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where the superscript s means symmetrization: Kijkl =
n(i Gj)(k nl).

The following statement for an isotropic material
can be proved by analyzing the possibility of satisfac-
tion of equilibrium condition (4) at several interfaces.

Statement. For the class of centrosymmetric equi-
librium two-phase solutions, only one spherical inter-
face for a solid body and no more than two interfaces
in a body with a spherical cavity can exist. 

This statement is valid for any type of boundary
conditions on the cavity surface.

2. STABILITY. 
THE LINEARIZED BOUNDARY VALUE 
PROBLEM FOR A TWO-PHASE BODY

We consider a certain initial equilibrium two-phase
state and a state infinitesimally different from it. The
displacement and radius vector of the interface in the
perturbed state are given by the formulas

u = u0 + w, r = r0 + ηn, (6)

where w is the vector of small additional displace-
ments, η is the perturbation of the interface in the n
direction, and u0 and r0 are the displacement vector and
radius vector of the interface in the initial state, respec-
tively. We consider quasistatic perturbations; i.e., the
field of displacements depends on time as on a param-
eter through the time dependence of the interface.

When the interface moves quasistatically, χ ≠ 0 is
the thermodynamic force. In the linear thermodynamic

approximation, the normal component of the interface
velocity is determined by the equation

, (7)

where the normal is out of the domain occupied by the
+ phase and k is the kinetic coefficient.

The linearization of the boundary value problem
specified by Eqs. (1) and (2) provides the set of equa-
tions for w and η

(8)

(9)

(10)

where Ω1 ∪ Ω 2 is the outer boundary of the body. Rela-
tion (10) follows from master equation (7) and
describes the evolution of initial perturbations of the
interface. If the initial state includes several interfaces,
consistency conditions (9) and (10) are imposed at each
of them.

The operator generated by the boundary value prob-
lem specified by Eqs. (8) and (9) is uniquely solvable
with respect to w, because additional displacements w
are expressed in terms of the interface perturbation η as
w = �η, where � is a certain linear integral operator.
The substitution of this expression into master equa-
tion (10) provides the integro-differential equation
for η

(11)

For several interfaces, the solution of Eqs. (8)–(10)
leads to the set of integro-differential equations for per-
turbations of the interfaces.

The analysis of the stability of equilibrium solutions
reduces to the determination of the bifurcation points of
Eq. (11) and behavior of its small solutions. Bifurcation
points are determined from the existence condition of
stationary nonzero solution of the equation �η = 0. If
the operator � is positive definite, Eq. (11) (set of equa-
tions) admits only solutions decreasing with time. In
this case, the initial two-phase solution is stable. Other-
wise, undamped perturbations exist and, therefore, the
solution is unstable.
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Fig. 1.
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3. STABILITY 
OF CENTROSYMMETRIC EQUILIBRIUM 

STATES

Figure 1 [6, 7] shows pressure 

 

p

 

 on the surface of a

solid ball as a function of 
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, where 
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0

 

 are radial

displacements at the ball boundary and 

 

R is the outer
radius of the ball.

The solution changes qualitatively at the points A, B,
D, and E, where the topology of the solution changes
and an internal interface can appear. Single-phase solu-
tions presented by intervals AC ' and C ''E in Fig. 1 are
locally stable on the class of one-phase deformations.
At the same time, both two-phase solutions presented
by intervals AE and BD are energetically favorable over
the single-phase solution and are stable on the class of
centrosymmetric solutions, where only the interface
radius is perturbed for given ϑ values [7]. 

Analysis of energy changes accompanying the
appearance of new-phase domains shows that cen-
trosymmetric two-phase states energetically favorable
over one-phase states even disregarding the thermody-
namic equilibrium condition first appear when achiev-
ing ϑΑ (loading) and ϑB (discharge). This means that
the single-phase solution is metastable with respect to
two-phase solutions, i.e., is unstable with respect to
finite two-phase perturbations. Therefore, the points ϑΑ
and ϑB can be called points of topological instability
(bifurcation).

For a body with a spherical cavity, similar depen-
dences can be plotted for equations with one and two
interfaces and for various phase alternating. For two-
phase solutions, the new-phase domain expands and
pressure decreases with an increase in ϑ .

We consider the stability of the above solutions with
respect to axisymmetric perturbations.

Equilibrium conditions for the solid ball admit two
two-phase solutions. It is shown that a solution where
the phase with the higher shear modulus occupies the
outer spherical layer is unstable (interval BD in Fig. 1)
[10, 11]. When the harder phase is located at the center
of the ball, loss of stability is not observed (interval
AE). Solid lines in Fig. 1 are solutions for the solid ball
that are locally stable and energetically favorable.
Dashed lines are unstable or metastable solutions.

Equilibrium conditions for the ball with the cavity
admit solutions with one and two interfaces and various
phase alternating. The analysis of stability, when the
bulk moduli of materials of phases are identical, for
zero stresses or displacements on the cavity surface
provides the following conclusions.

(i) When the cavity is small, only a solution with one
interface, where the phase with the higher shear modu-

ϑ
3u0

R
--------

lus forms the inner layer, can be stable. Other solutions,
including those with two interfaces, are unstable.

(ii) When the radius of the cavity exceeds a certain
value, all two-phase solutions are unstable.

Comparison of results for the stability of the solid
ball and ball with the cavity reveals the passage to the
limit: the stable solution for the ball with the cavity
passes to the stable solution for the solid ball when the
cavity radius tends to zero.

4. TWO-PHASE STRAIN FIELDS 
AND PHASE-TRANSITION ZONE

We compare the strain fields in various two-phase
configurations of the ball with the phase-transition zone
formed in the strain space by all strains that can coexist
at the equilibrium interface [8, 12–14].

For centrosymmetric two-phase fields, spherical and
axisymmetric fields of the q tensor arise in the body. In
the principal-value space q1, q2, and q3 of the q tensor,
these fields lie on the q2 = q3 plane. Figure 2 shows the
sections of the phase-transition zone by this plane. The
two solutions of the problem for the solid ball corre-
spond to jumps aa' and bb' at the interface.

For µ1 > 0, the AE solution (Fig. 1), where the
inner + phase has higher shear modulus, corresponds to
the strain distribution shown in Fig. 2a by the point a
(+ phase in the hydrostatic state) and interval a'e
(strains in the ball layer formed by the – phase). When
the point e in the z0e path is achieved, the + phase can
originate at the center of the ball and an interface with
the strain jump aa' can arise. The interface expands
with further deformation of the ball. The strain of the
inner + phase remains unchanged (point a). Strains in
the ball layer of the – phase are represented by the
points of the interval a'e, but the point e is shifted to a'
with deformation.

The second solution (BD in Fig. 1) is represented in
Fig. 2a by the jump bb' and interval b'd.

For µ1 < 0, as the point a is achieved, the + phase
originates on the ball surface with the strain a' at the
interface (Fig. 2b). With the transformation of the ball,
strains in the ball layer of the + phase are distributed
over the interval a'e. The second solution is represented
in Fig. 2b by the jump bb' and interval b'd.

Thus, various two-phase states of the ball can corre-
spond to strain fields of the following two types.

(i) Strains at the interface correspond to the outer
boundary of the phase-transition zone, and strains at
other points of the body lie beyond the phase-transition
zone (interval a'e in Fig. 2).

(ii) At least in a part of the body, strains correspond to
inner domains of the phase-transition zone (interval db'),
and a jump occurs form the nonconvex part of the
boundary of the phase-transition zone (point b).
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In the case considered above, the unstable solution
corresponds to the second type of two-phase strains.

5. CONCLUSIONS

The above analysis reveals a number of fundamental
features of the formulation and solution of boundary
value problems for bodies that undergo phase transi-
tions under deformation and, therefore, have an addi-
tional degree of freedom associated with an interface.

(i) Since the boundary value problem specified by
Eqs. (1) and (2) is nonlinear due to the presence of an
unknown interface, the solution is not unique.

(ii) The new degree of freedom significantly affects
the stability of elastic two-phase bodies. In the absence
of a phase transition (η = 0), the problem specified by

Eqs. (8) and (9) is a well-known homogeneous bound-
ary value problem for a composite, linearly elastic body
and has only zero solutions. In this case, the centrosym-
metric strain field is stable for any radius of the fixed
interface.

(iii) The appearance of a cavity, i.e., an additional
outer boundary, is responsible for a destabilizing action
independent of the type of boundary conditions
imposed at it.

(iv) Solutions of the problem of equilibrium two-
phase configurations of elastic bodies can substantially
differ from solutions obtained when designing two-
phase composites of the optimal structure. Centrosym-
metric solutions providing the global minimum of the
energy functional of the two-phase body for a fixed
fraction of one of the phases were considered in [15].
The phases differed only in the elastic moduli; i.e., this
case corresponds to εp = 0. A solution providing the glo-
bal minimum for the solid ball was shown to corre-
spond to a structure where the harder phase is concen-
trated at the center of the ball and is surrounded by the
softer phase. This conclusion coincides with the results
of the above stability analysis.

However, for the ball with the cavity, when the bulk
moduli of materials of the phases are identical, a solu-
tion in the form of the three-layered shell, whose mid-
dle layer is formed by the hard phase, is optimal (ener-
getically favorable on the class of states satisfying the
isoperimetric condition of the constant content). As was
shown above, this solution is unstable under phase tran-
sitions, which mean the appearance of the additional
degree of freedom associated with the change in the rel-
ative phase content.
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