
HAL Id: hal-00826449
https://hal.science/hal-00826449

Submitted on 6 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanics of Viscoelastic Plates Made of FGMs
Holm Altenbach, Victor A. Eremeyev

To cite this version:
Holm Altenbach, Victor A. Eremeyev. Mechanics of Viscoelastic Plates Made of FGMs. Computa-
tional Modelling and Advanced Simulations, Springer Netherlands, pp.33-48, 2011, Computational
Methods in Applied Sciences Volume 24. �hal-00826449�

https://hal.science/hal-00826449
https://hal.archives-ouvertes.fr




34 H. Altenbach and V.A. Eremeyev

Fig. 2.1 Non-homogeneous
foam

with “smeared” mechanical properties. By this way the changing over the thickness
direction properties are substituted by effective stiffness parameters.

The analysis of plates and shell structures can be performed applying theories
deduced by various approaches. Here we present a new theory of viscoelastic plates
with changing properties in the thickness direction based on the direct approach
in the plate theory and extended by the effective properties concept. We consider
plates made of polymer foams with highly non-homogeneous structure through the
thickness (see, for example Fig. 2.1). From the direct approach point of view a plate
or a shell is modeled as a material surface each particle of which has five degrees
of freedom (three displacements and two rotations, the rotation about the normal to
plate is not considered as a kinematically independent variable, which corresponds
to ignoring drilling moments effects). Such a model can be accepted in the case of
plates with constant or slow changing thickness. For the linear variant of such theory
the identification of the elastic stiffness tensors considering changing properties is
proposed in [6–8], see also [9, 10]. Some extensions of the proposed theory of plates
to the case of viscoelastic materials are given in [11] and applied to FGMs in [1–3].

Let us note that functionally graded plates and shells are investigated in
many papers, see [12–17] among others. Different theories based on kinematical
hypotheses or some mathematical treatments of the three-dimensional equations are
presented. The suggested theories can be classified mostly as first order shear defor-
mation theories or higher order theories. The first ones are based on the improve-
ment of the strains introducing both independent translations and rotations of the
points of the mid-plane of the plate while the second class of theories is very pop-
ular in the computational community. Both types of theories have advantages and
disadvantages. Within the proposed theories the elastic, thermoelastic, and magneto-
or electroelastic behaviour of the plate material are taken into account. In general,
the viscoelastic properties of FGM plates are less considered see [1–3] and [18].

Here we focus our attention on the viscoelastic behavior. The dependence of
the relaxation functions on the plate through-the-thickness structure as well as on
the bulk material viscoelastic properties is analyzed. We show that for FGM plates
the effective viscoelastic properties significantly depend on the bulk properties as
functions of the thickness coordinate z. In particular, we discuss the influence of
the plate geometry on the spectrum of the relaxation time. As a special case the
viscoelastic behavior of a sandwich plate with a core made of a FGM is considered.
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2.2 Governing Equations of a 5-Parametric Plate Theory

Let us consider the geometrically and physically linear theory of plates. The
equations of motion are formulated as the Euler’s laws of dynamics

∇ · T + q = ρü + ρ�1 · ϕ̈, (2.1)

∇ · M + T× + m = ρ�T
1 .ü + ρ�2 · ϕ̈. (2.2)

Here u and ϕ are the vectors of displacements and rotations,

u = u1e1 + u2e2 + wn, ϕ =− ϕ2e1 + ϕ1e2, (2.3)

n is the unit outer normal vector at the plate surface, e1, e2 are orthonormal vectors
in the tangent plane, T and M are the tensors of forces and moments,

T = T1e1e1 + T2e2e2 + T12(e1e2 + e2e1) + T1ne1n + T2ne2n, (2.4)

M = M1e1e2 − M2e2e1 − M12(e1e1 − e2e2), (2.5)

q and m are the vectors of surface loads (forces and moments), T× is the vec-
tor invariant of the force tensor, ∇ is the nabla (Hamilton) operator, �1 and �2
are the first and the second tensor of inertia, ρ is the density (effective property of
the deformable surface), the upper index T denotes transposed, and (· · · )· the time
derivative, respectively.

In the case of orthotropic behavior the following constitutive equations for the
stress resultants are valid:

• In-plane forces

T · a =
t∫

−∞
A(t − τ ) · ·μ̇ dτ+

t∫
−∞

B(t − τ ) · ·κ̇ dτ , (2.6)

• Transverse shear forces

T · n =
t∫

−∞
�(t − τ ) · ·γ̇ dτ , (2.7)

• Moments

MT =
t∫

−∞
μ̇ · ·B(t − τ ) dτ+

t∫
−∞

C(t − τ ) · ·κ̇ dτ , (2.8)

where A, B, C are fourth-order tensors, and � is a second-order tensor. They
describe the relaxation functions of the plate, μ, κ, and γ are the tensor of in-plane
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strains, the tensor of the out-of-plane strains, and the vector of transverse shear
strains, respectively. They are given by the relations

2μ = ∇u + (∇u)T , κ = ∇ϕ, γ = ∇u − a × ϕ. (2.9)

Here a is the first metric tensor. The component form of (2.9) is given by

μ = μ11e1e1 + μ22e2e2 + μ12(e1e2 + e2e1),

κ = κ11e1e2 − κ12e1e1 + κ21e2e2 − κ22e2e1,

γ = γ1e1 + γ2e2.

In Cartesian coordinates the constitutive equations are

Tαβ =
t∫

−∞
Aαβγ δ(t − τ ) μ̇γ δ(τ ) dτ +

t∫
−∞

Bαβγ δ(t − τ ) κ̇γ δ(τ )dτ ,

Tα3 =
t∫

−∞
�αβ (t − τ ) γ̇β (τ )dτ ,

Mαβ =
t∫

−∞
Bαβγ δ(t − τ ) μ̇γ δ(τ ) dτ +

t∫
−∞

Cαβγ δ(t − τ ) κ̇γ δ(τ ) dτ ,

with
μ11 = u1,1, μ22 = u2,2, 2μ12 = u1,2 + u2,1,

κ11 = ϕ1,1, κ22 = ϕ2,2, κ12 = ϕ2,1, κ21 = ϕ1,2,

γ1 = w,1+ϕ1, γ2 = w,2+ϕ2,

where Tαβ are the in-plane forces, Tα3 are the transverse shear forces, Mαβ are the
moments, Aαβγ δ , Bαβγ δ , Cαβγ δ and �αβ are the relaxation functions for the plate,
α,β, γ , δ = 1, 2, μ11, μ22 are the in-plane normal strains, μ12 is the in-plane shear
strain, γα are the transverse shear strains, κ11, κ22 are the bending deformations and
κ12 is the twist deformation.

For the orthotropic material behavior the effective relaxation tensors have the
form

A = A11a1a1 + A12(a1a2 + a2a1) + A22a2a2 + A44a4a4,

B = B13a1a3 + B14a1a4 + B23a2a3 + B24a2a4 + B42a4a2,

C = C22a2a2 + C33a3a3 + C34(a3a4 + a4a3) + C44a4a4,

� = �1a1 + �2a2

with (a1; a2) = e1e1 ± e2e2, (a3; a4) = e1e2 ∓ e2e1.
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In the case of isotropic and symmetric over the thickness plates the effective
relaxation tensors have a reduced structure

A = A11a1a1 + A22(a2a2 + a4a4), B = 0,

C = C22a2a2 + C44(a3a3 + a4a4), � = �a.

2.3 Effective Properties

Using the same technique as for the elastic plates (see, for example [10]) below
we compute the viscoelastic stiffness tensor components. Let us consider the three-
dimensional viscoelastic constitutive equations

σ =
t∫

−∞
R(t − τ ) · ·ε̇ dτ , (2.10)

or in the inverse form

ε =
t∫

−∞
J(t − τ ) · ·σ̇ dτ , (2.11)

where σ and ε are the stress and strain tensors, R and J are the 4th order tensors of
relaxation and creep functions, respectively.

Further we consider two cases:

• Case 1. Homogeneous plates – all properties are constant (no dependency of the
thickness coordinate z).

• Case 2. Inhomogeneous plates (sandwich, multilayered, functionally graded) –
all properties are functions of z only.

These means that in the general case R and J depend on the thickness coordinate
z and on the time t.

Using the Laplace transform

f (s) =
t∫

−∞
f (t)e−stdt,

of a function f (t)one can write (2.10) and (2.11) as follows

σ = sR · ·ε, ε = sJ · ·σ . (2.12)

Using the correspondence principle (the analogy between (2.12) and the Hooke’s
law) we can extend the identification procedure presented in [6–8] to the Laplace
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mapping of the effective relaxation or creep functions, see [1, 3]. For the orthotropic
viscoelastic material the in-plane and the out-of-plane stiffness tensor compo-
nents are

(
A11; B13; C33

) = 1

4

〈
E1 + E2 + 2E1ν12

1 − ν12ν21

(
1; z; z2

)〉
,

(
A12;−B23 = B14; C34

) = 1

4

〈
E1 − E2

1 − ν12ν21

(
1; z; z2

)〉
,

(
A22;−B24; C44

) = 1

4

〈
E1 + E2 − 2E1ν21

1 − ν12ν21

(
1; z; z2

)〉
,

(
A44; B42; C22

) = 1

4

〈
G12

(
1; z; z2

)〉
,

while the transverse shear relaxation tensor components are

�1 = 1

2

(
λ2 + η2

) A44C22 − B
2
42

A44
,

�2 = 1

2

(
λ2 − η2

) A44C22 − B
2
42

A44
,

where λ and η are the minimal nonzero eigen-values following from the Sturm-
Liouville problems

d

dz

(
G2n

dZ

dz

)
+ λ2G12Z = 0,

dZ

dz

∣∣∣∣|z|=h/2
= 0,

d

dz

(
G1n

dZ̃

dz

)
+ λ2G12Z̃ = 0,

dZ̃

dz

∣∣∣∣∣|z|=h/2

= 0.

Here h is the plate thickness and 〈(· · · )〉 denotes integration over the thickness.
In the case of isotropic material behaviour these formulas are simplified, see [1]

for details. The non-zero components of the relaxation tensors are given by

• the in-plane relaxation functions

A11 = 1

2

〈
E

1 − ν

〉
, A22 = 1

2

〈
E

1 + ν

〉
= A44 =

〈
G
〉
,

• the coupling relaxation functions

B13 = −1

2

〈
E1 + E2 + 2E1ν21

1 − ν12ν21
z

〉
,

B24 = 1

2

〈
E

1 + ν
z

〉
= −B42 =

〈
Gz
〉
,
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• the out-of-plane relaxation functions

C33 = 1

2

〈
E

1 − ν
z2
〉

,

C22 = 1

2

〈
E

1 + ν
z2
〉
= C44 =

〈
Gz2
〉

,

• the transverse shear relaxation function

�1 = � = λ2 A44C22 − B
2
42

A44
,

with λ following from

d

dz

(
G

dZ

dz

)
+ λ2GZ = 0,

dZ

dz

∣∣∣∣|z|=h/2
= 0. (2.13)

For the plate which is symmetrically to the mid-plane the relation B = 0 holds
true. The relaxation functions of the isotropic viscoelastic plate with symmetric
cross-section were considered in [1]. Note that for isotropic viscoelastic mate-
rial we introduced three functionsE(s), G(s) and ν(s). They are interlinked by the
formula

E(s) = 2G(s) (1 + ν(s)) . (2.14)

Following [19, 20] we use (2.14) as the definition of the Poisson’s ratio for isotropic
viscoelastic material.

In the theory of viscoelasticity of solids the assumption ν(t) = ν = const is
often used. It is fulfilled in many applications (see arguments in [21–23] concerning
ν(t) ≈ const), for example, ν = 0.5 for an incompressible viscoelastic material. In
the general case, ν is a function of t. ν(t) is assumed to be an increasing function
of t [23–25] or non-monotonous function of t, see [19, 20]. The latter case may be
realized for cellular materials or foams. Further we consider the influence of ν(t) on
the deflection of viscoelastic plate and its effective relaxation functions.

2.4 Example of Effective Properties

2.4.1 Homogeneous Plate

The simplest test for the correctness of the estimated stiffness properties is the
homogeneous isotropic plate. The basic geometrical property is the thickness h.
The plate is symmetrically with respect to the mid-plane. All material properties are
constant over the thickness, i.e. they do not depend on the thickness coordinate z.
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For the sake of simplicity, at first let us first consider the case ν(t) = ν = const.
This means that the following relation is held true: E(t) = 2G(t)(1+ν). The non-zero
components of the classical tensors are

A11(t) = E(t)h

2(1 − ν)
, A22(t) = E(t)h

2(1 + ν)
= G(t)h,

C33(t) = E(t)h3

24(1 − ν)
, C22(t) = E(t)h3

24(1 + ν)
= G(t)h3

12
.

The bending stiffness D results in

D(t) = E(t)h3

12(1 − ν2)
.

The transverse shear relaxation function follows from (2.13). The solution of (2.13)
yields the smallest eigen-value λ = π/h which does not depend on s. Finally, one
obtains

�(t) = π2

12
G(t)h. (2.15)

π2/12 is a factor similar to the shear correction factor which was first introduced
by Timoshenko in the theory of beams [26]. Here this factor is a result of the non-
classical establishments of the transverse shear stiffness. Comparing this value with
the Mindlin’s estimate π2/12 and the Reissner’s estimate 5/6 one concludes that
the direct approach yields in the same value like in Mindlin’s theory (note that
Mindlin’s shear correction is based on the solution of a dynamic problem, here
was used the solution of a quasi-static problem), see [27–30]. The Reissner’s value
slightly differs. The graphs of D(t) are given in Fig. 2.2 for two values of ν, i.e.
for ν = 0.1; 0.4. Let us note that in this case D(t) and �(t) demonstrate the same
spectrum of relaxation times as the bulk material.

At second, let us consider the general case ν = ν(t). Using the convolution
theorem [21–25] in this case D is reconstructed from

D(s) = E(s)h3

12[1 − ν2(s)]

as follows

D(t) =
t∫

−∞

E(t − τ )h3

12[1 − ν2(τ )]
dτ .

Using the initial and the final value theorems [21–25]

f (0) = lim
s→∞ f (s), f (∞) ≡ lim

t→∞ f (t) = lim
s→0

f (s)
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t/τ E

ν = 0.1

ν = 0.4

D(t)

D(0)

Fig. 2.2 Dimensionless bending stiffness in dependence on time: General case – solid line;
Constant Poisson’s ratio – dashed lines

we establish that

D(0) = E(0)h3

12[1 − ν2(0)]
, D(∞) = E(∞)h3

12[1 − ν2(∞)]
.

where the values

ν(0) = E(0)

2G(0)
− 1, ν(∞) = E(∞)

2G(∞)
− 1

may be considered as the Poisson’s ratio in the initial and the relaxed state, respec-
tively. In the general case ν = ν(t) the relaxation function D(t) is a non-monotonous
function of t, while D(t) is a monotonous decreasing function for constant Poisson’s
ratio, see Fig. 2.2. Here ν(0) = 0.4, ν(∞) = 0.1. This means that in general case
D(t) and �(t) demonstrate the spectrum of relaxation times which is not coincident
with the spectrum of bulk material.

2.4.2 FGM Plate

In this section we consider small deformations of a FGM plate made of a viscoelastic
polymer foam. For the panel made of a porous polymer foam the distribution of the
pores over the thickness can be inhomogeneous (see, for example, Fig. 2.1). Let us
introduce ρs as the density of the bulk material and ρp as the minimum value of the
density of the foam. For the description of the symmetric distribution of the porosity
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we assume the power law [2]

V(z) = α + (1 − α)

∣∣∣∣2z

h

∣∣∣∣
n

, (2.16)

where α = ρp/ρs is the minimal relative density. n = 0 corresponds to the
homogeneous plate described in the previous paragraph.

The properties of the foam strongly depend on the porosity and the cell structure.
For the polymer foam in [4, 5] the modification of the standard linear viscoelastic
solid is proposed. For the open-cell foam the constitutive law has the form

σ̇ + τEσ = C1V2(z) [E∞τEε + E0ε̇] , (2.17)

while for the closed-cell foam the constitutive equation has the form

σ̇ + τEσ = C2

[
φ2 V2(z)+ (1 − φ)V(z)

]
[E∞τEε + E0ε̇] . (2.18)

Here C1 ≈ 1, C2 ≈ 1, φ describes the relative volume of the solid polymer concen-
trated near the cell ribs. Usually, φ = 0.6 . . . 0.7. E∞, E0, τE are material constants
of the polymer used in manufacturing of the foam.

From (2.17) and (2.18) one can see that the corresponding relaxation function is
given by the relations

E = E(z, t) = E(t)k(z), (2.19)

where E(t) is defined by

E(t) = E∞ + (E0 − E∞)e−t/τE ,

while

k(z) = C1V2(z)

for open-cell foam and

k(z) = C2

[
φ2 V2(z) + (1 − φ)V(z)

]

for closed-cell foam, respectively. Analogous to (2.19) the following relation can be
established for the shear relaxation function

G = G(z, t) = G(t)m(z). (2.20)

Equations (2.19) and (2.20) state that the viscoelastic properties of the foam, for
example, the time of relaxation do not depend on the porosity distribution. Note
that representations (2.19) and (2.20) are only simple assumptions for spatial non-
homogeneous foams.

Using experimental data presented in [5] one can assume ν(t) = ν = const. In
this case we have the relations [3]
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A11 = A22
1 + ν

1 − ν
, C33 = C22

1 + ν

1 − ν
. (2.21)

A22 and C22 are given by the relations

A22 = h

[
α2 + 2α(1 − α)

n + 1
+ (1 − α)2

2n + 1

]
G(t), (2.22)

C22 = h3

12

[
α2 + 6α(1 − α)

n + 3
+ 3(1 − α)2

2n + 3

]
G(t), (2.23)

for the open-cell foam, and

A22 = h

{
φ2
[
α2 + 2α(1 − α)

n + 1
+ (1 − α)2

2n + 1

]

+(1 − φ)

[
α + 1 − α

n + 1

]}
G(t),

(2.24)

C22 = h3

12

{
φ2
[
α2 + 6α(1 − α)

n + 3
+ 3(1 − α)2

2n + 3

]

+(1 − φ)

[
α + 3(1 − α)

n + 3

]}
G(t)

(2.25)

for the closed-cell foam, respectively. Here we assume that C1 = C2 = 1, and that
φ does not depend on z.

From (2.21), (2.22), (2.23), (2.24) and (2.25) it is easy to see that the classi-
cal relaxation functions differ only by factors from the shear relaxation function.
Note that one can easily extend (2.17) and (2.18) to the case of general constitu-
tive equations, used in the linear viscoelasticity [13–15]. Thus taking into account
the assumption that ν = const, one can calculate the classical effective stiffness
relaxation functions for general viscoelastic constitutive equations multiplying the
shear relaxation function G(t) with the corresponding factor similar to (2.22), (2.23),
(2.24) and (2.25). In the general situation and taking into account other viscoelastic
phenomena, for example, the filtration of a fluid in the saturated foam, the effective
stiffness relaxation functions may be more complex than for the pure solid polymer
discussed here.

Finally, we should mention that in the case of constant Poisson’s ratio and with
the assumption (2.19) and (2.20) the determination of the effective in-plane, bending
and transverse shear stiffness tensors of a symmetric FGM viscoelastic plate made
of a polymer foam can be realized by the same method as for elastic plates [9–12].
The relaxation functions for viscoelastic FGM plates can be found from the values
of the corresponding effective stiffness of an elastic FGM plate by multiplication
with the normalized shear relaxation function of the polymer solid.
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2.4.3 Sandwich Plate

Sandwich structures with a core made of foam have various applications in the engi-
neering. Let us consider a sandwich plate with the following geometry: hc is the core
thickness and hf the thickness of the face sheets (hf << hc). The material properties
of the core and the face sheets are given by the relaxation functions Ec(t), Ef (t),
Gc(t) and Gf (t) with Ec(t) << Ef (t) and Gc(t) << Gf (t). We have again a symme-
try with respect to the mid-plane that means B = 0. With the thickness h = hc + hf

one gets

A11 = 1

2

(
Ef hf

1 − νf
+ Echc

1 − νc

)
,

A11 = 1

2

(
Ef hf

1 + νf
+ Echc

1 + νc

)
= A44,

C33 = 1

24

[
Ef (h3 − h3

c)

1 − νf
+ Ech3

c

1 − νc

]
,

C44 = 1

24

[
Ef (h3 − h3

c)

1 + νf
+ Ech3

c

1 + νc

]
= C22,

The bending relaxation function results in

D = 1

12

[
Ef (h3 − h3

c)

1 − ν2
f

+ Ech3
c

1 − ν2
c

]
.

Let us consider the latter relation in detail. For the sake of simplicity we assume that
the Poisson ratios are constant. Then we obtain the relation

D(t) = 1

12

[
Ef (t)(h3 − h3

c)

1 − ν2
f

+ Ec(t)h3
c

1 − ν2
c

]
.

Considering the simplest form for the bulk relaxation functions, i.e. the standard
visoelastic body model with

Ef (t) = Ef∞ + (Ef
0 − Ef∞)e−t/τ f

E ,

Ec(t) = Ec∞ + (Ec
0 − Ec∞)e−t/τ c

E ,

then we immediately obtain that D has two times of relaxation τ f
E and τ c

E.
A typical sandwich structure has a very weak core. In this case the bend-

ing relaxation function and the transverse shear relaxation function can be
approximated by

D = 1

4

Ef h2hf

1 − ν2
f

,� = Gch,
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see the details given in [7–9] for the elastic case. Let us note that for such approxima-
tion the bending relaxation function D is determined by the viscoelastic properties
of the faces while the transverse shear relaxation function � depends on the vis-
coelastic behaviour of the core only. For example, if the faces are made of an elastic
material and the core shows the viscoelastic behavior then D is constant while � is
a function of time

D = 1

4

Ef h2hf

1 − ν2
f

,�(t) = Gc(t)h.

Using the technique presented here one may consider more complicated cases, for
example, the case of the sandwich plate with a core made of FGM viscoelastic
material or the laminate plate made of viscoelastic laminae.

2.5 Bending of a Symmetric Isotropic Plate

Using [3] and the Laplace transform, one can reduce (2.1) and (2.2) to

sDeff��w = qn −
Deff

�
�qn, (2.26)

where w is the deflection, and qn is the transverse load. Here we consider the sym-
metry of the material properties with respect to the mid-plane and m = 0. Using
assumption ν = const we transform (2.26) to the form

sDeff��w = qn −
2

λ2(1 − ν)
�qn. (2.27)

Let us consider a rectangular plate x ∈ [0, a], y ∈ [0, b], where a and b are the length
and width of the plate, simple support boundary conditions, and the sinusoidal load

qn = Q(t) sin
πx

a
sin

πy

b
. (2.28)

Then the solution of (2.27) has the form

w = K

η4 h3

Q̂

sG(s)
sin

πx

a
sin

πy

b
, (2.29)

where

K = 1 + 2η2

(1 − ν)λ2
, Q̂ = Qh3

D0
eff

, η =
(π

a

)2 +
(π

b

)2
,

D0
eff =

C22 + C33

G(t)
.
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t/τ E

wmax(t)/h

 ν = 0.1

ν = 0.4

Fig. 2.3 Dimensionless maximal deflection in dependence on time: General case – solid line;
Constant Poisson’s ratio – dashed lines

The factor K determines the maximum deflection. For the Kirchhoff’s plate
theoryK = 1, for the homogeneous plate modeled in the sense of Mindlin’s plate
theory K = 1 + 2η

π2(1−ν)
. For the FGM plate the bounds for K are given in [3].

For the viscoelastic plate both the qualitative and the quantitative influence of the
shear stiffness is the same as in [2]. For example, let us consider an open-cell foam
and following values ν = 0.3, a = b, h = 0.05a, α = 0.9. Using the calculation
of [2] we obtain the following values of λ: λ = 0.83 h for n = 2, λ = 0.82 h
for n = 5. The corresponding values of K are given by K ≈ 1.2 (n = 2), K ≈
1.21 (n = 5). That means that for the functionally graded plates the influence
of transverse shear stiffness may be significant. As well as for elastic FGM plates
for the cases of other types of boundary conditions the influence of the structure of
viscoelastic plate on the deflection may be greater than for the used simple support
type boundary conditions. A numerical example concerning the maximal deflection
vs. time is given in Fig. 2.3.

2.6 Conclusions

Here we presented the new model of the linear viscoelastic plates made of such
FGM as polymer foam with the non-homogeneous distribution of porosity. The so-
called direct approach is applied to the statement of the boundary value problem of
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the viscoelastic plates. Within this approach the plate is considered as a deformable
surface. The balance laws and the constitutive equations are formulated as for 2D
continuum. The procedure of the identification of the viscoelastic material prop-
erties is described and the example of the bending of a FGM viscoelastic plate
is given. The given examples of effective relaxation functions in the cases of
homogeneous, sandwich and FGM plates show that any viscoelastic plate consid-
ered as a 2D viscoelastic continuum has more complicated viscoelastic properties
than the bulk material. These properties depend on the bulk properties and the
through-the-thickness structure of plate, in general.
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