N
N

N

HAL

open science

An Interaction-Oriented Model for Multi-Scale
Simulation
Sébastien Picault, Philippe Mathieu

» To cite this version:

Sébastien Picault, Philippe Mathieu. An Interaction-Oriented Model for Multi-Scale Simulation. 22nd
International Joint Conference on Artificial Intelligence, IJCAT'2011, Jul 2011, Barcelona, Spain.

pp-332-337, 10.5591/978-1-57735-516-8 /IJCAI11-065 . hal-00826401

HAL Id: hal-00826401
https://hal.science/hal-00826401
Submitted on 29 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00826401
https://hal.archives-ouvertes.fr

1

Multi-agent simulation has long proved its adequacy to deal
with complex systems. The interest of the agent-based ap-
proach consists in making concepts, that underlie domai

models, concrete — as well as the behavior of those entitieﬂ.
The mapping is not always easy to implement without biase%
but it makes an essential contribution to the mutual under:
standing between domain experts (biologists, econonsists,
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Abstract

The design of multiagent simulations devoted to
complex systems, addresses the issue of modeling
behaviors that are involved at different space, time,
behavior scales, each one being relevant so as to
represent a feature of the phenomenon. We propose
here a generic formalism intended to represent mul-
tiple environments, endowed with their own spa-
tiotemporal scales and with behavioral rules for the
agents they contain. An environment can be nested
inside any agent, which itself is situated in one
or more environments. This leads to a lattice de-
composition of the global system, which appears to
be necessary for an accurate design of multi-scale
systems. This uniform representation of entities
and behaviors at each abstraction level relies upon
an interaction-oriented approach for the design of
agent simulations, which clearly separates agents
from interactions, from the modeling to the code.
We also explain the implementation of our formal-
ism within an existing interaction-based platform.

Introduction

ciologists ...) and computer scientists.

Especially, in the context of large-scale simulations (in-
volving large numbers of entities, belonging to many fami-

Approaches such as multi-model simulations offer differ-
ent paradigms, depending on the level of observation, to rep
resent multi-level phenomena: e.g., they can combine an
agent-based simulation at the macroscopic level and a dif-
ferential equation model at the microscopic level. Thedlisa
vantage of these methods is primarily the same as non-agent
models, namely the lack of shared representations with ex-
perts regarding entities and behaviors. In addition, treaa
increased risk of bias by coupling models of different kinds

We advocate instead a uniform approach in which only
agentsand behaviorsare used, at each simulation level.
Thus, the model we describe in this paper extends a uniform
simulation approach, called “IODA[Kuberaet al., 2008;
2011. IODA is an “interaction-oriented” approach which is
based on three key ideas:

e Each relevant entity is modeled through an aggfat-
beraet al,, 2014.

e Each behavior is a generic interactiomhich is defined
independently from agents, as a condition/action rule,
and implemented through a specific piece of code.

e When an agent, that is able to perform an interaction (a
“sourceagent”), encounters another agent that can un-
dergo the same interaction (tafgetagent”), then this
interaction can occur if both source and target agents ful-
fill the conditions of the interaction.

In this paper, we try to formalize the relationships between
e agents and several environments, in order to propose a
exible and unified representation of multiple space anétim
cales in an agent-based simulation. In addition, we also de
scribe how to take advantage of the interaction-oriented ap
proch, to easily model different patterns of agent behauior
each simulation level.

In the first section, we examine several models, architec-

lies and exhibiting various behaviors), a major issue is thdures or simulations that have been proposed to manage ei-

coexistence of different scalfan, 2009: for instance, the

simulation of gene regulation networks involves, at letist,
cell level, together with nested organites such as the nagcle formal model, called “PADAWAN?”, for representing encap-
the cytoplasm, and often molecular details such as the trarsulation and situation relations between agents and anviro
scription factors, the DNA strand, etc. Similarly, the stud
client behaviors in commercial places requires to model siisting approaches and to generalize them. We show that the
multaneously the way people behave in the mall, in the shopsnteraction-oriented approach of simulation facilitattes de-

in the shelves, etc.

ther hierarchical structures, or the attachment of an agent
to multiple spaces or social groups. Then, we present our

ments. This model tries to overcome the limitations of ex-

sign of behaviors bound to each observation level. Finally,



we explain how this model is implemented within an existingmental worlds such as the memory of an agent, or its pre-
interaction-based platform. dictions (a mental simulation), etc. Moreover, AGRE also
restricts the structure of the physical world, for instattoe

2 Current multi-scale simulation approaches nested levels are limited to the world/area/body decomposi
tion.

The simulation of complex systems must take into account all

organization level¢hat are considered relevantto the study of2.3  Other approaches
a given phenomenon. Thus, many architectures have be
long proposed to represenestedsystems (which usually
leads to nested agents or nested environments). More r
cently, this mere problem of encapsulation recedes, inrfavoI
of the issue of agentsulti-membershigin different groups
or areas).

%A order to cope with the conceptual and computational com-
lexity of large-scale systems, some approaches such as
{LA [Fujimoto, 1998 rely on the integration of multiple
ndividual-based simulations. This raises sometimesifipec
difficulties in order to ensure interoperability betweendno
ules or a consistent simulation time, or to solve conflicts in
2.1 A hierarchical platform: SWARM concurrent access to va}riablﬁerriet al, 2014. Besides,_

) ) the lack of uniformity (in agent models, behavior descrip-
Among many platforms, SWARNMinar et al, 199g isone  tjon...) is likely to introduce biases for the same reasbast
of the first that explicitly addressed the issue of handlindrm  multi-model simulations.
tiple space or time scales in individual-based simulatidhs  Besides agent-based approaches, some fruitful featunes ca
is based on a recursive organization of the system, which ige drawn from computational models, though they are not es-
composed obwarms that are spaces containing agents, enpecially devoted to simulation. For instance, P-systEPasn
dowed with a scheduler for the actions of those agents: th|§nd Rozenberg’ 20®%|y on three bio_inspired items: mem-
scheduler is a Wa)_/ to mO_del the time scale attached to thsranes (Organized in atree Structure) Containing both gj&nb
swarm; ancagentssituated in the swarms, and that can them-and rules which determine how to transform symbols and the
selvesbe swarmgi.e. contain other agents with a scheduler).|ocal membrane structure. Thus, the symbols have no specific
This approach allows to easily replace a given modelind levepehavior by themselves: only the rules of the same membrane
by the underlying subsystem, and so ensure that the behavigan determine their function. That means, on the one hand,
of an agent is directly produced by the collective behavfor o0 thata clear separation is made between entities and behav-

the corresponding swarm. S ~ iors, and on the other hand, thaehaviors are defined in a
However, SWARM suffers from severe limitations: it is a |gcal context

strictly hierarchical model with a fixed structure. In adufits,
it is a mere platform, that does not provide any conceptua.4 Specifications for a multi-scale model

framework nor guidelines for the model desjgn. Finally, therpq comparison of above approaches allows us to sketch the
fact that a swarm agent has no other behavior than the resylieal specification of a general approach to multi-scaléimu

of its components is limiting, since behaviors can be ofteng, o simulation through the following features:
specified at different observation levels, including bdtb t ’ '

swarm level and the underlying agents level.  Dynamicity: An agent must be able to change the level
where it operates (i.e. in practice, change its environ-
2.2 Physical vs. social environments: AGRE ment) at will; in addition, there should be no limiting

The AGRE approach (Agents, Groups, Roles + Environment) principle to the creation or dissolution of any level.

[Ferberet al, 2009 combines conceptual, abstract tools with e Locality: The behavior of an agent must be the result
an operational model. It especially draws a parallel betwee of its presence in a given environment (i.e. the space
the physical environment and the social environments fggou that defines its condition of existence), which is itself

and organizations) to which an agent can take part. Thus, the characterized by a spatial scale and a time scale.

multiagentworld (organization + physical world) appears as Uniformity: 1) All entities must have a similar soft-

a composition obpaceggroups and areas), which are them- ware structure (that is, any relevant entity must be an
selves composed ohodes(roles and bodies) played by the agent)[Kuberaet al, 2014 ; 2) All behaviors must be
agents. described through the same formalism. 3) The decom-

Thus, in AGRE, agents can interact, both through their  hosition of the simulation world into environments must
body, when they are situated in the same part of the physical 3|50 be uniform.

space, and through their roles, when they belong to a same . . . :

group. This emphasizes that, in genesal,agent is situated ~ ® Genericity: The formalism, which describes knowledge

in several environmentge. physical and social here) about the entities and their behavior in eaqh environ-
Yet, in AGRE, the body (which ishe visible part of an ment, as well as knowledge about the relationship be-

agent in a physical environmeris assumed unique. Though tween levels, has to be as accessible as possible to do-

it could be argued that this viewpoint is quite intuitive, it main experts, and in various application fields. But, it

actually restricts what the approach allows to represemt. | ~ Must also be easily implementable in a generic simula-

addition, the distinction between social and physical derl tion engine.

comes from the initial focus, in the earlier model (AGR), on e Transversal approach: The components of the formal

the organization issue in MAS. But, we could also consider model, that are used during the design phase, should



have a software reality, and this transformation shouldsame time. The set of multi-situated agents is denoted by
be as automatic as possible (especially in order to reduca1: M = A\ S
the risk of biases). According to our aims, usual situated agents and multi-

The following sections try to apply those principles by defin Situated agents are characterized in a dynamic way: thus, it
not necessary to assign a prior type to agents, because the

ing relations between agents and environments, and then 55{

completing a consistent implementation of the concepts. atus can change during the course of the simulation.
The use of multi-situated agents can fit very different situa

3 F | orinciples f It | tions: for instance, such an agent can be an edge, an irgerfac
_Orma .pl‘lnCIp €s for a mufti-scale between two physical environments (e.g. a door) — in that
simulation: the PADAWAN model case it has to be perceived by agents belonging to any of those

In order to fulfill the principles above, the model we advecat €nvironments. The concept can also be applied to represent

in this paper, called “PADAWAN’, is based on two princi- the social belonging of an agent, or its.pre_sence in spaaes th
ples: correspond to distinct scales or organization levels.

1. Any agent may dynamically encapsulate an environ3.2 Encapsulation of an environment in an
ment This is the basis of a recursive nested structurgagent

(such as those used in SWARM or P-systems), but thi

structure must be able to change in time. The second binary relation in our model represents the abil-

ity, for any agent, to encapsulate an environment (in which

2. Any agent may be situated in several environments apther agents can be situated). For the sake of clarity, ibis i
the same timewithout a prior idea of what those envi- portant to keep a conceptual and operational distinctien be
ronments represent (a micro/macro level of the physicatlween agents (i.e. entities) and environments (i.e. spaces

world, a group, an organization, a spatial memory, a sobut through this second relation we can now formalize that an
cial network, etc.). This introduces a generalization toagent “plays the role” of an environment.

the AGRE approach. _ .
bp i _ ) Definition 2 An agentz € A encapsulatesan environment
Thus our model relies upon two binary relations between. ¢ ¢, denoted by:a ~ e, iff a “contains” e. An agent
agents and environmentsituation andencapsulation can encapsulate one environment at a time, and similarly an

In the following sections, we denote lythe set of envi-  environment can be encapsulated by only one agent.
ronments used in a simulation, and lBythe set of agents.

An environment may be any part ofraetric spacde.g. an
euclidian space, a grid, a graph, a point...). In additioa, w
explain later how to endow it with a specific time scale and
with differentiated behavioral rules to apply to the agahts
contains.

In addition, we assume that there is only one environment,
denoted bye®, which is not encapsulated in any agent. In
that sense¢® corresponds to “the” single environment in a
classical MAS. We call it the “root environment” (or “zero-
level environment”) of the simulation. We denotefily= £\

{e°} the set of environments that are encapsulated in agents.

3.1 Situation of an agent in an environment Then, we call dregular agent”, any agent that does not

. o encapsulate an environment, and conversaiynpartment
ggﬁ) ‘;’]‘gi‘?ie\’lﬁ gi?{jiﬁiiﬂ;wqg:t??r:?/:/jh?gr??rfghcu:ﬁ the:z/:eivagent", any agent that encapsulates an environment. The set
and agt But, we also allow any a ént to be situgte:birgral of compartment agents is denoted@yC = {a € A|3e ¢
o ' Ny ag , . £*,a ~ e}. The set of regular agents is denoted/yR =
environments at the same time. Therefore, we define a firs

X S @ B S . . \ C. In addition, we denote’e € £*,hos(e) =la € Cla ~
binary relation: theituation of an agentin anenvironment  °° 1.\ C,spacéa) =l € E¥|a ~ e.

Definition 1 An agenta € A issituated in an environment ) )

e € & denoted bya < e, iff a can perceive, or be perceived, 3-3 Joint use of both relations

or act, or undergo actions, in. By combining thesituationin an environment together with
theencapsulatiorof an environment in an agent, we are able
to define new concepts and the basis of a multi-level architec
ture.

d Thus, for instance, the mere intersectidf N C includes

h compartmentagents that are multi-situated agents at the sa

time: agents that are able to act or perceive in several@mvir

ments, and also encapsulate an environment. Far from being

awild invention, this can be applied to many real modelirg is

sues. Forinstance, it can be used to describe a membrane pro-

tein, which has an end inside the cell, and the other end out-

side: this kind of protein is able to contain other molecules

Similarly, an elevator can be seen as a compartment-agent

which is situated at the same time in the shaft and in the suc-
!PADAWAN stands for “Pattern for an Accurate Design of Agent cessive floors. We cafpipe agent” such a multi-situated,

Worlds in Agent Nests”. compartment agent.

In the following, we denoteYa € A, location(a) = {e €
Ela < e} and: Ve € &, contenfe) = {a € Ala < e}. We
also use the notation: locati@t) < {e1,e>}, as a shorthan
for: “agenta should be placed only im; andey”, i.e. a
is now involved in only two situation relations, namely wit
environmentg; ande,.

Using situated agents meadsi € A | location(a) = §.

We call“usual situated agent” any agentt € A which
is situated in a single environment. The set of usual sitlate
agents isS = {a € A|Je € &, location(a) = {e}}.

Conversely, we calmulti-situated agent” any agent
a € A which is situated in several environments at the



More generally, we can formalize two new relationis: e Any behavior is described by generic interaction
clusionandhosting. which is a rule involving two agents (a source and a tar-
get). Conditions and actions rely upon generic percep-
tion and action primitives, thus interactions are indepen-
dent from the concrete implementation of the agents.

e Interactions are assigned to source and target agents

Definition 3 Environment inclusion. An environment; is
included in an environment, (denoteb by, C ep)iff: Ja €
Cla ~e; Aa < es.

Definition 4 Agent hosting. An agents, is guest of an agent through arinteraction matrix Roughly, the interaction

az, OF az ishosttoa, (denoted by, [ ay) iff: Je € £*[ay ~ matrix is a functiond/ : A x A — o(Z), which defines

eNap <e. the set of interactions that a source agent can perform on
The first relation can be summarized, for all environments @ targetagent.

and agents in the simulation, on teevironment graph (or During the course of the simulation, the simulation engine

inclusion graph), which is the directed graph defined by all makes each potential source agent (i.e. any agent that can pe
inclusion relations €) between environments. This graph is form interactions, according to the matrix) search, amadsg i
dynamic, since it represents all actual situation and encameighbors, for potential pairs of interaction/target agthen
sulation relations at a time in the simulation. In the geheraselects one of the pairs where the condition of the intesacti
case, it can also have directed cycles. Similarly,dgent is fulfilled, and performs the corresponding actions.
graph (or hosting graph) of the simulation is the directed
graph defined by hosting relatiors X between agents. 4.1 The many faces of an agent

By extension, we defines; C e, (transitive inclusion) iff:
e1 =ex0re; Cep0rde e fle; CeNe C ey (ie. iffthereis
a path between; ande, in the inclusion graph) ; similarly:

The distinction that the IODA approach makes between enti-
ties (agents) and behaviors (interactions) is quite usiefok-

e L e der to specify behaviors that depend on an organizatiot leve
w £ ay (transitive hosting) iff.a; = a, ora: C ay 0rda € Indeed, the key idea is tendow each environment with its

a; CaAal asy. . . . . . .
A|Inltﬁe /(\ane?al éase anv environment is not necessarily ire"" interaction matrixWe explain this mechanism below.
9 any Y In the following, we consider the general case of an agent

cluded (transitively) ire®. This could cause paradoxical situ- a with locatior(a) = {e1,...,ex}. Then, we propose to de-
. , . . : . = {e1,...,en} ,
ations, which have no interest in simulation. In order toidvo composex in a “central’, non-situated part, and a setrof

e, 1t o Suffien Lt oLy Ume, e eTUONTENt 30 Sperpneral part,cach one being st
y pologically Reg Thus, we prefer to callcore of ¢” the non-situated part

Simulation. ;
. . L . of the agent (denoted hy,), and converselyface of a in
Under this assumption, the relatign is now apartial e;” (denoted bya,,) the part ofa that is situated ire; (i.e.

order. Consequently, the environment graph is an Upperactuallya, seen as an agent that would belong only;3o The

L 0 0 >
sem|lat|t|cetr\]/v ithe als:[ I(;.\_ast upper k;ound.h_ s‘sﬁﬁgl Th:f,s’ f “face” a|., is associated with properties, which are specific to
several rather qualitative concepts such as the “evelTol a i gy atedness, such as a location (e.g. coordinateg)iits

environment (or of the related compartment) can be now forbwn perception abilities, so as to determine the neighfars o

mally defined (in this case, as thortest distance t¢") and .'tn e;, which can be involved in interactions withaccording

be used to characterize the organization of a system and ifS 5 interaction matriv/: defined ine.
(2 "

subsystems. Now, any agent of our multi-level simulation model can be
o ) ) ] seen as the union of a “disembodied” agent that cannot per-
4 Implementation in an interaction-oriented ceive nor act (in fact, it is limited to a set of internal staged
simulation approach to computing or decision processes) and several embodied en

tities which have full perception and action abilities. Bad

ose embodied entities, when observed in its environment,

n be treated as classical agents in usual simulations. The
pseudo-agent|,, can participate in the native IODA interac-
tion selection process, in the context of environmgrand
interaction matrix);. The only difference with a “flat” ap-

roach (i.e. with a single environment), is that the privei§
gerformed bya|., can access the state and functions of the
core pseudo-agent,.

The definitions above allow to decompose a complex sy
tem into subsystems, which are bound one to another throu
non-trivial relations (i.e. namely, not only a tree struefu In
this section, we explain why an interaction-oriented senul
tion approach is particularly fruitful in association wihu-
ation and encapsulation relations, especially when thaweh
ior of an agent should depend on the environment where it i
situated.
Therefore, we rely upon the IODA interaction-oriented ap-
proach[Kuberaet al, 2011. Its first advantage is thatitis 4.2 Management of time scales and simulation
a transversal approach, i.e. the concepts involved duhiag t scheduling
design phase are implemented as true pieces of code, in|a yiq section, we assume that the simulation is in discrete
very straightforward way. In addition, IODA assumes a cleat;ne 5 o “time is divided in ticks or time steps, which repre
separation between agents and behaviors: sent a constant duratiaft. At time stept; € [0,Tmay, the
e Any relevant entity is an agent (which can be more orsimulation time elapsed since the beginning;s.
less complex) endowed with perception and actiom- Thus, each environment can easily be endowed with its
itives owntime scale



Definition 5 We call Rhythm assignation of environments test if it is the guest of another agent. Those primitivesaio n
the function:xy : e € &€ +— (N,p) € N* x Nwhere raise much difficulties.

N andy represent theeriod and phase attached to environ-
mente.

The period indicates that “something is likely to happen
in e every Ndt, starting atpdt. Based on that, we say that
an environment is activated at time ¢ (or ¢-activated) iff:

t = ¢(mod N). We denote byac(t) all ¢-activated en-
vironments. Agents that may act at timeare those situ- As an example, a primitive like “enter a compartment”
ated int-activated environments. In practice, because agents, i o, (a, c) ma{kes sense only if andc are situated at '
act according to the interaction matrix of their environien |o,q¢'in ' common environment, and-ifz a: then, thelo-
the simulation engine has to identify faces that belong-10  .ati5n of ¢ must be modified, by replacing all environments

activated environments, i.e. the pai(g,e) € A x EWth  gnareq with by the environment which is encapsulated:in
e € Eac(t), denoted bydac(t). location(a) < (locatior(a) \ locatior(c)) U {spacéc)}.
Aaci(t) = U ( U {(a,e)}) In some cases, the primitive may use a function as a param-
eE€Eau(t) accontente) eter. For instance, the division of a compartmeassumes

The algorithm we use for agent scheduling is a simplifica-that there exists aallocation policyr, in order to determine
tion of the conservative scheduling of HUAujimoto, 1993,  Where the agents that were guests shiould be situated after
since each environment can be seen as a time-stepped siff€ division. To perforndi vi de(c, ), the first step is to
ulation. Thus, in order to perform the interaction selattio C'€até @ compartment, that is itself situated in locatign);
at timet, the pairs ofAd.c(t) are first sorted according to a then, we use the policy, defined as:
scheduling policy (the default policy is a random shuffle). 7 : contenfspacéc)) — {spacéc), spacéc’)}

This operation determines the order in which the faces selec : _
and perform their interactions. Several scheduling pedici S° thatVa C ¢, all occurrences of spa@s in locatior(a)

can be considered, e.g. sorting by agent families, or by-envimUSt tze replaced byr(a) (Wh'Ch IS e]ther spage), or
ronments, or both. Among others, depending on the applicas-paf:e? ). The default aI_Iocat|on policy IS randc_;m_._

tion domain, it can be useful to sort environments by level or  Similarly, we have defined the appropriate primitives to de-
by period. We cannot focus here on a comprehensive studﬁ{roy (recursively) an environment or an agent, createtagen
of frequent “patterns” of scheduling policies, but the fidén specified environments, enter or exit compartments, energ
that this feature isade expliciin our simulation model, and ©" dissolve compartments, make a regular agent become a

thus can be tuned very accurately depending on the purpo§@Mmpartmentand vice versa, go from one environment to an-

and domain of the simulation. other one by “crossing a muln-snuated environment (aag.
Once the order uporac(t) has been chosen, the only re- door), etc. AII thoge primitives are available in the cutren

maining operation is the IODA interaction selection prages State of our simulation engine.

applied to the correspondirfgces i.e. for each paifa,e),  Extensions of the interaction matrix

the faceua,, is likely to perform at most one interaction (as a |n order to allow a compartment agent to interact with its

source) with one of its neighbors (as a target). Regardieg thguest agents and vice-versa, we also enhance the I0DA in-

coreay,, il does not perform nor undergo any interaction by teraction matrix by adding both a generic line named “host”

itself: onIy the activity of the faces is Ilkely to affect tleere. to Specify the interactions that a compartement may perform

4.3 Primitives specific to the multi-level structure 9N 1S guests, and a generic column named *host” to specify

. . . » ._the interactions that an agent may perform on its host.
The interactions we use are described by condition/action g yp

rules. Those rules are themselves composed of perceptian4  Implementation within a simulation-oriented
or actionprimitives i.e. functions or procedures run by the platform

source or target agent involved in the interaction. Since the PADAWAN model relies upon the IODA
_ Thus, the introduction of situation and encapsulation-rela; o - -tion-oriented approach, the concepts of which kre a
tions in the interaction-oriented approach requires tonéefi o i lemented in a Java simulation framework, called
specific primitives, in order to allow the model designer 0« 3D [Kuberaet al, 2011), we developped the app’ropri-

SZSetE)OSe%raelggr%nTeTetggt g?f'g'ﬂ:oen g;:]r};ecrt?ggor:% ig\éeaegf‘v ate extensions within the JEDI platform. Then, startinghwit
P P P P P existing classes, we reify the “face” of an agent as shown

is sufficient_to express atomic operations on the situatimh a fig. 1. The entity that appears as an “individual” (the one
encapsulation relations. We give below several examplea oy

Action primitives

,Realizable actions must be defined more rigorously, espe-
cially because the definition must apply to all kind of agents
In addition, the primitives must keep the simulation “tamg
ically regular”, i.e. they must not create directed cyctethie
environment graph.

showing how the semantics of those primitives can be define sedin the design phase, and which the domain expert deals
very prgcisely P ith), extends theADAWAN_Agent ; but, each time an agent

is located in an environment, the simulation engine creates
Test/perception primitives an instance oPADAWAN_Face, which behaves exactly like a
First, agents are endowed with boolean functions requared tregular JEDI agent in its single environment.

characterize them: regular vs. compartment agent, usddal si  The scheduler of the simulator has also been rewritten ac-
uated agent vs. multi-situated agent, etc. An agent can alswmording to the principles explained before. At each time ste



cont ent situated in ) I ocati on

o~ It rent implementation is used for the development of a “Seri-

_JEDLEnvironment ous Game” devoted to vendor trainifigathieuet al., 2011,
— A which involves the simulation of many levels from malls to
ZF shelves.
| | decation We also intend to apply our work to cell biology, which
sphase: it ] is a suitable touchstone for investigating multi-scaleiéss
o _encapsuaes p [ In the longer term, we hope that _the convergence with other
mzf::ﬁ:iace  [Froavian agen Jo. - Gituated in appr(_)ache_s, such as AGRE, which cu_rrently focus on orga-
scoord e nizational issues, could lead to theoretical developmikratis

could be used outside the scope of simulation.

Figure 1: Class diagram which shows the implementation of the
PADAWAN model within the JEDI framework. Each “face” agent References
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