of the modified bitstream, which describe the positions and
the information contained in the FARs and CRC registers
related to the desired relocation partition. This process is
less costly in terms of relocation time, which is a necessity
in real applications of PBR, in which the placement of
several modules can seriously increase the total
reconfiguration time, and impact the system performance.

5. CASE STUDY

In this section, we present a framework for
demonstrating how our PBR methodology can decrease the
relocation time compared to previous approaches.. For this,
we have created an on-demand DPR system. The utilized
architecture (as depicted in Figure 3) is based on a
MicroBlaze embedded soft-processor and it has been
implemented in a series of FPGAs, Virtex 5 and 6. The
processor facilitates the creation of systems in which the
dynamic reconfiguration process is performed.

The static part consists of a MicroBlaze processor and
the associated data and program memories, connected to a
series of IP peripherals via the PLB bus. These peripherals
give support to several of the tasks of the system. The
System ACE module charges the configuration bitstreams
and the modified partial bitstreams, which are stored in a
Compact Flash memory. The DDR2 controller manages the
read/write operations of an external DDR2 memory; it is in
this memory where the modified partial bitstreams are
recorded to speed up the modification of the FARs and
CRC values, and the configuration process itself.
 The partial dynamic reconfiguration component of the
system is carried out by the modules in grey, namely the
ICAP module and the Partial Reconfigurable Regions
(PRR1 to PRRn). The ICAP module receives the partial
bitstreams and uses this configuration data to modify the
behaviour of the PRR by means of PR. The partial modules
are separated from the static logic through the use of
partition pins, as it was explained in Section 2.6; these
partition pins are located in the same relative positions to
perform the PBR. They don’t have to be controlled by the
processor as with the previously utilized bus macros, but
the logic has to be reset after configuration to avoid any
unexpected behaviours. This is done directly by the
processor, which uses the Bus2IP reset signal after charging
the partial bitstream in the defined PRR.
 The architecture in Figure 3 is synthesized in the EDK.
Afterwards, the design files are imported to PlanAhead,
where the areas are defined for the PRRs and where the
initial information of the partition pins is obtained. This
information is used to relocate the partition pins and to
insert the blocker macros before moving to the final MAP
and PAR phases. Figure 4 depicts the organization of the
PRRs modules in the left side of the FPGA. We have
chosen this area of the FPFA since it contains both BRAM
and DSP modules and due to the fact that the underlying
resources are more homogenous. Each PRR occupies a
whole FPGA row, and it has to be noted that this particular
physical implementation is only for validation purposes.
We have made use of placement constrains in the rest of the
modules for the MAP tool to locate these functionalities in
particular areas of the FPGA and to facilitate the
methodology.

Figure 4. Physical block location for PRRs and modules in the system

6. RESULTS AND DISCUSSION.

In this section we embark in a thorough discussion of a set
of experiments performed to validate the performance of
our approach. This section is also intended to give more
insight into the importance of certain parameters used to
compare our approach to the existing solutions, in
particular the relocation time. We start by providing an
analytical calculation of the relocation time for multiple
instances of a module, providing the minimum and
maximum relocation time. Using this information, we
compared our approach with previous approaches, using
three modules as benchmarks. We make use of these
modules to discuss how the relocation time might impact he
performance of very large scalable systems, in which a
module has to be mapped to multiple PRRs; this is an
special case of relocation, in which minimizing the
relocation time is critical.

6.1. Relocation time of our approach.

Each partial bitstream is used to configure a portion of

FPGA composed by a defined number of rows. Only up to
two FAR addresses are assigned to each row in the
bitstream. The first address is used to access normal
configuration frames while the second FAR address is
specific to the BRAM contents and it is used only if BRAM
are configured in the row. The time consumed by the
relocation module to change the original bitstream stored in
memory with another possible location in the FPGA is
relatively simple to calculate. This time corresponds to the
number of cycles used to modify all the FARs and CRC
registers in the bitstream by those corresponding to the new
location. The new values of these registers for each possible
location are stored at the bottom of bitstream. In our case,
we use an external DDR2 memory to store all relocatable
bitstreams. The relocation time needed to process all
register modifications is estimated as:

Trelocation = Tread_pos + Tred_regs + Nregs x Twrite_reg (1)

Where Tread_pos is the time necessary to read all the position
values of the FARs and CRC registers from the bitstream,
Tread_regs is the time needed to read the values of FARs and
CRC registers for the new location, Nregs is the number of
registers to be modified, and Twrite_reg is the time needed to
write each register in the bitstream. The transfer time
needed to read/write from/to DDR2 memory in burst mode
is equal to the latency time of the memory (estimated as 19
clock cycles), plus one clock cycle per word.

6.2. Benchmarks against competing approaches.

In order to emphasize the performance of our approach in
terms of relocation time, we make use of the reconfigurable
modules studied in [29] for the same platform. The three
modules are: Discrete Cosine Transform (DCT), Discrete
Wavelet Transform (DWT), and Color Space Conversion
(CSC). The processor performs the relocation and writes the
configuration in burst mode to HWICAP module, which
transfers it simultaneously to the ICAP for reconfiguration at
the speed of 100MB/s. We provide in Table 1 the resource
utilization, the bitstream size, and the number of rows
occupied by each of these modules in the FPGA. We
compare also the times needed for each bitstream relocation
between the ARC [29] method, in both two versions (SW
and HW) of the BIRF approach [22] and our approach
(OORBIT). We give finally in the last column the
reconfiguration time of each bitstream.

Table 1. Resource usage and partial bitstream size per module.

In terms of relocation time, we can observe from Table 2 an
average speed-up of more than 3000x and 8000x over HW-
BiRF and SW-BiRF, respectively. This great speed-up with
OORBIT is due to the fact that for both HW-BiRF and SW-
BiRF, an excessive time is required during relocation to
recalculate CRC value. Similarly, the obtained results show
an average speed-up more than 300x over ARC, which can
be attributed mainly to additional time taken by this
approach to read back all configuration frames before
relocation.

Table 2. Relocation times benchmark for different approaches.

Furthermore, the relocation times of bitstreams through
OORBIT are almost negligible compared with their
reconfiguration times; they are more than 100 times less on
average. This fast relocation allows reaching the ICAP
reconfiguration speed limit of 100MB/s unlike the other
approaches, where their relocation process degrade the
reconfiguration speed to 7.3 MB/s and 2.6 MB/s
respectively for HW-BiRF and SW-BiRF and to less than
30 MB/s in average for ARC. This factor is considerably
considered in many cases where performance-critical
applications require fast switching of IP cores through
partial reconfiguration.
 Figure 5 summarizes previous discussion; it shows
comparison of the different relocation approaches regarding
relocation and reconfiguration times for one DCT module.
The reconfiguration times remain relatively constant, whilst
the relocation time varies depending on the approach, as it
can be observed OORBIT surpasses the other approaches
performance.

Figure5. Relocation plus configuration time for one DCT module

6.3. Discussion on very large scalable systems.

If we take the implementations for the DCT provided in
Table 3, we will have memory requirements, only for DCT
bitstreams storage, of 44KB x 8 PRRs. The total
reconfiguration time for the 8 PRR would be 3.52ms.

FPGA Resources
 (Virtex 4VLX25)

Bitstream

Case LU
T

FF

D
SP

BR
A

M

K
B #

R
ow

s
U

sed

DCT 1419 1636 8 8 44 2

DWT 940 389 0 4 47 1

CSC 318 438 1 12 17 3

Relocation time (ms) Config.
time (ms)

Case
HW

BIRF
[10]

SW
BIRF
[11]

ARC
[26]

OORBIT

HWICAP

DCT 6.02 16.73 0.72 0.0015 0.44

DWT 6.43 17.87 0.40 0.0010 0.47

CSC 2.32 06.46 0.40 0.0019 0.17

Relocation Time for 8 cores

0

50

100

150

200

Approach

m
s DCT

DWT

DCT 48,216 133,84 5,79 0,012

DWT 51,5064 143 3,248 0,008

HW-BIRF SW-BIRF ARC ORRBIT

Using PBR the total storage would represent only 44KB
plus some words added by our approach; however, the
relocation time for each of the bitstreams has to be keep as
low as possible to minimize the degradation of the QoS of
the application, as explained before.
 The objective of all the PRB relocation methodologies is
therefore reducing the time overhead incurred during the
relocation process for each of the partial bitstreams to be
mapped in the FPGA. If we take the comparative data in
Table 2 and use in the context of the previous discussion,
we can compute the total time needed to map the PRM to
the 8 PRRs. The results for one DCT are depicted in Figure
6, where it can be observed that the proposed approach
clearly surpasses the previous approaches.
 Furthermore, we can observe that both versions of BIRF
surpass by a large amount the configuration time for the 8
modules (48.24ms and 133.84ms for HW and SW versions,
respectively). ARC performs slightly better in this regard,
but introduces a time overhead the doubles of the
configuration time for each module and deals only with
configuration through ICAP read-back capture. In many
dynamic partial reconfiguration applications, the
configuration time itself might be considered as a penalty;
therefore, introducing additional time is prohibitive. We
can see that OORBIT introduces a very low time overhead,
almost negligible. One of the novelties of the approach is
that this is achieved without introducing any extra
hardware resources, which is an important aspect in
reconfigurable systems using DPR.

Figure 6. Relocation time for the mapping into 8 PRRs of the same module

7. CONCLUSIONS.

 In this paper, we have presented a comparative approach
between several implementations of the Partial Bitstream
Relocation approach. The aim of the paper was to introduce
the technique in the context of large-scalable systems that
might take advantage of Dynamic Partial Reconfiguration.
In such a scenario, multiple copies of the same module
implementation are usually, and their mapping to different
reconfigurable areas directly leads to the use of PBR
techniques. However, to make any practical implementation
in this context, the relocation time overhead has to been

greatly minimized. This is especially true considering that a
major factor in avoiding the adoption of DPR in many
applications is due to the penalty incurred by the
reconfiguration time overhead.

Using OORBIT, the relocation process is limited to a
few substitution operations in the bitstream, up to 20 words
in total. The relocation time is equivalent to the time
necessary to read these words from a location in memory
and to write them back in predefined locations in the
bitstream. We have shown how our method significantly
decreases the relocation time when compared to previous
approaches. Furthermore, we have performed several
benchmarks using highly scalable image processing IPs
(DCT and DWT) to make clear how an improved relocator
can impact in the overall reconfiguration time and its
applicability in real-time embedded systems.

8. ACKNOWLEDGMENTS

This work has been supported by the ANR FAMOUS Project
(ANR-09-SEGI-003) by the Agence Nationale de la Recherche.

8. REFERENCES.

[1] J. Hagemeyer, B. Kettelhoit, M. Koester, and M. Porrmann, Design of
homogeneous communication infrastructures for partially reconfigurable
FPGAs, in Proc of the International Conference on Engineering of
Reconfigurable Systems and Algorithms ERSA ’07, (CSREA Press, 2007).
 [2] A. Oetken, S. Wildermann, J. Teich, D. Koch, A Bus-based SoC
Architecture for Flexible Module Placement on FPGAs, (FPL 2010).
[3] A. Gupte, P. Jones, Hotspot Mitigation Using Dynamic Partial
Reconfiguration for Improved Performance, ReConFig 2009, 89-94.
[4] D. Montminy, R. Baldwin, P. Williams, and B. Mullins, Using relocatable
bitstreams for fault tolerance, Adaptive Hardware and Systems, Second
NASA/ESA Conference (Aug. 2007) 701–708.
[5] Xilinx, Partial Reconfiguration User Guide, (Xilinx UG208, 2011).
[6] M. Touiza et al., A novel methodology for accelerating bitstream relocation
in partially reconfigurable systems, Micpro, Springer, 2012.
[71] J.Huang, J.Lee,Y imin Ge, "An array-based scalable architecture for
DCT computations in video coding,", June 2008
[8] J. Huang, M. Parris, J. Lee, and R. F. DeMara, “Scalable FPGA
Architecture for DCT Computation using Dynamic Partial Reconfiguration”,
ERSA, 2008.
[9] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, REPLICA : A bitstream
manipulation filter for module relocation in partial reconfigurable systems, in
Proc of Parallel and Distributed Processing, 2005.
[10] S. Corbetta, F. Ferrandi, M. Morandi, M. Novati, M. D. Santambrogio,
and D. Sciuto, Two novel approaches to online partial bitstream relocation in
a dynamically reconfigurable system, VLSI, 2007.
[11] S. Corbetta, M. Morandi, M. Novati, M. Santambrogio, D. Sciuto, and P.
Spoletini, Internal and external bitstream relocation for partial dynamic
reconfiguration, VLSI, 2009
[12] J. Carver, R. Pittman, and A. Forin, Relocation and Automatic
Floorplanning of FPGA Partial Reconfiguration Bitstreams, Microsoft
Research, WA, Technical Report no.MSR-TR-2008-111 (Aug 2008).
[13] T. Becker, W. Luk, and P. Cheung, Enhancing Relocatability of Partial
Bitstreams for Run-time Reconfiguration, Field Programmable Custom
Computing Machines, (15th Annual IEEE Symposium, Apr 2007) 35–44.
[14] A. Sudarsanam, R. Kallam, and A. Dasu, PRR-PRR Dynamic
Rellocation, IEEE Computer Architecture Letters, Jul-Dec 2009.
[15] R. Kallam, A. Sudarsanam, and A. Dasu, Accelerated Relocation
Circuit, (IET Electronics Letters, 2009)

