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Université Lille 1, Computer Science Dept. LIFL (UMR CNRS 8022),
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Abstract. The use of multiagent-based simulations in marketing is quite recent,

but is growing quickly as the result of the ability of such modeling methods to

provide not only forecasts, but also a deep understanding of complex interactions

that account for purchase decisions. However, the confidence in simulation pre-

dictions and explanations is also tightly dependent on the ability of the model to

integrate statistical knowledge and the situatedness of a retail store. In this pa-

per, we propose a method for automatically retrieving prototypes of consumer

behaviors from statistical measures based on real data (receipts). After prelimi-

nary experiments to validate this data mining process, we show how to populate

a multiagent simulation with realistic agents, by initializing some of their goals

with those prototypes. Endowed with the same overall behavior, validated in ear-

lier experiments, those agents are put into a spatially realistic store. During the

simulation, their actual actions reflect the diversity of real customers, and finally

their purchase reproduce the original clusters. Besides, we explain how such sta-

tistically realistic simulation may be used to support decision in retail, and be

extended to other application domains.

Keywords: Agent-based Simulations, Knowledge discovery, Marketing, Inter-

actions

1 Introduction

Since several years, individual-based models and multiagent-based simulations have

been used to enhance the understanding of complex marketing issues and support deci-

sion in the context of retail stores [1, 2]. Due to the introduction of fine-grained infor-

mation regarding individual behaviors, agent-based models are able to provide not only

global predictions (such as the quantities of transactions or revenue) but also insights

concerning the reasons that make marketing techniques efficient or not.

Classical marketing analysis techniques, used e.g. to segment customers into sub-

groups with similar needs, or to detect items that are frequently bought together, consist

in retrieving global information from large databases through data mining algorithms

[3, 4]. For instance, association rules capture co-occurrences between items in customer

baskets, and thus allow the retailer to offer promotions on frequently associated items,

or to propose relevant similar products. But, since those techniques only capture sta-

tistical features of customer behavior, without being able to provide any kind of causal



2 P. Mathieu, S. Picault

explanation, their quality is highly dependent on the application that uses the retrieved

knowledge [5]. Besides, the data collected in retail stores result from a complex decision

process, which is affected by seasonal, geographical, cultural, environmental factors, by

demographic and psychographic variations of the customers, by the brand management,

and by in-store events such as promotions. Thus it is difficult to assess the stability of

the rules that are built from the data, and quite impossible to predict how changes in the

store management affect the rules.

On the contrary, agent-based models allow to take into account individual prefer-

ences and even psychological expertise [6], so as to build an accurate description of the

motivations and needs of each customer. Then it is the actions of those simulated cus-

tomers that are responsible for the purchases that are predicted. Hypotheses regarding

the factors that influence sales are made explicit in the model: they can be understood

and examined by experts, and validated (or not) through an appropriate experimental

setup.

As a counterpart, individual-based models, especially when they involve cognitive

agents (e.g. for accounting psychological motivations [6]), tend to require too much

expertise, which is not always easy to acquire or implement. In addition, few store sim-

ulation models do take into account the spatial issues which are considered crucial in

retail stores, such as shelves allocation, items placement, checkout sizing, point of sale

display, etc. In a previous work, we addressed those questions in order to build a sim-

ulation of supermarkets, where the agents were situated in a realistic environment [7].

This situatedness is necessary for raising multiagent systems from casual, ad hoc simu-

lations, to full decision support systems, able to predict how the clients react to changes

in the spatial organization of the store, marketing events (e.g. discount, publicity...), and

competitor shops.

In this paper, we propose a simulation approach which does not rely much on ex-

pert knowledge; instead, it tries to retrieve as much information as possible from retail

data (e.g. receipts) as in classical basket analysis methods; but, this knowledge discov-

ery process is used to initialize the purchase preferences of the population of simulated

customers with statistically realistic traits. Combined with a model of customer behav-

ior, those traits produce statistically realistic purchase when the agents are acting in

their environment.

Since we designed and validated a model of customer behavior in a previous work [7],

we will focus in this paper on the realism of customer populations, i.e. on a purchase

decision model which can mimic actual behaviors.

The main classical technique for information retrieval in actual data is the affinity

analysis [3, 8], which is based on the census of item co-occurrences in the purchases.

It can be directly applied to actual receipts. On this basis, association rules between

items (i.e. X → Y where X ,Y are disjoint sets of items) can be inferred [3], together

with a support (proportion of purchases which include both X and Y ) and a confidence

(conditional probability of buying the articles of Y when those of X are in the basket).

This approach is very helpful for cross-selling or up-selling, and to some extent it

can provide indications in product placement (e.g. try to associate in the shelves items

that are frequently bought together). Its first limitation is the computational time, which

grows at least with the cube of the number of items [9]. But also, it is quite difficult
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to use association rules to drive the purchase decisions of agents, since a rule can only

suggest items that are related to others, but not how to bootstrap the basket.

An alternative approach consists in trying to predict shopping lists from the existing

receipts. For instance in [10] this method is implemented in a personal assistant that

learns individual purchase habits, so as to remind the customers of their most probable

needs during the shopping trip, and to propose personalized promotions. The purpose

of this application is very far from ours, and the classification methods that are used

do not build any symbolic description of the shopping list, but only a prediction over

rough product categories. Nevertheless, this work assesses the possibility to perform

some kind of induction over real receipts so as to identify an underlying shopping list.

In our proposal, we try to join the identification of similar customers (like in clas-

sical market segmentation) and the induction of abstract descriptors for those clusters,

specifically prototypical shopping lists. Then we use the association of clusters and

shopping lists to generate profiles of agents which buy close items. Hence the approach

we propose follows a kind of methological loop. We define a representation frame for

transactions (e.g. receipts) and their abstract description: prototypes built by general-

ization. Afterwards those prototypes are used to initialize the agents in the simulation

and the simulated transactions can be in turn analysed.

The paper is organized as follows: section 2 presents briefly the context of the gro-

cery store simulation that has been designed and tested in [7, 11]; especially we explain

how shopping lists are used to induce purchase preferences. Section 3 describes the

way we represent relevant information to identify and characterize items, transactions

and prototypes. Section 4 presents the data mining process that builds prototypes from

transactions, and section 5 how the overall procedure has been validated. Finally we

explain in section 6 how to use our approach within multiagent simulations.

2 Context of the simulations

The knowledge discovery process we propose in this paper has been tested within an

existing grocery store simulation [7, 11], endowed with a realistic environment and pop-

ulated with behaviorally convincing artificial customers.

2.1 An Interaction-oriented model

In this work, we had to acquire expertise and build the simulation model in a quite incre-

mental and empirical way. Thus the modeling method had to be highly understandable

by experts outside the field of computer science, e.g. psychologists or marketing advi-

sors, and enable a step-by-step design of behaviors. Therefore, we used the principles

of the ’Interaction-Oriented’ approach [12]. In this method, each relevant entity of the

model is represented by an agent, without any prior distinction between “true” agents

and resources or objects; each behavior is modeled by a separated piece of code called

an “interaction”, i.e. a sequence of actions between a source agent and one or more

target agents, controled by some conditions. The interaction is realizable if the source

and target agents fulfil the conditions.
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Agents and interactions can be developed in independent libraries, then the simula-

tion is designed by assigning interactions to pairs of agents (in an ’interaction matrix’ –

see table 1). It is a visual way to express what families of agents are allowed to interact,

and with what interactions. This interaction matrix is processed by a generic simulation

engine, which essentially evaluates what interactions can be realized, between what

agents, and subsequently determines the actions to be performed by each agent.

Actually, describing the action capabilities of the entities of the model in terms of

interactions that can be performed or undergone, instead of behaviors embedded in the

agents, is very close to the theory of affordances [13]. Thus, it makes this quite natural

to use for psychologists and facilitates knowledge acquisition.

2.2 Model of a customer agent

Table 1. The interaction matrix that defines the behavior of all agents in our simulation. For

instance, the intersection between line ’Customer’ and column ’Item’ contains two interactions,

’Take’ and ’MoveTowards’, which means that a customer agent may either take an item agent, or

move close to it, depending on the priority (first number – here, taking an item has the highest) and

on the distance between agents (second number), assuming that the conditions of the interactions

are fulfiled for both agents. The /0 column contains reflexive interactions (i.e. where the target

agent is the source itself). Empty columns and lines have been removed.

P
P

P
P

P
P
P

Source

Target
/0 Customer Item Checkout Queue Door

Customer

Wander (0) MoveTowards (2, 10) MoveTowards (3, 10) StepIn (5, 2) Exit (8, 1)

GoToPlace (1, ∞) Take (4, 1) MoveOn (6, 1)

WalkOut (7, 1)

Item Notify (1, 10)

Sign Notify (1, 10)

Checkout
Open (10) Notify (1, 15) Handle (8, 1)

Close (10) CheckOut(7, 1) ShutDown (9, 1)

Door SpawnCustomer(1) Notify(1, 10)

In the work presented here, we use a model of customer behavior that was previ-

ously developed for the simulation of a retail store, aimed at studying human vendors

confronted to artificial clients [11]. Thus, the overall behaviors of simulated customers

have been validated by marketing experts and are set once and for all in the work de-

scribed here. In what follows, the vendor was removed for studying only the clients.

The corresponding interaction matrix is shown on table 1.

To summarize, it is assumed here that all clients have the same overall behavior,

but differ in their needs: thus they are endowed at startup with a shopping list, which

specifies more or less precisely what items they are likely to buy in the store. The

needs may be specified with accuracy, e.g. “SodaCola light, family pack”, or with vague

indications, e.g. “spring water”, which can match much more actual items. The purchase

decision is implemented by the ’Take’ interaction, which consists of two conditions (the

target agent matches an item of the shopping list of the source agent; and: the source

has enough money) and one action (put the target in the basket of the source).
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During the simulation, interactions occur according to the interaction matrix and the

state, perceptions and positions of agents, producing a consistent consumer behavior:

artificial clients try to find all items which figure in their list, within a limited amount of

time. They may be endowed with a mental map of the shop or with no prior knowledge;

they also are notified by panels, checkouts, items, etc. about relevant information to

help them.

In the original work, the shopping lists were either computed through a pure random

process (following a Poisson distribution based on the average basket size), or imple-

mented “by hand”, according to a specific mise en scène, in a deliberate intend to put

the vendor in a problematic case. In the experiments described below (see section 5),

those lists have been built through the knowledge retrieval algorithm we propose.

3 Knowledge representation

Before describing the data mining process which builds prototypes from transactions,

we must explain how we represent both kinds of information. This step may require

the intervention of a marketing expert, but afterwards the knowledge retrieval process

is automatic.

3.1 Items identifiers: from SKUs to meaningful descriptions

In retail stores, each unique product is usually identified by a “Stock-Keeping Unit”

(SKU) in order to track availability and demands. The SKU does not necessarily carry

any special meaning regarding the nature and characteristics of the product. Other meth-

ods, such as the Universal Product Code (UPC), European Article Number (EAN), etc.

can be used as well. It may also happen that the actual purchase are anonymised through

an automatically generated identifier, e.g. in order to perform basket analysis under

strong confidentiality constraints.

Those identification methods are actually not well suited for extracting more than

co-occurence rules. Relevant marketing knowledge (e.g. product family, quality, relative

price, brand image, organic label...) must be added to characterize the products so as to

allow an explanatory analysis.

In our approach, each unique product is identified by a tuple of strictly positive

integers, which encodes the features values that are considered relevant in the appli-

cation context. For instance, if the relevant features are the brand, the product family

and the details (e.g. respectively “SodaCola”, “beverage”, “soda with cola”), then prod-

ucts will be identified only by a triple of integers, e.g. (31, 4, 15). This allows a

representation of all products at an arbitrary fine level, including specific labels such

as “organic”, “fair trade” or “gluten-free”. Also, continuous values such as the price or

weight may be encoded through a prior categorization (e.g. 1 for “cheap”, 2 for “aver-

age”, 3 for “expensive”; or 1 to 4 for small to extra large packings). To some extent, the

mapping between SKU (or other identification systems) to this kind of integer tuple can

be performed automatically, through an appropriate join of databases. Yet, the selection

of features that have to be taken into account for providing a relevant description of the

products may involve a marketing expertise.
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3.2 Transactions and prototypes

Our data mining process relies upon the recording of actual purchases. The simplest

way to do this is to retrieve information directly from the receipts. A transaction can

be computed as a mere enumeration of the unique products of a receipt. Quantities are

not taken into account as such (exactly like in the classical affinity analysis process),

though they could be added as a trait of each item (like other continuous features, see

above). Thus, from a list of SKU, we build a set of integer tuples.

From those transactions, the knowledge retrieval process consists in building proto-

types, which are aimed at describing an “abstract receipt” so as to characterize clusters

of receipts. In order to do so, we introduce the concept of prototype item, which are also

integer tuples, but allowing the value 0 as a wildcard. For instance, a product charac-

terized as “any brand”, “beverage”, “soda with cola”, could be described by the triple

(0, 4, 15). The null tuple (0, 0, 0) means “any item”. A prototype is simply

a set of prototype items.

Those prototypes, built from real data, may also be used as a “shopping list” for

simulated customers, because it may often happen that only few traits of the desired

items are specified. For instance, Mr Smith always buys “soda with cola” but is indif-

ferent to the brand, while Mr Wesson is likely to buy any organic yoghurts from the

brand “Yoopla”. The use of the 0 wildcard is very helpful for expressing such vague

wishes.

In the next section, we show how such prototypes are actually built from the trans-

actions.

4 Steps of the data mining process

In order to analyse the purchases, we proceed as follows:

1. The transactions database is partitioned into clusters (this requires first to define

a distance measure between receipts, which is itself based on a distance measure

between items).

2. For each cluster:

(a) all items that appear in the transactions are in turn classified so as to build

prototype items ;

(b) the prototype composed of the union of prototype items is scored against the

transactions of the cluster.

4.1 A measure of item similarity

Since some items of a customer’s shopping list may be not fully specified, it is expected

that several customers who have the same prototype (i.e. the same shopping list) will

not get exactly the same items. Thus, if the distance between transactions relies only

upon the equality of items, it is likely to produce a defective clustering. Instead, we

propose to modulate the comparison between transactions, by taking into account the

distance between items.
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A simple way to do so is to compute a Hamming-like distance (or conversely, a

Hamming-like similarity index). If two items are encoded by the tuples I = ( f1, ..., fn)
and I′ =( f ′1, ..., f ′n), the similarity between items is defined as: σ(I, I′)= 1

n ∑
n
i=1 δ ( fi, f ′i )

where δ ( fi, f ′i )= 1 if fi = f ′i or fi = 0 or f ′i = 0, and 0 otherwise (note that this definition

works fine for actual items and for prototype items as well).

4.2 A measure of transaction similarity

In order to compare transactions, we started with a well-known measure which is fre-

quently used for measuring similarities between sets: the Jaccard index [14]. It is de-

fined for any subset X ,Y as follows: J(X ,Y ) = |X∩Y |
|X∪Y | =

|X∩Y |
|X |+|Y |−|X∩Y |

As it has been previously said, the rough use of the Jaccard index cannot fit our

needs, since it would make no difference between disjoint sets and sets that contain very

similar but different items. Thus we propose an extension of the Jaccard index, based on

the distance between items. It consists in computing the best matching score between

items of both transactions (thus we called it the best-match Jaccard index, denoted

by JBM). To compute it between a transaction T = {I1, ..., Ip} and another transaction

T ′ = {I′1, ..., I
′
q}, we follow these steps:

1. Compute the matching matrix (σi, j) with σi, j = σ(Ii, I
′
j)

2. For each k between 1 and min(p,q):

(a) compute µk = maxi, j(σi, j) = σi⋆, j⋆ (if several (i, j) values verify µk = σi, j, we

take one pair (i⋆, j⋆) which minimizes:
(

∑i 6=i⋆ σi, j⋆ +∑ j 6= j⋆ σi⋆, j

)

)

(b) replace (σi, j) by the submatrix obtained by deleting row i⋆ and column j⋆

3. µBM = ∑
min(p,q)
k=1 µk plays the same role as |X ∩Y | in the classical Jaccard index, so

we have: JBM(T,T ′) = µBM

p+q−µBM

For example, we take T ={(1, 1, 2), (3, 5, 8), (13, 21, 34)} and

T ′={(1, 1, 2), (3, 6, 8), (12, 13, 14), (1, 1, 34)}. Since T ∩
T ′ ={(1, 1, 2)} only, we have J(T,T ′) ≈ 0.1666667, while JBM(T,T ′) = 0.4 be-

cause several items of T and T ′ are close.

A large number of similarity and distance measures can be used as well [15, 16];

actually, the method we propose is also suitable for frequently used measures, such as

Ochiai [17] or Sørensen-Dice [18], which can be extended using the same best matching

algorithm as we did for Jaccard. This point was checked experimentally through the

same procedure as we present in section 5.

4.3 Transactions clustering

We apply the best-match Jaccard index for computing a distance matrix between all

transactions in the database: ∆BM = (di, j) with di, j = 1− JBM(Ti,Tj). The distance ma-

trix can be used with a large number of clustering techniques; we chose a very clas-

sical hierarchical clustering algorithm, namely that implemented in the flashClust

library in R [19], which easily provides dendrograms w.r.t. the similarity between trans-

actions.
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Then, the dendrogram can be cut into K classes (e.g. with the R function cutree [20]).

The appropriate value of K is far from obvious, so we tried to evaluate empirically the

appropriate height to cut the tree from randomly generated prototypes, where the value

of K was known (see section 5). We found that a height h ≈ 0.6 was quite convenient

in all cases.

4.4 Prototype induction

Building a prototype for a class, means essentially finding a set of integer tuples (with

zeros allowed) which has the highest matching value with the N transactions of the

class w.r.t. the best-match Jaccard index. We start with a frequency analysis, i.e. for

each item I that appears on some transactions of the given class, we compute f (I) as

the ratio between the number of transactions that include I and N.

Rare items, i.e. with f (I) < ε , may be considered casual purchase, or “noise”, and

simply discarded (typically this works fine with ε ≈ 1
N

). Conversely, very frequent

items, i.e. with f (I) > θ , may be considered a must-have and kept unchanged in the

prototype (typically θ ≈ 0.95).

Regarding intermediate items, we have to classify them again, in order to be able to

detect that e.g. “SodaCola” products are always associated with “organic yoghurts” of

several brands. Thus we compute a matrix distance between items: (Di, j) with Di, j =
1−σ(Ii, I j) and use it for building a dendrogram of the items. There again, the number

of classes KI is not known a priori.

Therefore, we iterate the following process for several possible values of KI :

1. for each cluster: build a prototype item by putting zeros where features differ ; for

instance, if the items in the cluster are (1, 5, 7), (1, 6, 7) and (1, 12,

7), then the prototype item is (1, 0, 7)

2. collect all prototype items and join them with the very frequent items (see above)

to build the candidate prototype PKI

3. compute the score of KI as the average value of JBM(PKI
,T ) for all transactions T

in the original class.

Finally, we keep the value K⋆
I (and associated prototype PK⋆

I
) which maximizes this

score.

5 Validation of the data mining process

As explained before, prototypes are used in a simulation process to produce artificial

transactions. Since the agents perform autonomous behaviors, according to their shop-

ping lists which contain prototype items (i.e. with wildcards), and in the situated context

of a realistic store with possibly missing (or hard to find) items, the transactions that oc-

cur in the simulation are not expected to be exactly the same than the real ones.

Yet, we have to assess that the simulation is able to reproduce the same kind of

customer behavior that is observed in reality. Therefore we can analyse the transactions

produced by the simulation, build the corresponding prototypes through the same data

mining process, and compare them to the prototypes that resulted from real data.
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describe concrete items, i.e. the maximum values allowed for of each integer in the

tuple. In our experiments we used 5-element tuples with maximum values (20, 100,

10, 5, 2) (on the basis of earlier work [11]).

We conducted automatic experiments and evaluations with a combination of all

parameters within the following ranges: NP: 4 – 10; NI : 5, 10, 20, 40; NT : 50, 100, 200,

400, 800; NA: 0, 5, 10 % of items in the transactions; NM 0, 5, 10 % of items in the

transactions; NO: 0, 5, 10 % of total transactions.

5.2 Results and discussion

As figure 1 shows on three experiments, transactions produced by the instantiation of

random prototypes are well discriminated: cutting the trees at height ≈ 0.6 is sufficient

to identify clusters that exactly reflect the original ones (cf. fig. 2a-b), even when trans-

actions are built with random additional items or with random missing items.

When the database also contains random transactions, i.e. which do not come from

any existing prototype, the clustering still identifies the original clusters, but also very

small classes (see fig. 2c), which are most of the time singletons. When applying the in-

duction process, those classes can be simply discarded because there is nothing to gen-

eralize in them. In all experiments (up to NO = 10 % of the total number of transactions)

the prototype building process was successful, which indicates enough robustness.
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Fig. 2. Level plot comparison between estimated transactions clusters (abscissae) and original

prototypes (ordinates) for experiments (a), (b) and (c). While (a) and (b) match perfectly, in (c)

there are “noise” transactions (prototype “0”) generated from pure random choice. It appears that

they are not classified among the “true” clusters, but instead are put in small classes (here, 1 for

each random transaction).

6 Experimental setup for multiagent simulations

At the present time, the multiagent simulator designed in [11] has been modified so as

to represent shopping lists with prototypes and the items by integer tuples.

We have conducted preliminary experiments with the same randomly generated pro-

totypes than in stochastic simulations. For now, the simulated transactions reproduce the

same prototypes.
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However, this result is dependent on the time limit which is given to the agents

for their shopping trip. If too short, they exit the store without purchasing all items

of their list. This does not affect the transaction clustering (because of its robustness

towards missing items) but may alter the prototypes that are built from the simulated

transactions. Indeed, the observation of the paths of the customers in the store points

several “hot areas” where items are easily found: conversely, missing items are often

the same (contrary to what happened in stochastic simulations), thus the corresponding

prototype is a subset of the original one.

Far from being a limitation of the system, this property gives insights on how such

kinds of simulation may help the placement of products, the spatial organization of the

store, etc.: the limitation of time spent in the shopping trip is crucial, not only for the

purpose of realism, but more significantly because it appears as the criterion that forces

the store manager to optimize the positioning of products.

Ongoing work focuses now on the analysis and integration of large databases of real

receipts. We are also modifying the environment in order to reproduce the store where

the data were collected. We have for instance to integrate the actual positioning of items

and information signs in the store. Indeed, the correctness of those informations may

have a serious impact on the outcomes of the simulations, so we have to check them

carefully and validate them with experts before we can start large-scale simulations.

7 Conclusion

The design of an integrated tool for decision support in the field of grocery retail and

marketing is a long-term purpose indeed. However, in this paper we try to combine

an incremental simulation approach (which is quite convenient to express complex hy-

potheses regarding individual behaviors, environmental configuration, etc.) with data

mining algorithms (which usually indicates global, statistical features of a system).

Our proposal is therefore able to endow agents populations with statistically realistic

features, which in turn affect the behavior of the agents so as to produce statistically

similar outputs. Far from being only qualitative, we show that this similarity can be

measured. As shown above, our process is quite robust to noise in data. The results of

the integration of real receipts in the multiagent simulation (still in progress) will be

described in further publications.

Noteworthy, our method does not try to discover “true” classes of customers, such

as a socio-economic, or demographic, or geographic segmentation would aim at. We

only intend to capture similarities between traces left by individual actions, and use an

abstract description of those traces as parameters of agents behaviors. Thus, taking into

account geographic influences or seasonal variations merely relies upon an appropriate

choice of the recording extent and duration for the real data.

Besides, we believe (though we cannot provide experimental evidences yet) that

the transaction and prototype representation we propose can be applied to many other

fields where the behavior of the entities can be characterized by such sets of features

(e.g. molecular biology with phenotypical expressions of co-activated genes, ecology,

or auction management), so as to participate in the bootstrap of multiagent simulations

from empirical data.
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