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three dimensional problems to much simpler one dimensional
problems. To identify these mechanical properties for general
non homogeneous rods, we compare the solutions of extension,
bending and torsion problems in the direct approach with the cor
responding results from the three dimensional theory [23,24].

Let P(s, t) = Dk(s, t) � dk(s) be the rotation tensor. We employ
throughout the Einstein’s summation convention and the direct
tensor notation in the sense of [26,27]. Greek indices range over
the set {1,2}, while Latin indices take the values {1,2,3}. Denote
by a superposed dot the material time derivative and by ðÞ0 d

ds.

Fig. 1. The deformed configuration of the rod.
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Thus, we obtain the effective bending stiffness, extensional stiff
ness, torsional rigidity and other coupling coefficients. Also, to
determine the effective shear stiffness, we compare the shear
vibrations of rectangular beams in the two approaches (direct
and three dimensional). These results are presented in Sections 3
and 4 in the case of isotropic non homogeneous beams with arbi
trary cross section shape. In Sections 5 and 6 we consider beams
composed of two different non homogeneous materials, either
orthotropic or isotropic, and we derive general formulas for the
effective stiffness coefficients. These formulas are expressed in
terms of the solutions to some auxiliary plane strain boundary va
lue problems defined on the cross section domain. In general, the
solutions of these auxiliary boundary value problems are not easy
to find in a closed form, but we present in Section 7 some special
cases for the geometry/material parameters in which we can ob
tain the results in closed form. In Section 8 we employ our analyt
ical modeling to analyze the deformation of FGM beams made of
metal foams. The mass density distribution of the cellular material
in the beam is given by a power law function of the cross section
coordinate, while the Young’s modulus is expressed by the Gib
son Ashby formula for closed cell aluminum foams [25]. Finally,
we verify our analytical modeling by comparing the results ob
tained in the direct approach of FGM beams with the numerical
solution of various bending problems obtained by a finite element
analysis using ABAQUS.

The close agreement between the analytical and numerical
solutions indicates that the direct approach to rods, together with
the formulas for the effective stiffness coefficients derived in this
paper, represent an efficient tool for the analysis of the deforma
tion of functionally graded rods.

2. Equations for curved rods in the direct approach

2.1. Material independent equations
In this expository section we present the basic non linear equa

tions for beams and rods, obtained by the direct approach in
[20,21]. In this approach, the thin body is modeled as a deformable
curve endowed with a triad of rigidly rotating vectors attached to
each point.

We denote by C0 the deformable curve in its reference (ini
tial) configuration and by s the material coordinate along C0,
which is also the arclength parameter. The position of the direc
ted curve is described by the position vector r(s) and the at
tached vectors di(s), i = 1, 2, 3, also called directors. The unit
vectors di(s) are mutually orthogonal and they are chosen such
that d3 coincides with the unit tangent t � r0, and d1, d2 belong
to the normal plane to the curve C0. The rotations of the at
tached triad of directors describe the rotations of the rod’s
cross sections during deformation.

Let C be the deformed configuration of the rod at time t, which is
characterized by the vector fields (see Fig. 1)

R Rðs; tÞ; Di Diðs; tÞ; i 1;2;3; ð1Þ

where R is the position vector and Di are the directors after defor
mation. We have Di Dj = dij (the Kronecker symbol), but D3 is not
tangent to the curve C, i.e. the initial cross sections are no longer
normal to the middle curve after deformation. In this model it is as
sumed that the cross sections of the beam do not deform, but they
only rotate with respect to the middle curve.
The velocity vector is Vðs; tÞ _Rðs; tÞ, and the angular velocity
vector x(s, t) is determined by the relation _P x� P, i.e. x is
the axial vector of the antisymmetric tensor _P PT . The equations
of motion for rods are

N 0ðs; tÞ þ q0F q0ðV þH1 �xÞ�;
M0ðs; tÞ þ R0 � Nðs; tÞ þ q0L q0½V �H1 �xþ ðV �H1 þH2 �xÞ��;

ð2Þ

where N is the force vector, M is the moment vector, F and L are
the external body force and moment per unit mass, q0 is the mass
density per unit length of C0, while the second order tensors
H1(s, t) and H2(s, t) are the inertia tensors per unit mass. According
to [21], the tensors Ha are expressed by Haðs; tÞ Pðs; tÞ H0

aðsÞ
PTðs; tÞ, where H0

aðsÞ are the inertia tensors in the reference config
uration, which are given by

q0H
0
1

Z
R
ð1� aÞq	 ~l dx1dx2;

q0H
0
2

Z
R
½ða � aÞ1 a� a� q	 ~l dx1dx2: ð3Þ

Here q	 is the mass density in the three dimensional rod, 1 is the
second order unit tensor, R is the domain of the cross section in
the normal plane, a = x1d1 + x2d2 and l � 1þ a�n

Rc
, where Rc is the ra

dius of curvature of the curve C0 and n is the principal normal unit
vector. In the case of straight rods, we have clearly l 1. In the
general case of curved rods, since the diameter of the rod is much
smaller than Rc, we have ja�njRc


 1, and thus l > 0 and l has a value
close to 1.

We note that H1 is antisymmetric, H2 is symmetric. The fields
F and L account also for the loads acting on the lateral surface of
three dimensional rods.

The vectors of deformation are defined as follows: the vector
of extension shear E R0 P t, and the vector of bending tor
sion U is given by P0 = U � P, i.e. U is the axial vector of the
antisymmetric tensor P0 PT. We also introduce the energetic
vectors of deformation E	 and U	 defined by E	 PT E and
U	 = PT U [20,21].

For general elastic beams, the constitutive assumptions imply
that the internal energy density U is a function of the following
arguments fE	;U	g. In our work we consider that the internal en
ergy is a quadratic function of its arguments. Thus, we have the fol
lowing constitutive equations



q0U U0þN0 �E	 þM0 �U	 þ 1
2E	 �A �E	 þE	 �B �U	 þ 1

2U	 �C �U	;
N @ðq0UÞ

@E	
�PT ; M @ðq0UÞ

@U	
�PT ;

ð4Þ

where U0 is a scalar, N0, M0 are vectors, and A, B, C are second order

are applied. In the paper the geometrically non linear approach
with physically linear constitutive relations is considered. Such
a theory can be applied for standard material. Exception is, for
example, a rubber like material for which the quadratic form
of the strain energy density is not valid in the case of large

M. Bîrsan et al. / Composites: Part B 43 (2012) 1315–1328 1317
tensors, defined on the reference configuration. The structure and
significance of the elasticity tensors A, B and C have been discussed
in [20,21].

2.2. Structure of constitutive tensors

In our study we are interested to determine the structure of
constitutive tensors for beams and rods made of functionally
graded materials. We assume that the material properties do not
vary along the length of the beam, but only across the cross sec
tions. In other words, they depend on (x1,x2), but not on s. In each
cross section we chose the directors d1 and d2 along the principal
axes of inertia. Thus, we have

hq	x1i hq	x2i 0; hq	x1x2i 0; ð5Þ

where we denote by hf i
R
R f dx1 dx2 for any field f.

The structure of the constitutive tensors can be determined
using the generalized theory of tensor symmetry [21,28]. In the
general case of curved rods, the constitutive tensors depend on
the geometry of the rod through the Darboux vector s of the curve
C0, and through the angle of natural twisting . The
expressions of A, B and C for homogeneous curved rods are pre
sented in [20,21]. If we restrict for simplicity to straight rods with
out natural twisting, then we have s = 0 and r = 0. Imposing that
the orthogonal tensor 1 2t � t belongs to the symmetry group
of any constitutive tensor, we find that for non homogeneous rods
A, B and C have the following structures

A A1d1 � d1 þ A2d2 � d2 þ A3t � t þ A12ðd1 � d2 þ d2 � d1Þ;
B B13d1 � t þ B31t � d1 þ B23d2 � t þ B32t � d2;

C C1d1 � d1 þ C2d2 � d2 þ C3t � t þ C12ðd1 � d2 þ d2 � d1Þ:
ð6Þ

Remark. The structure of the constitutive tensors can be derived
also in the more general case of rods with natural twisting. In this
case, the constitutive coefficients depend also on the angle of
natural twist r(s), and the expressions corresponding to (6) have to

be supplemented with additional terms. h
Our aim is to determine the constitutive coefficients Ai, Ci, A12,
C12, Ba3 and B3a for functionally graded beams and rods, in terms
of the three dimensional elastic properties. These coefficients de
scribe the effective stiffness properties of thin beams and rods.
Since the constitutive coefficients do not depend on the deforma
tion, their expressions can be derived by comparison of exact solu
tions for directed curves with the results from three dimensional
elasticity in the framework of linear theory.

In order to realize such comparison of exact solutions, we re
strict ourselves to the linear theory. Let us note that in the the
ory of beams and rods there is long tradition of using linear
elasticity to derive one dimensional beams and rods theories
including some non linear effects. This tradition is based on
the fact that one can calculate stiffness parameters of beam or
rod on the base of linear elasticity and then use the stiffness
moduli in geometrically non linear theory of beams and rods. In
deed, the coefficients of the strain energy density considered as
the quadratic function of strain measures coincide for linear and
for geometrically non linear theories of beams and rods. This
fact is used for example in [3,20,21] where different approaches
deformations, in general. Some recent attempts to apply non lin
ear elasticity to construction of one dimensional theories of
beams and rods are given for example in [29 37].

3. Linearized equations for directed curves

3.1. Geometrical linearization

In the linear setting, the displacement u(s, t) = R(s, t) r(s) is as
sumed to be infinitesimal. Also, the rotation tensor can be repre
sented as P = 1 + w � 1, where w(s, t) is the vector of small
rotations. The field w, which is assumed to be infinitesimal, satis
fies the relations _w x and w0 = U. The vectors of deformation
are denoted in the linear case by e and j, and they are given by

e � u0 þ t � w E E	; j � w0 U U	: ð7Þ

The constitutive Eq. (4) reduce to

q0Uðe;jÞ
1
2

e � A � eþ e � B � jþ 1
2
j � C � j;

N
@ðq0UÞ
@e

; M
@ðq0UÞ
@j

: ð8Þ

The equations of motion (2) simplify to the forms

N 0 þ q0F q0ð€uþH0
1 � €wÞ; M0 þ t �N þ q0L

q0 €u �H0
1 þH0

2 � €w
� �

: ð9Þ

To the governing field Eqs. (7) (9) we adjoin boundary conditions
and initial conditions. Let l be the length of the rod, so that the arc
length parameter range over the interval s 2 [0, l]. We denote the
two endpoints by �s1 0 and �s2 l for convenience, and we consider
boundary conditions of the type

uðsc; tÞ uðcÞðtÞ or Nðsc; tÞ NðcÞðtÞ; for c 1;2;

wðsc; tÞ wðcÞðtÞ or Mðsc; tÞ MðcÞðtÞ; for c 1;2:

The initial conditions are

uðs;0Þ u0ðsÞ; _uðs; 0Þ v0ðsÞ; wðs;0Þ w0ðsÞ;
_wðs;0Þ x0ðsÞ;

where the functions u0, w0, v0, x0, as well as u(c), w(c), N(c), M(c) are
prescribed.

The correspondence between the displacement and rotation
fields {u,w} for directed curves and the displacement vector u	

for three dimensional rods is established by the following relations
[21]

q0 uþH0
1 � w

� �
hq	u	 ~li; q0 u �H0

1 þH0
2 � w

� �
hq	ða� u	Þ~li: ð10Þ

Also, the relations between the fields {N,M} and the Cauchy stress
tensor T	 from three dimensional theory are given by

N ht � T	i; M ha� ðt � T	Þi: ð11Þ

These relations are useful when comparing the solutions of some
problems in the two different approaches.

3.2. Straight rods

In what follows we restrict our attention to straight rods
without natural twisting. In this case, we can chose the Cartesian



coordinate frame Ox1x2x3 such that the curve C0 is situated on the
axis Ox3, between the limits x3 = 0, l, and we have

t d3 e3; n d1 e1; d2 e2; s x3; l 1; H0
1 0;

q0H
0
2 I1e1�e1þ I2e2�e2þðI1þ I2Þe3�e3; I1 hq	x2

2i; I2 hq	x2
1i;

Qað0Þ QaðlÞ 0; Fð0Þ FðlÞ F;

Lað0Þ LaðlÞ La; Hð0Þ HðlÞ H:
ð16Þ

Using the constitutive Eq. (13) we obtain a system of ordinary dif
ferential equations which yields the solution

Let us consider a three dimensional rod which occupies the do
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where ei denote the unit vectors along Oxi.
To distinguish between the extensional, torsional, bending, and

shear deformation, we decompose the vectors u; w; e; j; N;
M; F and L by the tangent direction t and the normal plane (e1,
e2):

u utþw; w wtþ t�#; e u0tþc; j w0tþ t�#0;
N FtþQ ; M Htþ t�L; F F ttþF n; L LttþLn;

ð12Þ

with c = w0 #. The vectors w; #; c; Q ; L; F n and Ln are orthog
onal to t. Here c is the transverse shear vector, u is the longitudinal
displacement, w = waea is the vector of transversal displacement, w
is the torsion, #0 #0aea is the vector of bending deformation, F is
the longitudinal force, Q = Qaea is the vector of transversal force,
H is the torsion moment and L = Laea is the vector of bending mo
ment. Using the decompositions (12) and the structure of constitu
tive tensors (6), we remark that the constitutive Eq. (8) can be
written in component form as

Q 1 A1 w01 #1
� �

þA12 w02 #2
� �

þB13w
0;

Q 2 A12 w01 #1
� �

þA2 w02 #2
� �

þB23w
0;

F A3u0 B31#
0
2þB32#

0
1; H C3w

0 þB13 w01 #1
� �

þB23 w02 #2
� �

;

L1 C2#
0
1 C12#

0
2þB32u0; L2 C12#

0
1þC1#

0
2 B31u0:

ð13Þ

The constitutive coefficients are constants, since we consider rods
made of non homogeneous materials which properties do not de
pend on the axial coordinate s.

We observe that the general boundary initial value problem for
non homogeneous rods does not decouple into sub problems.
Note that in the case of homogeneous materials the general prob
lem decouples into the extension torsion problem and the bend
ing shear problem, see [21]. The relations of identification (10)
and (11), written for straight rods, become

q0wa hq	u	ai; q0u hq	u	3i; q0 hq	i;

#1
hq	x1u	3i

I2
; #2

hq	x2u	3i
I1

; w
hq	 x1u	2 x2u	1
� �

i
I1 þ I2

;

Qa ht	3ai; F ht	33i; La hxat	33i; H hx1t	32 x2t	31i;
ð14Þ

where u	i and t	ij are the components of u	 and T	, respectively. The
relations (14) will be used to identify the corresponding fields in the
two approaches (directed curves and three dimensional).

3.3. Extension, bending and torsion in the direct approach

Let us find the exact solution of the problem of extension, bend
ing and torsion of directed curves. We mention that this solution is
exact up to rigid body displacement and rotation fields. In the lin
ear theory the rigid body fields have the general form
u aþ b� r;w b, where a and b are arbitrary constant vectors.

Let us determine the equilibrium of a straight rod subjected to
an axial force F, a torsion moment H, and bending moments La ap
plied to both ends. The body forces and moments are absent. In our
case, the equilibrium equations corresponding to (9) are

Q 0aðsÞ 0; F 0ðsÞ 0; L0aðsÞ þ QaðsÞ 0; H0ðsÞ 0;
s 2 ð0; lÞ; ð15Þ

while the boundary conditions on the ends of the rods are
waðsÞ
1
2

aas2 þ bas; uðsÞ a3s; #aðsÞ aas;

wðsÞ b3s; ð17Þ

where the constants ai and bi are determined by the algebraic linear
systems

C2 C12 B32

C12 C1 B31

B32 B31 A3

264
375 a1

a2

a3

264
375 L1

L2

F

264
375; A1 A12 B13

A12 A2 B23

B13 B23 C3

264
375 b1

b2

b3

264
375 0

0
H

264
375 ð18Þ

The force and moment vector fields corresponding to this solution
are given by

N Fe3; M L2e1 þ L1e2 þ He3: ð19Þ

This solution will be used later for comparison with three dimen
sional solutions, in order to identify the effective stiffness coeffi
cients for non homogeneous thin rods.

4. Determination of constitutive coefficients for isotropic rods

4.1. Deformation of non homogeneous three dimensional rods
main B fðx1; x2; x3Þjðx1; x2Þ 2 R; x3 2 ½0; l�g. The cross section R is
arbitrary and the symmetry relations (5) are satisfied. The body
B is made of an isotropic and non homogenous material such that
the mass density q	 and the Lamé moduli k, l are independent of
the axial coordinate, i.e. we have

q	 q	ðx1; x2Þ; k kðx1; x2Þ; l lðx1; x2Þ:

We consider the deformation of such cylinders under the action of
terminal forces and moments.

We assume that the body B is in equilibrium, in the absence of
external body loads and tractions on the lateral surfaces. On the
two ends of the cylinder act a resultant axial force and a resultant
moment. We consider the same problem as in Section 3.4, but for
mulated in the three dimensional setting. In view of the relations
(14)7 10 we take the boundary conditions

ht	3ai 0; ht	33i F; hxat	33i La;

hx1t	32 x2t	31i H for x3 0; l: ð20Þ

The solution of this three dimensional problem for non homoge
neous rods is presented in [23] Section 3.3 and Section 3.4, where it
is expressed in terms of the solutions to some auxiliary plane strain
problems. For the sake of completeness and for later reference we
present these three dimensional results.

We denote by uð1Þa ; uð2Þa and uð3Þa the solutions of the 3 plane
strain problems Dð1Þ; Dð2Þ and Dð3Þ respectively, defined on the do
main R by

DðcÞ : tðcÞba;b þ ðkxcÞ;a 0 in R; tðcÞba n	b kxcn	a on @R;

Dð3Þ : tð3Þba;b þ k;a 0 in R; tð3Þba n	b kn	a on @R;
ð21Þ

where obviously tðkÞab kuðkÞq;qdab þ l uðkÞa;b þ uðkÞb;a

� �
, (k = 1, 2, 3 and a,

b = 1, 2) and n	 n	aea is the outward unit normal to @R. Let
u(x1,x2) be the solution of the Neumann type boundary value
problem

ðlu;aÞ;a l;1x2 l;2x1 in R;
@u
@n	

x2n	1 x1n	2 on @R: ð22Þ



The existence of solutions to the above boundary value problems
(21) and (22) is proved in [23], Sections 3.2 and 3.4. Then, the solu
tion of our three dimensional problem for the loads (20) is given by

u1
1

â1x2
3 sx2x3 þ

X3

âkuðkÞ1 ðx1; x2Þ;

hq	xaui
hq	x2

ai
’ 0; a 1;2;not summed;

where u(x1,x2) is the torsion function given by (22). For example, in

the case when R is an elliptical domain R ðx1; x2Þj
x2

1
a2 þ

x2
2

b2 < 1
n o
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2
k 1

u2
1
2

â2x2
3 þ sx1x3 þ

X3

k 1

âkuðkÞ2 ðx1; x2Þ;

u3 ðâ1x1 þ â2x2 þ â3Þx3 þ suðx1; x2Þ;

ð23Þ

where the constants s and âi are given by the relations

s H
D	

and Dajâj La; D3jâj F: ð24Þ

Here the torsional rigidity D	 is expressed by

D	 hl½x1ðx1 þu;2Þ þ x2ðx2 u;1Þ�i; ð25Þ

while the coefficients Dij are given by

Dab hðkþ 2lÞxaxb þ kxauðbÞc;ci; D33 hðkþ 2lÞ þ kuð3Þc;ci;
Da3 hðkþ 2lÞxa þ kxauð3Þc;ci; D3a hðkþ 2lÞxa þ kuðaÞc;ci:

ð26Þ

In [23], Section 3.3, it is shown that Dij = Dji and det (Dij)3�3 – 0, so
that we can determine the constants âi from the system (24)2,3.

Remark. If we introduce the stress function v(x1,x2) by the
relations

v;1 lðu;2 þ x1Þ; v;2 lðu;1 x2Þ;

then the torsional rigidity is given by

D	 2hvðx1; x2Þi: ð27Þ

The stress function v can be obtained from the boundary value
problem

1
lv;a
� �

;a
2 in R; v 0 on @R;

provided that the domain R is simply connected. In the case of mul
tiply connected cross sections R, the torsion problem has been
studied in, e.g., [38,39]. h

Let us compare now the three dimensional solution (23) with
the solution (17) obtained in the direct approach to rods, taking
into account the relations (5) and (14). By comparison, it follows
that we have to identify the constants

C3 D	; A3 D33; C1 D22; C2 D11; C12 D12;

B31 D23; B32 D13; B13 B23 0:
ð28Þ

Thus, from (26) (28) we obtain the following expressions for the
constitutive coefficients

C3 2hvðx1;x2Þi; A3 hðkþ2lÞþkuð3Þc;ci; C1 hðkþ2lÞx2
2þkx2uð2Þc;ci;

C2 hðkþ2lÞx2
1þkx1uð1Þc;ci; C12 hðkþ2lÞx1x2þkx1uð2Þc;ci; Ba3 0;

B31 hðkþ2lÞx2þkx2uð3Þc;ci; B32 hðkþ2lÞx1þkx1uð3Þc;ci: ð29Þ

By virtue of the identifications (14) and (29) we can verify that the
fields u, wa, w, N and M calculated for the solutions in the two dif
ferent approaches coincide.

Remark. For the fields #a corresponding to the three dimensional
solution (23) we obtain from (14)1,2 and (5) the expressions

#a âax3 s hq
	xaui
hq	x2

ai
; a 1;2;not summed:

Comparing this relation with the field #afrom the solution (17)3 for
directed curves, we see that we have to approximate
and l is constant, then we have uðx1; x2Þ b2 a2

a2þb2 x1x2 so that the

above approximation is justified. h

We remark that, due to the shear bending coupling in the case
of static problems, the effective shear stiffness coefficients A1, A2

and A12 cannot be obtained by analyzing static shear problems
and using the same procedure as above. (For thin beams, the coef
ficients A1, A2, A12 will not enter in the leading order terms of the
solutions.) For this reason, we determine the effective shear stiff
ness coefficients by solving a free vibration problem.1 The neces
sity of considering free vibration problems for the determination
of effective shear stiffness properties is also discussed in details in
[20] Section 6, and in [21, pp. 34 38].

4.2. Shear vibrations of rectangular rods

Consider a three dimensional rod which occupies the domain
R ðx1; x2; x3Þjx1 2 a

2 ;
a
2

� �
; x2 2 b

2 ;
b
2

� �
; x3 2 ð0; lÞ

� 	
, made of a

non homogeneous isotropic material. The material parameters k,
l and q	 are given functions of (x1,x2). Assume that the mass den
sity q	 has a symmetrical distribution across the thickness:
q	(x1,x2) = q	( x1,x2).

The body loads are zero, the lateral surfaces x1 � a
2 and x2 � b

2
are traction free, and the end boundary conditions are given by

u	1 u	2 0 and t	33 0 for x3 0; l: ð30Þ

To determine the shear vibrations of this rod, we search for solu
tions u	 of the form

u	 W cosðxtÞ sin
p
a

x1

� �
e3; ð31Þ

where W is a constant and x is the lowest natural frequency. We
observe that all the boundary conditions are satisfied by the field
(31), and the equations of motion reduce to t	13;1 q	u	3, which by
integration with respect to x1 gives

t	13 Wx2 cosðxtÞ
Z x1

a=2
q	ðx1; x2Þ sin

p
a

x1

� �
dx1:

Using the constitutive equation for t	13 we get

lðx1; x2Þ
p
a

cos
p
a

x1

� �
x2
Z x1

a=2
q	ðx1; x2Þ sin

p
a

x1

� �
dx1 ð32Þ

We apply the mean value theorem for the integral in (32) and we
deduce that there exists a point a aðx1; x2Þ 2 a

2 ; x1
� �

such thatZ x1

a=2
q	ðx1; x2Þ sin

p
a

x1

� �
dx1 q	ða; x2Þ

Z x1

a=2
sin

p
a

x1

� �
dx1: ð33Þ

Substituting (33) into (32) and integrating over R we obtain

x2 p
a

� �2 hlðx1; x2Þi
hq	ða; x2Þi

: ð34Þ

Let us treat the same problem using the approach of directed
curves. We consider a straight rod along the Ox3 axis for which
the arclength parameter s 2 (0, l). The external body loads F and L
are zero. According to (14) and (30) we have the following boundary
conditions on the rod ends

1 Note that the use of static and dynamic problems for identification purposes must
result in the same effective stiffness properties. The type of the problem (static or
dynamic) should not influence the final results [19].



wa 0; F 0; w 0; La 0 ða 1;2Þ; for s 0; l: ð35Þ

In order to study the shear vibrations, we search for solutions of the
Eqs. (9), (13) of the form

#1 W cosðxtÞ; #2 w 0; u wa 0; ð36Þ

as the limits of the values from the domains B1 and B2, respectively.
Let us denote the Lamé moduli of the material occupying the do
main Bq by k(q)(x1,x2) and l(q)(x1,x2), with (x1,x2) 2 Sq, q = 1, 2.

Consider the problem of extension, bending and torsion of such
a compound three dimensional beam, under the resultant forces

(a) (b)
Fig. 2. The cross-section of rods composed of two materials.
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where W is a constant and �x is the natural frequency of the rod. In
view of the constitutive Eq. (13), we see that the boundary condi
tions (35) are satisfied. Imposing that the fields (36) verify the equa
tions of motion (9) we find

x2 A1

I2
and A12 0: ð37Þ

We identify the natural frequencies x and �x from (34) and (36)1, and
we obtain the expression of the constitutive coefficient A1 as follows:

A1 k
hlihq	x2

1iAreaðRÞ
hq	ða; x2Þihx2

1i
with k

p2

12
; ð38Þ

where the factor k is similar to the shear correction factor intro
duced first by Timoshenko [40] in the theory of beams (note that
in the original contribution of Timoshenko the value is 2/3). One
can proceed analogously for the x2 direction and find a similar
expression for A2. These relations express the transverse shear stiff
ness coefficients for non homogeneous rectangular rods. The value
given by (38) will be verified in Section 8, where we consider the
bending of cantilever functionally graded beams and make a com
parison with numerical results.

Remarks.

1. In the case of homogeneous rods, l and q	 are constant, and
from (38) we get the well known formulas [20]

A1 A2 klAreaðRÞ; A12 0: ð39Þ

The value of the factor k in relation (39) has been discussed in [21].
2. In the case of thin rods, when q	 has a smooth variation across

the thickness, we can employ the approximation
the tr
(not n

5. Bea
hq	ða; x2Þi ’ hq	ðx1; x2Þi: ð40Þ
Then, we substitute (40) into (38) and find

hq	x2
ciAreaðRÞ
Ac khli hq	ihx2
ci

ðc 1;2 not summedÞ; A12 0:
ð41Þ

The simplified (approximate) formulas (41) can be used to estimate

a
nsverse shear stiffness for arbitrary non homogeneous rods
ecessarily rectangular or symmetrical) in most cases.

ms composed of two different materials
In this section we consider beams and rods made of two isotro
pic and non homogeneous materials. The body B is decomposed in
two regions B1 and B2 such that Bq fðx1; x2; x3Þjðx1; x2Þ 2 Sq; x3

2 ð0; lÞg. Thus, the cross section R is decomposed in two domains
S1 and S2 with S1 \ S2 = ;, see Fig. 2a. We denote by C0 the curve
of separation between the domains S1 and S2 and by C1, C2 the
complementary subsets of @R such that @ Sq = C0 \ Cq. Let
P0 = {(x1,x2,x3)j (x1,x2) 2C0,x3 2 (0, l)} be the surface of separation
of the two materials. We assume that the two materials are welded
together along P0 and there is no separation of material along P0,
so we have the conditions

½u	�1 ½u	�2; ½T	�1 � n0 ½T	�2 � n0 on P0; ð42Þ

where n0 n0
aea is the unit normal of P0, outward to B1. The nota

tions [f]1 and [f]2 represent the values of any field f on P0, calculated
and moments (20) acting on the ends. This problem has been trea
ted in [23, Section 3.6], and the exact solution is expressed in terms
of the solutions to some auxiliary plane strain problems. Let us de
note by uð1Þa ; uð2Þa and uð3Þa the solutions of the 3 plane strain prob
lems Pð1Þ; Pð2Þ and Pð3Þ respectively, formulated on the domain
R = S1 [ S2 [ C0 by

PðcÞ : tðcÞba;bþðk
ðqÞxcÞ;a 0 in Sq; tðcÞba n	b kðqÞxcn	a on Cq;

uðcÞa


 �
1 uðcÞa


 �
2; tðcÞba

h i
1
n0

b tðcÞba

h i
2
n0

bþðk
ð2Þ kð1ÞÞxcn0

a on C0;

Pð3Þ : tð3Þba;bþkðqÞ;a 0 in Sq; tð3Þba n	b kðqÞn	a on Cq;

uð3Þa


 �
1 uð3Þa


 �
2; tð3Þba

h i
1
n0

b tð3Þba

h i
2
n0

bþðk
ð2Þ kð1ÞÞn0

a on C0: ð43Þ

We also introduce the function u(x1,x2) which is the solution of
the boundary value problem

ðlðqÞu;aÞ;a lðqÞ;1 x2 lðqÞ;2 x1 in Sq;
@u
@n	

x2n	1 x1n	2 on Cq;

½u�1 ½u�2; lð1Þ @u
@n0

� 

1

lð2Þ @u
@n0

� 

2
þðlð1Þ lð2ÞÞ x2n0

1 x1n0
2

� �
on C0:

ð44Þ

Comparing the solution of the extension bending torsion problem
in the direct approach given in Section 3.2 with the solution of
the corresponding three dimensional problem presented in [23,
Section 3.6], we deduce (in the same manner as in Section 4.1)
the following expressions for the constitutive coefficients

A3

X2

q 1

Z
Sq

ðkðqÞ þ 2lðqÞ þ kðqÞuð3Þc;cÞdx1dx2; B13 B23 0;

B31

X2

q 1

Z
Sq

x2 kðqÞ þ 2lðqÞ þ kðqÞuð3Þc;c

� �
dx1dx2;

B32

X2

q 1

Z
Sq

x1 kðqÞ þ 2lðqÞ þ kðqÞuð3Þc;c

� �
dx1dx2;

C1

X2

q 1

Z
Sq

x2 ðkðqÞ þ 2lðqÞÞx2 þ kðqÞuð2Þc;c

h i
dx1dx2;

C2

X2

q 1

Z
Sq

x1 ðkðqÞ þ 2lðqÞÞx1 þ kðqÞuð1Þc;c

h i
dx1dx2;

C12

X2

q 1

Z
Sq

x1 ðkðqÞ þ 2lðqÞÞx2 þ kðqÞuð2Þc;c

h i
dx1dx2;

C3

X2

q 1

Z
Sq

lðqÞ x1ðx1 þu;2Þ þ x2ðx2 u;1Þ
h i

dx1dx2;

ð45Þ

where the functions uðkÞa ðx1; x2Þ are determined by (43) and u(x1,x2)
is given by (44).



Remarks

1. The above results (45) also hold when the distribution of the
material in the beam is such that the separation curve C0 is a
closed curve included in R, see Fig. 2b. In this case we have

Section 5 and compare with the results of [23, Section 4.11], then we
obtain the following expressions for the effective stiffness
coefficients

A3

X2 Z
cðqÞ þ cðqÞuð3Þ þ cðqÞuð3Þ
� �

dx1dx2; B13 B23 0;

problem of shear vibrations of rectangular rods formulated in Sec
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C1 = @R, C2 = ;, oS1 = C1 [ C0, @S2 = C0, and the boundary value
problems (43), (44) keep the same forms.

2. The results of this section can be extended to the case when the
beam B is composed of n (n P 2) non homogeneous and isotro
pic materials with different mechanical properties.

6. Orthotropic and non-homogeneous materials

Let us consider next beams and rods made of orthotropic and
non homogeneous materials. The three dimensional constitutive
equations for such materials are

t	11 ¼ c11e	11þc12e	22þ c13e	33; t	22 ¼ c12e	11þ c22e	22þc23e	33;

t	33 ¼ c13e	11þc23e	22þ c33e	33; t	23 ¼2c44e	23; t	31 ¼2c55e	31;

t	12 ¼2c66e	12; ð46Þ

where the constitutive coefficients cij depend on (x1,x2) 2 R.
Our aim is to determine the effective stiffness coefficients from

the direct approach in terms of cij(x1,x2). In this purpose, we con
sider the extension, bending and torsion of the beam B due to
the terminal loads (20).This three dimensional problem has been
solved in [23, Section 4.11], with the help of some auxiliary plane
strain problems defined on the domain R, which are recorded be
low. We designate by uðkÞa ðx1; x2Þ the solutions of the plane strain
problems QðkÞ; k 1;2;3, given by

QðcÞ : tðcÞba;b þ ðca3xcÞ;a 0 in R; tðcÞba n	b ca3xcn	a on @R;

Qð3Þ : tð3Þba;b þ ca3;a 0 in R; tð3Þba n	b ca3n	a on @R:

ð47Þ

The subscript a = 1, 2 is not summed in the relations (47). The tor
sion function u(x1,x2) is determined by the boundary value
problem

ðc55u;1Þ;1 þ ðc44u;2Þ;2 c55;1x2 c44;2x1 in R;

c55u;1n	1 þ c44u;2n	2 c55x2n	1 c44x1n	2 on @R:
ð48Þ

By identification of the three dimensional solution from [23, Sec
tion 4.11], with the solution (17) (19) in the direct approach we
get the following effective stiffness coefficients

A3 hc33 þ c13uð3Þ1;1 þ c23uð3Þ2;2i;
B13 B23 0;

B31 hx2ðc33 þ c13uð3Þ1;1 þ c23uð3Þ2;2Þi;

B32 hx1ðc33 þ c13uð3Þ1;1 þ c23uð3Þ2;2Þi;

C1 hx2ðc33x2 þ c13uð2Þ1;1 þ c23uð2Þ2;2Þi;

C2 hx1 c33x1 þ c13uð1Þ1;1 þ c23uð1Þ2;2

� �
i;

C12 hx1 c33x2 þ c13uð2Þ1;1 þ c23uð2Þ2;2

� �
i;

C3 hc44x1ðx1 þu;2Þ þ c55x2ðx2 u;1Þi: ð49Þ

In view of the identifications (49) one can show that the fields u, wa,
w, N and M corresponding to the solutions in the two approaches
coincide.

Remark. This method can be applied also for beams composed of
two different orthotropic materials. Using the notations introduced
in the beginning of Section 5, we assume that the non homogeneous
orthotropic material which occupies the domain Bq has the consti
tutive coefficients cðqÞij ðx1; x2Þ. If we employ the same procedure as in
q 1 Sq
33 13 1;1 23 2;2

B31

X2

q 1

Z
Sq

x2 cðqÞ33 þ cðqÞ13 uð3Þ1;1 þ cðqÞ23 uð3Þ2;2

� �
dx1dx2;

B32

X2

q 1

Z
Sq

x1 cðqÞ33 þ cðqÞ13 uð3Þ1;1 þ cðqÞ23 uð3Þ2;2

� �
dx1dx2;

C1

X2

q 1

Z
Sq

x2 cðqÞ33 x2 þ cðqÞ13 uð2Þ1;1 þ cðqÞ23 uð2Þ2;2

� �
dx1dx2;

C2

X2

q 1

Z
Sq

x1ðcðqÞ33 x1 þ cðqÞ13 uð1Þ1;1 þ cðqÞ23 uð1Þ2;2Þdx1dx2;

C12

X2

q 1

Z
Sq

x1 cðqÞ33 x2 þ cðqÞ13 uð2Þ1;1 þ cðqÞ23 uð2Þ2;2

� �
dx1dx2;

C3

X2

q 1

Z
Sq

cðqÞ44 x1ðx1 þu;2Þ þ cðqÞ55 x2ðx2 u;1Þ
h i

dx1dx2;

ð50Þ

where uðkÞa ðx1; x2Þ; k 1;2;3, are the solutions of the three plane
strain problems

tðcÞba;b þ cðqÞa3 xc

� �
;a

0 in Sq; tðcÞba n	b cðqÞa3 xcn	a on Cq;

uðcÞa


 �
1 uðcÞa


 �
2; tðcÞba

h i
1
n0

b tðcÞba

h i
2
n0

b þ cð2Þa3 cð1Þa3

� �
xcn0

a on C0;

ð51Þ

tð3Þba;b þ cðqÞa3;a 0 in Sq; tð3Þba n	b cðqÞa3 n	a on Cq;

uð3Þa


 �
1 uð3Þa


 �
2; tð3Þba

h i
1
n0

b tð3Þba

h i
2
n0

b þ cð2Þa3 cð1Þa3

� �
n0

a on C0:

ð52Þ

In the relations (51) and (52) the subscript a = 1, 2 is not summed.
The torsion function u(x1,x2) appearing in (50) is the solution of the
following boundary value problem

cðqÞ55 u;1

� �
;1
þ cðqÞ44 u;2

� �
;2

cðqÞ55;1x2 cðqÞ44;2x1 in Sq;

cðqÞ55 u;1n	1þcðqÞ44 u;2n	2 cðqÞ55 x2n	1 cðqÞ44 x1n	2 on Cq; ½u�1 ½u�2on C0;

cð1Þ55 u;1n0
1þ cð1Þ44 u;2n0

2

h i
1

cð2Þ55 u;1n0
1þ cð2Þ44 u;2n0

2

h i
2

þ cð1Þ55 cð2Þ55

� �
x2n0

1 cð1Þ44 cð2Þ44

� �
x1n0

2 on C0: ð53Þ

The relations (50) for the constitutive coefficients are valid also in
the case when C0 is a closed curve included in R. Moreover, these
formulas can be extended to the case of beams composed of n dif
ferent orthotropic materials (n P 2).

6.1. Transverse shear stiffness

To determine the transverse shear stiffness coefficients A1, A2

and A12 for orthotropic non homogeneous rods, we consider the
tion 4.2. Assume that q	 has a symmetrical distribution in the x1

direction: q	(x1,x2) = q	( x1,x2).
We search for a solution in the form (31). Then the boundary

conditions (30) are satisfied and the equations of motion reduce to

c55ðx1; x2Þ
p
a

cos
p
a

x1

� �
x2
Z x1

a=2
q	ðx1; x2Þ sin

p
a

x1

� �
dx1



Inserting here the relation (33) and integrating over R we find the
lowest natural frequency

x2 p
a

� �2 hc55ðx1; x2Þi
hq	ða; x2Þi

: ð54Þ

Remark. In the case of a homogeneous isotropic rod, i.e. when E is
also constant, from (59) and (5) we obtain the well known
formulas

A3 EAreaðRÞ; C1 Ehx2
2i; C2 Ehx2

1i; C12 0;

5. The cross section of the rod is decomposed as R S1 [ S2, wheren o � 	
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On the other hand, we solve the same problem by the direct ap
proach and we find the rod’s natural frequency �x given by (37).
We identify x �x and from relations (37) and (54) we obtain

A1 k
hc55ihq	x2

1iAreaðRÞ
hq	ða; x2Þihx2

1i
; A12 0: ð55Þ

To determine A2, one can proceed analogously in the x2 direction.

Remarks

1. If we admit the approximation (40) then we deduce

A1 khc55i
hq	x2

1iAreaðRÞ
hq	ihx2

1i
;

A2 khc44i
hq	x2

2iAreaðRÞ
hq	ihx2

2i
: ð56Þ

2
where p
12 stands for the value of the factor k. In most cases, these

formulas are applicable for orthotropic non homogeneous rods
with arbitrary cross section properties (not necessarily rectan
gular or symmetrical).

2. Consider the case of non homogeneous rods composed of two
different orthotropic materials: in the region Bc of the body
we have the mass density q(c)(x1,x2) and the constitutive coef
ficients cðcÞij ðx1; x2Þ; c 1;2. Eqs. (55) and (56) for transverse
shear stiffness coefficients remain valid also in this case, with
the specifications

hciji
X2

c 1

Z
Sc

cðcÞij dx1dx2; hq	i
X2

c 1

Z
Sc

qðcÞdx1dx2;

hq	x2
ai

X2

c 1

Z
Sc

qðcÞx2
adx1dx2:

ð57Þ
The
posed

7. Spe
extension of formulas (56) and (57) to the case of rods com
of n orthotropic materials is also possible.

cial cases and examples
7.1. Non homogeneous rods with constant Poisson ratio

Let us consider the case when the rod is made of an isotropic
material with constant Poisson ratio m. The Young’s modulus E is
an arbitrary function of (x1,x2) and the shape of cross section R
is arbitrary. This type of material is of practical interest and it
has been studied in many works, see e.g. [41]. In this case the solu
tions uðkÞa ðx1; x2Þ of the problems DðkÞ; k 1;2;3, defined by (21)
have a simple form

uð1Þ1
1
2
m x2

1 x2
2

� �
; uð1Þ2 mx1x2;

uð2Þ1 mx1x2; uð2Þ2
1
2
m x2

1 x2
2

� �
; uð3Þ1 mx1; uð3Þ2 mx2:

ð58Þ

Then, from (29) we obtain the following expressions for the effec
tive stiffness coefficients

A3 hEðx1;x2Þi; C12 hx1x2Eðx1;x2Þi; C1 hx2
2Eðx1;x2Þi;

C2 hx2
1Eðx1;x2Þi; B31 hx2Eðx1;x2Þi; B32 hx1Eðx1;x2Þi; Ba3 0: ð59Þ

The constitutive coefficients C3, A1, A2 and A12 keep the same form
as in the general case, given by (29)1 and (38).
Ba3 B3a 0:

In view of (29)1 the torsional rigidity C3 for simply connected cross
sections is given by

C3 2lh/ðx1; x2Þi with D/ 2 in R; / 0 on @R:

The effective transverse shear coefficients are given by (39). The
above expressions of the effective stiffness coefficients for homoge
neous and isotropic directed curves have been presented in [20,21].

7.2. Circular rod composed of two materials

For rods composed of two different isotropic and non homoge
neous materials we use the notations and developments of Section
S1 ðx1; x2Þja2 < x2
1 þ x2

2 < b2 and S2 ðx1; x2Þjx2
1 þ x2

2 < a2 .
The first material occupies the region S1 � (0, l) and has the Lamé
moduli

kð1Þðx1; x2Þ k0r m; lð1Þðx1; x2Þ l0r m;

r x2
1 þ x2

2

q
; ðx1; x2Þ 2 S1; ð60Þ

where m > 0, k0 and l0 are constants. This kind of inhomogeneity
has been investigated in many works, e.g. [41,42]. We denote by
m0

k0
2ðk0þl0Þ

and E0
l0ð3k0þ2l0Þ

k0þl0
. The second material occupies the re

gion S2 � (0, l) and its elastic properties are described by

Eð2Þðx1; x2Þ EðrÞ; mð2Þðx1; x2Þ m0ðconstantÞ;
ðx1; x2Þ 2 S2; ð61Þ

where E(r) is an arbitrary given function of r.
In order to use the results presented in Section 5 we have to

solve the plane strain problems PðkÞ given by (43) and the bound
ary value problem (44) for the torsion function. In our case, we ob
serve that these problems admit the following solutions

uð1Þ1 uð2Þ2
1
2
m0ðx2

2 x2
1Þ; uð1Þ2 uð2Þ1 m0x1x2;

uð3Þa m0xa: ð62Þ

Inserting these functions into the general results (45) we find the
effective stiffness coefficients for this compound rod

C3
p

1þm0

Z a

0
r3EðrÞdrþ2pl0dm; A3 2p

Z a

0
rEðrÞdrþE0cm

� �
;

C1 C2 p
Z a

0
r3EðrÞdrþE0dm

� �
; C12 0; B3a Ba3 0;

ð63Þ

where we have denoted by cm and dm the expressions

cm

a2 m b2 m

m 2 for m – 2
logðb=aÞ for m 2

(
; dm

a4 m b4 m

m 4 for m – 4
logðb=aÞ for m 4

(
:

ð64Þ

Let us find also the transverse shear stiffness coefficients A1 and A2.
Assume that the mass density function q	(x1,x2) is given by

q	ðx1; x2Þ
q	0r m for ðx1; x2Þ 2 S1

qðrÞ for ðx1; x2Þ 2 S2

�
; ð65Þ

where q	0 > 0 is a constant and q(r) is an arbitrary function. Then,
using the results (56), (57) specialized for isotropic materials we
find the expressions



A1 A2
p3

6b2

Z a

0

rEðrÞ
1þ m0

dr þ 2l0cm

� � Z a

0
r3qðrÞdr þ q	0dm

� �
�

Z a

0
rqðrÞdr þ q	0cm

� � 1

: ð66Þ

the case of plates in [43,44]. To express the Young modulus E of
the foam we use the formula indicated by Gibson and Ashby [25]

Eðx1Þ Es
qðx1Þ
qs

� �j

; ð74Þ
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7.3. Orthotropic circular rod

Let us consider an orthotropic rod with cross section
R ðx1; x2Þjx2

1 þ x2
2 < a2

� 	
. We assume that the constitutive coeffi
cients satisfy
cij c	ije
rr ; r x2

1 þ x2
2

q
; ð67Þ

where r > 0 and c	ij are constants. Let us introduce the notations

E0 E	0e rr ; E	0 c	33 c	13m
	
1 c	23m

	
2;

m	1
c	13c	22 c	23c	12

d	1
; m	2

c	23c	11 c	13c	12

d	1
; d	1 c	11c	22 c	12

� �2
:

ð68Þ

The solutions uðkÞa ðx1; x2Þ of the problems QðkÞ given by (47) are in
this case

uð1Þ1
1
2

m	1x2
1 m	2x2

2

� �
; uð1Þ2 m	2x1x2;

uð2Þ1 m	1x1x2; uð2Þ2
1
2

m	1x2
1 m	2x2

2

� �
;

uð3Þ1 m	1x1; uð3Þ2 m	2x2;

ð69Þ

while the torsion function u(x1,x2) which solves the boundary va
lue problem (48) is

uðx1; x2Þ
c	55 c	44

c	44 þ c	55
x1x2: ð70Þ

Thus, in view of (49) and (69) and (70) we find the effective stiffness
coefficients

C3
4pc	44c	55

c	44 þ c	55

Z a

0
r3e rrdr; A3 2pE	0

Z a

0
re rrdr;

C1 C2 pE	0

Z a

0
r3e rrdr; C12 0; B3a Ba3 0:

ð71Þ

Assume that the mass density of the rod is of the form
q	ðx1; x2Þ q	0e rr , where q	0 > 0 is constant. Then, from relations
(56) we obtain the effective transverse shear stiffness coefficients

A1
p3

3
c	55

a2

Z a

0
r3e rrdr; A2

p3

3
c	44

a2

Z a

0
r3e rrdr: ð72Þ

8. Functionally graded beams made of metal foams

8.1. Distribution of the material properties
The mechanical properties of cellular solids have been pre

sented in the books [25,43]. In this section we analyze rectangular
beams made of metal foams.

The cross section domain is given by
R ðx1; x2Þjx1 2 h

2 ;
h
2

� �
; x2 2 b

2 ;
b
2

� �� 	
. We consider that the porous

material is functionally graded in the x1 direction, such that the mass
density q of the foam is given as a function of x1 by the power law

qðx1Þ qm þ ðqs qmÞ
2jx1j

h

� �N

; ð73Þ

where qs is the density of the bulk (matrix) material, qm is the min
imum value of the density of the foam, and N is an exponent. This
type of functionally graded porous materials has been studied in
where Es is the Young modulus of the bulk material. In what follows,
we consider closed cell aluminum foams, for which the exponent j
is given by j = 2, and the Poisson ratio is assumed to be constant
with the value m = 0.3 [25]. Let us denote by Gs

Es
2ð1þmÞ the shear

modulus of the bulk material. The variations of q and E as functions
of x1, as given in (73) and (74), are depicted in Fig. 3 for several val
ues of the exponent N.

Let us calculate the effective stiffness coefficients for this func
tionally graded porous beam. Since the Poisson ratio is assumed
constant, we can use the relation (59), in conjunction with (73)
and (74), to derive the extensional and bending stiffness
coefficients

A3 bhEs r2 þ 2
N þ 1

rð1 rÞ þ 1
2N þ 1

ð1 rÞ2
� 


; B3a Ba3 0;

C1
b3h
12

Es r2 þ 2
N þ 1

rð1 rÞ þ 1
2N þ 1

ð1 rÞ2
� 


; C12 0;

C2
bh3

12
Es r2 þ 6

N þ 3
rð1 rÞ þ 3

2N þ 3
ð1 rÞ2

� 

;

ð75Þ

where we denote by r the ratio r qm
qs

. The effective shear stiffness
can be calculated from the relations (38). We insert the expression
for q from (73) into (38) and obtain

A2 kbhGs r2þ 2
Nþ1

rð1 rÞþ 1
2Nþ1

ð1 rÞ2
� 


;

A1 kbhGs
ðbhÞqs

hqðaðx1ÞÞi
rþ 3

Nþ3
ð1 rÞ

� 

� r2þ 2

Nþ1
rð1 rÞþ 1

2Nþ1
ð1 rÞ2

� 

; ð76Þ

where, according to (33), hq(a(x1))i is given by

hqðaðx1ÞÞi
pb
h

Z h
2

h
2

cos
px1

h

� � 1 Z x1

h
2

qðfÞ sin
pf
h

dfdx1: ð77Þ

Using the expression (73) in (77) and making some mathematical
calculations, we get

hqðaðx1ÞÞi bhqs r þ 1 r
N þ 1

þ ð1 rÞJN

� 

; ð78Þ

where we have denoted by

JN
2
p

� �Nþ1

pNð0Þ pN
p
2

� �
þ
Z p

2

0
ðcosxÞ 1 pN

p
2

� �
pNðxÞsinx

� �
dx

" #
:

In the last relation, the polynomial function pN(x) is given by

pNðxÞ NxN 1 NðN 1ÞðN 2ÞxN 3þNðN 1Þ ðN 4ÞxN 5Pm
i 0
ð 1ÞiNðN 1Þ ðN 2iÞxN 2i 1; p1ðxÞ 1; p2ðxÞ 2x;

where m N 1
2


 �
is the greatest integer not exceeding N 1

2 .
Finally, if we substitute (78) into (76)2 we find

A1 kbhGs
rþ 3

Nþ3ð1 rÞ

rþ 1
Nþ1þ JN

� �
ð1 rÞ

r2þ 2
Nþ1

rð1 rÞþ 1
2Nþ1

ð1 rÞ2
� 


: ð79Þ

The formula (79) represent the ‘exact’ expression for the effective
shear stiffness, calculated on the basis of (38). On the other hand,
if we employ the ‘approximate’ relation (41) instead of (38), then
we deduce the following simplified (approximate) expression for A1



eA1 kbhGs

�
r þ 3

Nþ3 ð1 rÞ
r þ 1

Nþ1 ð1 rÞ
r2 þ 2

N þ 1
rð1 rÞ þ 1

2N þ 1
ð1 rÞ2

� 

:

ð80Þ

compare the analytical solutions with the results obtained by a fi
nite element analysis.

8.2. Cantilever beams
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Fig. 3. The distributions of density q and Young modulus E for different values of N. For the aluminum foam we take qm 500 kg m 3; qs 2700 kg m 3; Es 70 GPa, and
the thickness h = 0.05 m.

(a) (b)
Fig. 4. (a) Cantilever beam with uniform distributed load q. (b) Cantilever beam with concentrated end force P.

Fig. 5. Cross-section of the FGM beam and distribution of Young’s modulus.
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Let us use the effective stiffness coefficients for FGM porous beams
determined previously to solve some bending problems and
Consider a cantilever beam made of functionally graded
closed cell aluminum foam subject to bending and shear under



the following loads: (a) uniformly distributed force q acting in the
x1 direction; or (b) concentrated end force P acting in the x1 direc
tion. We denote by l the length of the beam (see Fig. 4).

The analytical solutions of these problems can easily be derived
from the one dimensional governing differential equations of di

For the problems presented here a number of 64 or 128 layers is
sufficient. The calculation has been performed using 3D shell ele
ments and very dense mesh. The finite elements have been taken
square, with one element per layer thickness.

We denote by dFEM the maximum deflection calculated by finite

Table 1
Comparison of results for cantilever FGM beam with uniform load.

N 1 2 3 4 5 6 7 8 9 10

dFEM (mm) 26.316 34.825 42.818 50.406 57.649 64.581 71.223 77.591 83.699 89.557
dexact (mm) 26.129 34.471 42.410 50.025 57.358 64.435 71.276 77.896 84.308 90.523
dapprox (mm) 26.097 34.407 42.317 49.907 57.218 64.276 71.100 77.705 84.105 90.309
D (%) 0.716 1.027 0.962 0.762 0.507 0.227 �0.074 �0.393 �0.728 �1.079

1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5
Exact theoretical model
Approximate theoretical model

Fig. 6. Error D in terms of the exponent N, for the maximum deflection of a
cantilever FGM beam with uniform load.
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Fig. 7. Error D in terms of the exponent N, for the maximum deflection of a
cantilever FGM beam with end load.

Fig. 8. Three-point bending of a FGM beam.
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rected rods presented in Section 3. For the maximum deflection d
of the beam we obtain the well known relations

d
ql2

2
1
A1
þ l2

4C2

 !
for uniformly distributed force q;

d Pl
1
A1
þ l2

3C2

 !
for concentrated end force P;

ð81Þ

where the values of the effective shear stiffness A1 and bending
stiffness C2 for FGM porous beams are given by (79) (or the approx
imate form (80)) and (75), respectively. The theoretical predictions
(81) will be compared with numerical solutions obtained by the fi
nite element method.

The cross section of the beam has the dimensions h = 50 mm
and b = 50 mm (see Fig. 5), the length is l = 1 m, and the closed cell
aluminum foam is characterized by the material parameters
qm 500 kg m 3; qs 2700 kg m 3; Es 70 GPa. We have calcu
lated the maximum deflection of the beam numerically, using the
software ABAQUS. To describe its functionally graded structure, the
beam domain has been divided into layers orthogonal to the x1

direction. Each layer is assumed to have constant material param
eters E and q, which satisfy the power laws (73) and (74) stepwise.

Table 2
Comparison of results for cantilever FGM beam with concentrated end load.

N 1 2 3 4 5

dFEM (mm) 69.920 91.856 112.927 133.158 1

dexact (mm) 69.600 91.803 112.935 133.206 152.7
dapprox (mm) 69.536 91.675 112.750 132.970 152.4
D (%) 0.460 0.058 �0.007 �0.036 �0.14
element analysis, let dexact be the theoretical value of the maximum
deflection given by (81) with the exact formula (79) for A1, and
dapprox be the theoretical value given by (81) with the approximate
formula (80). We calculate the relative error D by the relation

D
dFEM dexact

minðdFEM; dexactÞ
:

6 7 8 9 10

99 171.107 189.044 206.355 223.076 239.238

26 171.567 189.779 207.405 224.477 241.027
46 171.248 189.428 207.024 224.071 240.599
9 �0.269 �0.389 �0.509 �0.628 �0.748



(a) For the bending of cantilever beam by uniformly distributed
force q 5 kN m 1, we have employed 64 layers. The com
parison of the results is presented in Table 1, for the values

between 0.7% and 0.5%. Fig. 7 presents the percentage of
relative error, for the exact and approximate solutions, with
respect to the numerical one.

From Figs. 6 and 7 we notice that the exact theoretical model gi

Table 3
Comparison of results for FGM beam in three-point bending.

N 1 2 3 4 5 6 7 8 9 10

dFEM (mm) 4.476 5.972 7.356 8.660 9.900 11.088 12.230 13.329 14.389 15.412
dexact (mm) 4.393 5.804 7.147 8.435 9.674 10.870 12.024 13.141 14.223 15.270
dapprox (mm) 4.377 5.773 7.101 8.376 9.604 10.790 11.937 13.046 14.121 15.163
D (%) 1.889 2.895 2.924 2.667 2.336 2.006 1.713 1.431 1.167 0.930

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4
Exact theoretical model
Approximate theoretical model

Fig. 9. Error D in terms of the exponent N, for the maximum deflection of a FGM
beam in three-point bending.
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of the exponent N = 1, 2, . . ., 10. We can observe a very good
agreement between the analytical and the numerical results,
since the errors range between 1% to 1%. The percentage of
relative error D is plotted in Fig. 6, in terms of the exponent N.

(b) For the bending of the beam by a concentrated end force
P = 5 kN, we have employed 128 layers. The concentrated
force has been divided into equal parts acting in the nodes
along the whole edge of the beam. This procedure reduces
the concentration of stress in the numerical solution. The
comparison between the analytical and the finite element
solutions is shown in Table 2. The errors D are very small:
Fig. 10. Deflection of the FGM beam under three-point bending: numeric
ven by (79) is slightly better than the approximate one (in the least
square sense). Moreover, we see that the approximate theoretical
model (80) yields results in good agreement with the numerical
and exact solutions, and it has the advantage of simplicity.

8.3. Three point bending of functionally graded beam

Let us consider the functionally graded beam described previ
ously in relations (73) (80) subjected to three point bending. A
concentrated central force P = 5 kN acts at the mid span of the
beam (x3 = l/2) in the x1 direction, and the end edges x3 = 0, l are
simply supported, see Fig. 8. The analytical solution of this bending
problem can be derived from the equations given in Section 3. For
the maximum deflection d of the beam, we get

dexact
Pl
4

1
A1
þ l2

12C2

 !
; dapprox

Pl
4

1eA1

þ l2

12C2

 !
; ð82Þ

where the effective bending stiffness C2 is given by (75), while the
effective shear stiffness A1 has the exact expression (79), and eA1 is
the approximate form (80).

To obtain the maximum deflection dFEM by a finite element
analysis, we use 128 layers to divide the beam domain. Table 3
shows the comparison of the theoretical and numerical solutions,
together with the relative error D. In Fig. 9 we plot the relative er
ror with respect to the numerical solution, for N = 1, . . ., 10. We ob
serve that the errors range between 0.9% and 2.9%, depending on
the value of N.

The shape of the beam in the deformed configuration is de
picted in Fig. 10 for N = 1, 5, 10, in both numerical and theoretical
approaches. The results are in very good agreement, so that the
curves for the analytical and numerical solutions are very close
in Fig. 10. Indeed, according to Table 3, the relative errors for the
al and analytical results, for the values of the exponent N = 1, 5, 10.



maximum deflections d for N=1, 5, 10, are 1.8%, 2.3%, and respec
tively 0.9%.

Let us present some results about the stress state in the FGM
beam. For the cross section of the beam characterized by the axial
coordinate x3 = l/4, the distributions of the normal stress t	33 and

(56), and the effective bending stiffness, extensional stiffness, tor
sional rigidity and coupling coefficients are given by (50).

In Section 7 we apply these general formulas to determine the
effective stiffness properties of some special functionally graded
beams, such as orthotropic beams with exponential distribution

Fig. 11. Distribution of normal and shear stresses in the cross-section of the FGM beam, for x3 = l/4.
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shear stress t	31 versus the thickness coordinate x1 are obtained
by the finite element analysis and depicted in Fig. 11.

On the other hand, the analytical solution of this three point
bending problem in the direct approach yields the following trans
versal force Q1 and bending moment L1, calculated at the axial
coordinate x3 = l/4:

Q 1
P
2
; L1

Pl
8
: ð83Þ

According to (14)7,9, the correspondence between Q1, L1 and the
three dimensional stress state is given by

Q 1 b
Z h

2

h
2

t	31dx1; L1 b
Z h

2

h
2

x1t	33dx1: ð84Þ

Then, we can compare the theoretical predictions (83) with the
numerical solution in the form of the resultants (84). As expected,
the agreement between the two approaches is very good: for the
bending moment L1 the relative error is in the range 0.005
0.007%; for the transversal force Q1 the relative error is about
0.00003% (for every exponent N = 1, . . . ,10).

9. Conclusions

In this paper we have employed the theory of directed curves to
investigate the mechanical behavior of non homogeneous, com

posite, and functionally graded beams. The structure of the consti

[2] Svetlitsky VA. Statics of rods. Berlin: Springer; 2000.
tutive tensors and the form of the linear constitutive equations
have been established in Sections 2, 3, and are presented in the
relations (6) and (13). We determine the effective stiffness coeffi
cients via comparison with three dimensional elasticity static
and free vibration solutions in Sections 4 6. Thus, for non homo
geneous isotropic beams we find the formulas (29) and (38), while
for composite beams made of two different materials we have the
effective stiffness properties (45). For orthotropic non homoge
neous beams, the effective shear stiffness is expressed by (55),
law, or composite circular beams with power law distribution of
material properties.

In Section 8 we consider rectangular functionally graded beams
made of metal foams. Using the Gibson Ashby formula (74) for the
Young modulus of closed cell aluminum foams, combined with the
power law distribution of mass density (73), we find the effective
stiffness coefficients in the form (75) and (79). In view of these re
sults, we deduce the analytical beam like solutions for the bending
of a FGM cantilever beam subjected to uniform and end loadings in
Section 8.2, and for a FGM beam in three point bending in Section
8.3. The theoretical predictions are in good agreement with numer
ical results obtained by a finite element analysis.

This comparison with finite element solutions represents a val
idation of our analytical modeling concerning the effective stiffness
properties of FGM beams. Nevertheless, our approach is much
more general and it can be used to analyze the mechanical proper
ties of various functionally graded rods, with different geometrical
and material characteristics.
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