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The vertex-colouring {a, b}-edge-weighting problem is NP-complete for every pair of weights
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Let G be a graph. From an edge-weighting w : E(G) → {a, b} of G such that a and b are two distinct real numbers, one obtains a vertex-colouring χ w of G defined as χ w (u) = v∈N (u) w(uv) for every u ∈ V (G). If χ w is a proper colouring of G, i.e. two adjacent vertices of G receive distinct colours by χ w , then we say that w is vertex-colouring. We investigate the complexity of the problem of deciding whether a graph admits a vertex-colouring edge-weighting taking values among a given pair {a, b}, which is already known to be NP-complete when {a, b} is either {0, 1} or {1, 2}. We show this problem to be NP-complete for every pair of real weights.

Introduction

Let G be a graph. An edge-weighting w : E(G) → W of G is obtained by associating a weight from W with each edge of G, where W ⊂ R. To make the values assigned by w to the edges of G visible, we also say that w is a W -edge-weighting of G. In the case where W = {1, 2, ..., k} for some integer k, we call w a k-edge-weighting of G.

Assume w is an edge-weighting of G. From w, one deduces a vertexcolouring χ w of G where χ w (u) = v∈N (u) w(uv) for every vertex u of G. In other words, the colour of u by χ w is the sum of its incident colours by w. We call χ w (u) the weighted degree of u (by w). If χ w is proper, i.e. for every pair {u, v} of adjacent vertices in G we have χ w (u) = χ w (v), then we say that w is vertex-colouring.
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In 2004, Karoński, Luczak and Thomason raised the following famous conjecture on vertex-colouring edge-weightings of graphs [START_REF] Karoński | Edge weights and vertex colours[END_REF].

1-2-3 Conjecture. Every graph with no isolated edge admits a vertexcolouring 3-edge-weighting.

As a first result towards the 1-2-3 Conjecture, Karoński, Luczak and Thomason proved that there is a set W of 183 real weights such that any graph with no isolated edge admits a vertex-colouring W -edge-weighting [START_REF] Karoński | Edge weights and vertex colours[END_REF]. Since then, many refinements of this result have been introduced. The result which is the closest from the 1-2-3 Conjecture so far is due to Kalkowski, Karoński and Pfender, who proved that every graph with no isolated edge admits a vertex-colouring 5-edge-weighting [START_REF] Kalkowski | Vertex-coloring edgeweightings: Towards the 1-2-3 conjecture[END_REF]. The interested reader may refer to [START_REF] Seamone | The 1-2-3 conjecture and related problems: a survey[END_REF] for an up-to-date survey on vertex-colouring edge-weightings of graphs.

Consider now the following problem arising from the definitions above.

Vertex-Colouring {a, b}-Edge-Weighting -{a, b}-VCEW Instance: A graph G. Question: Does G admit a vertex-colouring {a, b}-edge-weighting?

The problem {a, b}-VCEW is clearly in NP no matter what are a and b. It was proved by Dudek and Wajc that 0, 1-VCEW and 1 -2-VCEW are NP-complete [START_REF] Dudek | On the complexity of vertex-coloring edgeweightings[END_REF]. They additionally suggested that their hardness reduction could be generalized to prove that {a, b}-VCEW is NP-complete whenever a and b are two distinct rational numbers. However, they did not give any formal proof of this statement. The problem {1, 2}-VCEW is also known to be NP-complete when restricted to cubic graphs [START_REF] Ahadi | Algorithmic complexity of proper labeling problems[END_REF].

In this paper, we prove that {a, b}-VCEW is NP-complete for every pair {a, b} of real weights. We proceed as follows. We first introduce, in Section 3, a hardness reduction framework for showing that some edgecolouring problems are NP-complete by reduction from the well-known SAT problem. A first implementation of this framework with specific gadgets leads, in Section 4, to a proof that {a, b}-VCEW is NP-complete whenever 0 ∈ {a, b} and b = -a. We then give two other implementations of our reduction framework in Sections 5 and 6 for showing that {a, 0}-VCEW and {a, -a}-VCEW are NP-complete, respectively.

Terminology and preliminary results

Before introducing the reduction framework, we first introduce some terminology and results that are used in further sections. Let G be a graph. Given a vertex u of G, we denote by d(u) the degree of u, i.e. the number of its neighbours in G. An input (resp. output) of G is an edge i = uv (resp. o = vu) such that d(u) = 1. Assuming G has x (resp. y) inputs (resp. outputs) ordered arbitrarily, we sometimes refer to these inputs (resp. outputs) as i 1 (G), ..., i x (G) (resp. o 1 (G), ..., o y (G)). Consider now two graphs G and H such that o and i are an output of G and an input of H, respectively. The connection of G and H along o and i is the graph obtained by taking the disjoint union of G and H, and then identifying the edges o and i. Assuming we are given a one-to-one correspondence φ from a set {o 1 , ..., o x } of x outputs of G to a set {i 1 , ..., i x } of x inputs of H, one can similarly define the connection of G and H along x inputs of G and x outputs of H where the resulting graph is obtained by identifying o j and φ(o j ) for every j ∈ {1, ..., x}. In this situation we say that G and H are connected along (o 1 , ..., o x ) and (φ(o 1 ), ..., φ(o x )). The inputs and outputs of any graph resulting from the connection of G and H are those of G and H which have not been used for the connection. This construction is depicted in Figure 1.
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Denote by G the graph obtained by connecting G and H along (o 1 , ..., o x ) and (i 1 , ..., i x ). Given a vertex-colouring W -edge-weighting w of G, an extension of w from G to G is a vertex-colouring W -edge-weighting w of G such that we have w (e) = w(e) for every edge e that originally belonged to G. Note in particular that if e is an edge resulting from the identification of o j and i j for some j ∈ {1, ..., x}, then we have w (e) = w(o j ).

Assume uv is an edge of G. Now consider a graph H such that H has two inputs u z and zv . According to the definitions above, we have d(u ) = d(v ) = 1. Besides, we have d(z) ≥ 2. By H-subdividing uv, we mean that we "replace" the edge uv with H. More precisely, we first remove the edge uv from G, then attach a new vertex u to u and one new vertex v to v (so that d(u ) = d(v ) = 1), and finally connect G and H along (uu , vv ) We now give several properties of vertex-colouring {a, b}-edge weightings.

Observation 2.1. Let P 4 denote the path u 1 u 2 u 3 u 4 of length 3. If w is a vertex-colouring {a, b}-edge-weighting of P 4 , then w(u 1 u 2 ) = w(u 3 u 4 ).

Proof. Suppose w(u 1 u 2 ) = a without loss of generality. Then u 2 u 3 can be either coloured a or b. In the first case, we have w(u 3 u 4 ) = b since otherwise we would have χ w (u 2 ) = χ w (u 3 ) = 2a. In the second case, we have w(u 3 u 4 ) = b since otherwise we would have

χ w (u 2 ) = χ w (u 3 ) = a + b
Suppose we have w(o) = a for an output o of some graph G. Then, by connecting G and u 1 u 2 u 3 u 4 along o and u 1 u 2 (which is similar to P 4subdividing o), we get that any extension of w from G to the resulting graph is such that w(u 3 u 4 ) = b by Observation 2.1. Therefore, P 4 -subdividing an output is an operation that can be used to "invert" the colour at some output of a graph by a vertex-colouring {a, b}-edge-weighting.

In the next result, we denote by m w (u) the multiset of colours incident with a vertex u by w. In other words, if x (resp. y) of the edges incident with u are coloured a (resp. b) by w, i.e. we have χ w (u) = xa + yb, then m w (u) contains the value a (resp. b) exactly x (resp. y) times. Lemma 2.2. Let u and v be two adjacent vertices of some graph G such that d(u) = d(v), and w be an {a, b}-edge-weighting of G.

If χ w (u) = χ w (v), then m w (u) = m w (v).
Proof. We clearly have χ w (u) = χ w (v) when m w (u) = m w (v). Now suppose that m w (u) = m w (v). Then, u and v are incident to x and x edges coloured a by w, respectively, and y and y edges coloured b, respectively. Besides, we have x = x and y = y since m w (u) = m w (v). Because d(u) = d(v), we have x + y = x + y . Since χ w (u) = χ w (v), we have xa + yb = x a + y b, and, because xx = 0, we get that a = b which is impossible by definition of an {a, b}-edge-weighting.

By Lemma 2.2, it follows that if u and v are two adjacent vertices of G such that d(u) = d(v), then we only have to check whether m w (u) = m w (v) while checking whether an edge-weighting w of G is vertex-colouring.

We now introduce the notion of replacement gadget. A replacement gadget R for a pair {a, b} of real weights is a graph with the following structural and colouring properties:

1. the graph R has two inputs i 1 (R) = uz and i 2 (R) = zv, and no output, 2. we have w(i 1 (R)) = w(i 2 (R)) for every vertex-colouring {a, b}-edgeweighting w of R,

3. there exist vertex-colouring {a, b}-edge-weightings of R such that i 1 (R) is coloured a, 4. there exist vertex-colouring {a, b}-edge-weightings of R such that i 1 (R) is coloured b,

5

. the weighted degree of z is x by every {a, b}-edge-weighting w of R such that w(i 1 (R)) = a, where x is some real number, 6. the weighted degree of z is y by every {a, b}-edge-weighting w of R such that w(i 1 (R)) = b, where y is some real number.

We refer to the vertex z as r(R) for convenience. To make the weighted degree of r(R) by all vertex-colouring {a, b}-edge-weightings of R apparent, we call R a (x, y)-replacement gadget.

Replacement gadgets may be used to reduce the number of conflicts by a non-vertex-colouring {a, b}-edge-weighting w of some graph G. Indeed, suppose that for an edge uv of G we have w(uv) = a and χ w (u) = χ w (v). To solve this local conflict, one way to proceed is to "replace" uv by a (x 1 , y 1 )-replacement gadget R for {a, b}, i.e. to R-subdivide uv, and then extend w to the resulting graph, i.e. to the edges of R, in such a way that w(i 1 (R)) = w(i 2 (R)) = a. Such an extension exists by the definition of a replacement gadget.

Clearly, the weighted degree of both u and v is not altered by the extension of w. Therefore, the only new possible conflicts which may arise are χ w (u) = x 1 or χ w (v) = x 1 . If such a situation occurs, then we reveal what is the weighted degree of one of u and v by w. By then repeating the procedure above but with a (x 2 , y 2 )-replacement gadget for {a, b} such that x 1 = x 2 , the possibilities for getting another conflict when extending w to the resulting graph are reduced. We catch this observation within the next lemma.

Lemma 2.3. Assume w is an {a, b}-edge-weighting of some graph G, and suppose we are given one (x 1 , y 1 )-, one (x 2 , y 2 )-and one (x 3 , y 3 )-replacement gadget R 1 , R 2 and R 3 for {a, b}, respectively, where the x i 's are distinct and the y i 's are distinct. If χ w (u) = χ w (v) for some edge uv of G, then there is a value of i ∈ {1, 2, 3} for which there is an extension of w to the graph resulting from the R i -subdivision of uv such that χ w (u) = χ w (r(R i )) and χ w (v) = χ w (r(R i )).

Proof. Suppose w(uv) = a. Start by R 1 -subdividing uv, and then extend w to the resulting graph in such a way that w(i 1 (R 1 )) = w(i 2 (R 1 )) = a. Such an extension exists by definition. If the claim is not verified, then χ w (u) = χ w (r(R 1 )) = x 1 without loss of generality. Start over from the original graph and colouring. Now, R 2 -subdivide uv before extending w to the resulting graph in such a way that w(i

1 (R 2 )) = w(i 2 (R 2 )) = a. Clearly we cannot have χ w (u) = χ w (r(R 2 )) since x 1 = x 2 . Thus, if the claim is still not verified, then χ w (v) = x 2 .
In this situation, repeat the same procedure a third time but with a R 3 -subdivision of uv. Now the claim has to be true since other we would have either χ w (u) = χ w (r(R 3 )) or χ w (v) = χ w (r(R 3 )), which is impossible since χ w (r(R 3 )) = x 3 , χ w (u) = x 1 , χ w (v) = x 2 , and x 1 , x 2 and x 3 are distinct.

Hence, assuming we are provided three sufficiently different replacement gadgets for {a, b}, by repeating the procedure used in the proof of Lemma 2.3 for every conflicting edge of G, i.e. every edge uv such that χ w (u) = χ w (v), we can deduce a graph which looks like G and which admits a vertex-colouring {a, b}-edge-weighting which looks like w.

Corollary 2.4. Assume w is an {a, b}-edge-weighting of some graph G on n vertices, and suppose we are given one (x 1 , y 1 )-, one (x 2 , y 2 )-, and one (x 3 , y 3 )-replacement gadget R 1 , R 2 and R 3 for {a, b}, respectively, where the x i 's are distinct and the y i 's are distinct. Then there is a combination of subdivisions of the edges of G involving the R i 's such that the resulting graph admits an extension of w which is vertex-colouring.

Proof. Suppose there are x < n 2 edges e 1 , ..., e x of G whose incident vertices have the same weighted degree by w. Consider each such edge e i = uv. Suppose w(e i ) = a without loss of generality. By Lemma 2.3, there is one replacement gadget R of R 1 , R 2 and R 3 for which we can R-subdivide e i and then extend w to the resulting graph in such a way that w(i 1 (R)) = w(i 2 (R)) = a, χ w (u) = χ w (r(R)) and χ w (v) = χ w (r(R)). Since this operation does not alter the weighted degree of both u and v, no new pair of vertices with the same weighted degree appeared after the modification. Hence, after having repeated the same procedure for each of e 1 , ..., e x , there are no two neighbouring vertices with the same weighted degree.

3 The hardness reduction framework

Overview of the framework

All the hardness reductions performed in this paper are from the following classical NP-complete problem.

3SAT

Instance: A 3CNF formula F over variables {x 1 , ..., x n } and clauses {C 1 , ..., C m }. Question: Is F satisfiable? Note that if F has a clause C of the form (x i ∨x i ∨x i ) (resp. (x i ∨x i ∨x i )), then x i is set to true (resp. false) by any satisfying truth assignment of F . In this situation, we thus say that x i is forced to true (resp. false) by C. Besides, we can suppose that every possible literal appears in F . Indeed, if x i does not appear in any clause of F , then the 3CNF formula F ∧(x i ∨x i ∨x i ) is satisfiable if and only if F is satisfiable too. A formula equivalent to F but involving every possible literal over its variables can then be obtained in polynomial time.

The reduction framework used here has been frequently used in the literature to prove the hardness of some graph edge-colouring problems (see, e.g. [START_REF] Bensmail | Complexity of determining the irregular chromatic index of a graph[END_REF][START_REF] Holyer | The NP-completeness of edge-colouring[END_REF]). From F , we produce a graph G F such that, given a pair {a, b} of real weights, F is satisfiable if and only if G F admits a vertex-colouring {a, b}-edge-weighting w F .

We use a simple analogy to describe our reduction scheme. The reduced graph G F has to be thought of as an electrical circuit made up of gadgets, i.e. recurrent subgraphs, connected in a specific way. These gadgets are interconnected along several inputs and outputs that permit two signals, the positive and the negative ones, to be propagated along G F . This propagation fulfils properties which are inspired by the propagation of a vertex-colouring {a, b}-edge-weighting in a graph, where the positive and negative signals may be assimilated with the colours a and b, respectively. The structure of G F is representative of the structure of F in the sense that the propagation of the positive signal through the gadgets is representative of the consequences on F of setting such or such variable of F to true. In this way, we get a straight analogy between spreading the positive signal through G F and satisfying F .

The gadgets of G

F are the following. The graph G F is composed of one generator gadget G F (S), m clause gadgets G F (C 1 ), ..., G F (C m ), and 2n literal gadgets G F ( 1 ), ..., G F ( 2n ). Each clause C i in F is associated with the clause gadget G F (C i )
, and similarly for each literal i of F and the literal gadget G F ( i ). The graph G F is obtained by originally considering G F (S), and then successively connecting gadgets to it. The generator gadget is first connected to all of the m clause gadgets, which are each connected to some of the literal gadgets. In particular, if we denote by c i ∈ {1, 2, 3} the number of distinct literals in C i , and by i 1 , ..., ic i these literals, then

G F (C i ) is connected to G F ( i 1 ), ..., G F ( ic i ). Each literal gadget G F ( i ) of G F
thus has n i inputs, where n i ≥ 1 is the number of distinct clauses in F that contain the literal i . Finally, the outputs of two literal gadgets G F ( i ) and G F ( i ) are connected in a specific way.

Assuming each clause gadget G F (C i ) is supplied with the positive signal by the generator gadget, the main property of G F (C i ) is that it propagates the positive signal through at least one of its outputs, i.e. to at least one literal gadget G F ( j ) such that j ∈ C i . The main property of a literal gadget G F ( i ) is that it outputs a signal if and only if the same signal comes in from all of its n i inputs. Moreover, if a given signal comes in from the n i inputs of G F ( i ), then G F ( i ) outputs the same signal, which must be different from the one outputted by G F ( i ).

Hence, we have an equivalence between satisfying F and propagating the positive signal through G F from the generator gadget:

• each clause C i in F must have at least one true literal and G F (C i ) must spread the positive signal to at least one literal gadget it is connected to,

• every literal i must have the same truth value in all clauses it appears in and all the inputs of G F ( i ) must spread the same signal in,

• a variable x i and its negation x i must have distinct truth values and the outputs of G F (x i ) and G F (x i ) must spread different signals out. Now consider the graph theory point of view. The graph G F , which is associated with the electrical circuit, is obtained by successively connecting graphs to the generator gadget G F (S). These graphs, i.e. the clause and literal gadgets, must fulfil the structural and colouring properties summed up above. In particular, assuming the colour a (resp. b) of the vertex-colouring {a, b}-edge-weighting w F of G F is associated with the positive (resp. negative) signal, the propagation of the positive and negative signals may be seen as successive extensions of w F to the graphs successively obtained after the connections. We then get an analogy between satisfying F and finding a vertex-colouring {a, b}-edge-weighting of G F .

The reduction framework into details

In this section, we go into the details of the reduction framework by pointing out the properties that must fulfil the gadgets mentioned in Section 3.1, and how these are connected exactly to form G F . Any implementation of the framework reduction in further sections will thus only consists in exhibiting gadgets and showing that these have the properties exhibited throughout this section.

Spreading gadget G and generator gadget G F (S)

A generator gadget G F (S) for a given pair {a, b} is obtained by connecting several spreading gadgets G . A spreading gadget G for {a, b} has one input, two outputs, and the following colouring property. Property 1. Assume w is a vertex-colouring {a, b}-edge-weighting of G . Then we have w(i

1 (G )) = w(o 1 (G )) = w(o 2 (G )).
Remark that by connecting two copies G 1 and G 2 of G along o 1 (G 1 ) and i 1 (G 2 ), we obtain a graph G whose input and three outputs all receive the same colour by any vertex-colouring {a, b}-edge-weighting. Indeed, suppose w is a vertex-colouring {a, b}-edge-colouring of G initiated with G 1 , and that we have w(i 1 (G 1 )) = a without loss of generality. Then, we have

w(o 1 (G 1 )) = w(o 2 (G 1 )) = a by Property 1. Note then that in any extension of w from G 1 to G , we have w(i 1 (G )) = w(o 1 (G )) = w(o 2 (G )) = w(o 3 (G ))
since G 2 satisfies Property 1, and o 1 (G 1 ) and i 1 (G 2 ) refer to the same edge of G .

Note that by repeating this construction several times, one obtains a graph with one input and arbitrarily many outputs such that all of these input and outputs necessarily receive the same colour by a vertex-colouring {a, b}-edge-weighting. Now denote by P 4 the path u 1 u 2 u 3 u 4 with length 3, let i 1 (P 4 ) = u 1 u 2 and o 1 (P 4 ) = u 3 u 4 , and suppose w is a vertex-colouring {a, b}-edge-weighting of G . Note thus that if G is the graph obtained by connecting G and P 4 along o 1 (G ) and i 1 (P 4 ) (in other words, the graph G results from a P 4 -subdivision of o 1 (G )), then, assuming w(o 1 (G )) = a, we have w(o 1 (G )) = b in any extension of w from G to G by Observation 2.1, where o 1 (G ) = u 3 u 4 . Regarding the electric circuit analogy, this means that we are able to invert some signal. Consequently, by connecting arbitrarily many copies of G and then inverting some outputs, we are able to propagate both the colours a and b towards an arbitrary number of directions assuming the input colour is known.

The generator gadget G F (S) is obtained in this way, i.e. by connecting several copies of G and then inverting some outputs. The number of necessary connections is not clarified in this paper, but one can easily check that this number in polynomial regarding the size of F .

From now on, we suppose that w F is a vertex-colouring {a, b}-edgeweighting of G F initiated with G F (S), and extended progressively as G F (S) is connected to other gadgets to form G F . Suppose w(i 1 (G F (S))) = a without loss of generality. Then, according to the remarks above, we know which outputs of G F (S) receive colour a (resp. b) by w F . We say that these outputs are positive (resp. negative).

Clause gadget G F (C i )

Recall that c i ∈ {1, 2, 3} denotes the number of distinct literals in C i for every i ∈ {1, ..., m}. The structure of the clause gadget G F (C i ) for {a, b} depends on the value of c i . If c i = 1, then a clause gadget is not necessary. In any other situation, i.e. c i = 2 or c i = 3, the gadget G F (C i ) has a constant number of inputs and c i outputs, and the following colouring property. Property 2. Assume w is a vertex-colouring {a, b}-edge-weighting of G F (C i ) such that a fixed number of inputs of G F (C i ) are coloured a by w, while its other inputs are coloured b. Then, up to c i outputs, but at least one, are coloured a by w. Now connect G F (S) and every G F (C i ) in such a way that each input of G F (C i ) which is supposed to be coloured a (resp. b) is identified with one distinct positive (resp. negative) output of G F (S). Then, by Property 2, we know that arbitrarily many, but at least one, outputs of G F (C i ) can be assigned colour a in any extension of w F from G F (S) to G F , where G F is the graph resulting from the connections.

Collecting gadget G and literal gadget

G F ( i )
The structure of a literal gadget G F ( i ) for {a, b} depends on the value of n i , where n i is the number of distinct clauses of F that contain the literal i for every i ∈ {1, ..., 2n}. Once again, if n i = 1, then there is no need for a literal gadget. In any other case, i.e. whenever n i ≥ 2, a literal gadget is obtained by connecting exactly n i -1 collecting gadgets G . A collecting gadget for {a, b} has two "regular" inputs i 1 (G ) and i 2 (G ), and one output. It also has some "forcing" inputs which are supposed to be connected with positive or negative outputs of G F (S) so that the following property is fulfilled. Property 3. Assume w is a vertex-colouring {a, b}-edge-weighting of G such that a fixed number of forcing inputs of G are coloured a by w, while its other forcing inputs are coloured b. Then we have w(i

1 (G )) = w(i 2 (G )) = w(o 1 (G )).
Now consider every literal i . For every distinct clause C j that contains i , associate a distinct output of G F with G F ( i ) as follows:

• if i is forced to true by C j , then consider a positive output of G F (S),

• if i is forced to false by C j , then consider a negative output of G F (S),

• otherwise, consider one output of G F (C j ).

This association has to be done in such a way that any chosen output of G F is associated with exactly one literal gadget. The two first items above depicts the fact that if a clause contains only one distinct literal, then this literal is forced to some truth value by this clause. The third item reflects the fact that the truth value of a clause by a truth assignment of F depends on the truth values of its literals.

The literal gadget G F ( i ) is obtained as follows. First define an arbitrary ordering (o 1 , ..., o n i ) over the outputs of G F chosen above for G F ( i ). Now consider n i -1 copies G 1 , ..., G n i -1 of G , and connect these with G F as follows. Start by connecting G F and G 1 along (o 1 , o 2 ) and (i 1 (G 1 ), i 2 (G 1 )). Then connect the resulting graph and

G 2 along (o 1 (G 1 ), o 3 ) and (i 1 (G 2 ), i 2 (G 2 )).
Next, connect the obtained graph and G 3 along (o 1 (G 2 ), o 4 ) and (i 1 (G 3 ), i 2 (G 3 )). And so on. Denote by G F the resulting graph.

Note that if any two of the n i outputs chosen above for G F ( i ) do not share the same colour by w F , then there is no extension of w F from G F to G F by Property 3. Thus, all the outputs of G F connected to G F ( i ) must receive the same colour by w F .

Connecting the literal gadgets

The reduced graph G F is finally obtained by adding some edges to G F . Consider every pair { i , j } of F such that j = i . Now consider the respective output o i and o j of G F of the literal gadgets G F ( i ) and G F ( j ). More precisely, if n i = 1 and i is forced to true (resp. false) by the only clause of F that contains i , then o i is a positive (resp. negative) output of G F (S).

If n i = 1 and i is not forced to some truth value by the only clause C j that contains it, then consider one distinct output of C j . Otherwise, i.e. n i ≥ 2, the output o i is o 1 (G F ( i )). Now, if u and v are the vertices with degree 1 of o i and o j , respectively, then let uv be an edge in G F . Now suppose any two such outputs o i and o j receive the same colour in an extension of w F from G F to G F . Then note that w F cannot be extended from G F to G F since the edges o i , uv and o j induce a path on 4 vertices whose end edges have the same colour (Observation 2.1). On the contrary, if we have w F (o i ) = w F (o j ), then assigning any colour to uv is correct. This simulates the fact that in a truth assignment of the variables of F , a variable and its negation must be assigned distinct truth values.

Final details

Checking whether any implementation of our reduction framework is correct is quite tedious since, for every two neighbouring vertices u and v of G F , one has to check whether χ w F (u) = χ w F (v). In the three implementations described in this paper, we only show this to hold for neighbouring vertices of the spreading, clause, and collecting gadgets we exhibit. But this is not sufficient since some conflicts may arise for particular values of {a, b} when connecting two of these gadgets.

As an illustration, suppose e.g. that uz is an output of some graph G, and z v is an input of some graph H. Suppose we are also given vertexcolouring {a, b}-edge-weightings w G and w H of G and H, respectively, such that w G (uz) = w H (z v) = a. Now let G be the graph resulting from the connection of G and H along uz and z v, and consider the vertex-colouring {a, b}-edge-weighting w G of G where any edge e that originally belonged to G is coloured following w G , and following w H otherwise. Clearly the only possible conflict is χ w G (u) = χ w G (v), which may occur for some particular values of a and b.

Thanks to Lemma 2.3, we actually do not need to deeply study every possible connection between two gadgets of a given implementation, i.e. for a given value of {a, b}, in order to find out the conflicts which may arise when extending an {a, b}-edge-weighting. Assuming we are given one (x 1 , y 1 )-, one (x 2 , y 2 )-, and one (x 3 , y 3 )-replacement gadget for {a, b} such that the x i 's are distinct and the y i 's are distinct, we could "replace" a conflicting edge by one of these gadgets so that we solve the conflict locally, and this without altering the colouring properties of G F , i.e. without providing new ways for colouring G F . In this way, the equivalence between satisfying F and colouring G F would be preserved.

Hence, even if we do not know exactly which edges are conflicting in a vertex-colouring {a, b}-edge-weighting of G F for a specific value of {a, b}, we know that an implementation of our reduction framework can be adapted for {a, b} by simply replacing some edges of G F by a convenient replacement gadget among a triplet of three replacement gadgets for {a, b}. Each of our framework implementations, i.e. for a given of {a, b}, is thus provided with a replacement triplet, i.e. a triplet (R 1 , R 2 , R 3 ) where each R i is a (x i , y i )replacement gadget for {a, b}, and such that the x i 's are distinct and the y i 's are distinct.

4 First implementation: 0 ∈ {a, b} and b = -a

In this section, we give a first implementation of our reduction framework for showing that {a, b}-VCEW is NP-complete whenever 0 ∈ {a, b} and b = -a. For this purpose, we introduce several graphs and show that they are spreading, clause, collecting and replacement gadgets, respectively, for {a, b}. Throughout this section, the thick (resp. thin) edges of our figures represent edges coloured a (resp. b) by a vertex-colouring {a, b}-edgeweighting.

u 1 u 2 u 3 u 1 u 2 u 3 u 1 u 2 u 3
Figure 3: The graphs T 0 , T 1 and T 2 , and vertex-colouring {a, b}-edgeweightings of T 0 , T 1 and T 2 .

Auxiliary gadget T k and replacement triplet for {a, b}

We define the graphs T k , where k ≥ 0, which are used in further gadgets to "force" the propagation of a vertex-colouring {a, b}-edge-weighting. For a given value of k ≥ 0, the graph T k is obtained as follows. First consider a triangle u 1 u 2 u 3 . If k = 0, then we are done. Now, if k ≥ 1, then identify u 2 with one arbitrary vertex of each of k new triangles. Finally, repeat the last step but with u 3 instead of u 2 . We refer to the vertex u 1 as the root of T k . This construction is depicted in Figure 3. In the figures of the next sections, any triangle marked "T k " indicates that a vertex is identified with the root of a graph T k .

Any graph T k with k ≥ 0 has the following colouring properties. Proof. Note that for any triangle v 1 v 2 u i v 1 different from u 1 u 2 u 3 u 1 where i ∈ {2, 3}, we have w(u i v 1 ) = w(u i v 2 ) since otherwise we would have χ w (v 1 ) = χ w (v 2 ). Therefore, the colouring of the triangles attached to v 2 and v 3 provide k(a + b) in the weighted degree of both u 2 and u 3 . Since χ w (u 2 ) = χ w (u 3 ), we necessarily have w(u 2 u 1 ) = w(u 3 u 1 ). Depending on whether w(u 2 u 3 ) = a or w(u 2 u 3 ) = b, one of u 2 and u 3 has weighted degree (k + 2)a + kb or ka + (k + 2)b, respectively. The other vertex has weighted degree (k + 1)(a + b).

Lemma 4.2. Let k ≥ 0 be fixed. There is a vertex-colouring {a, b}-edgeweighting w of T k , unless 0 ∈ {a, b}, or b = -a, or χ w (u 1 ) ∈ {χ w (u 2 ), χ w (u 3 )}.

Proof. Recall that for two adjacent vertices of T k which have the same degree, we only have to make sure that their multisets of colours by w are different according to Lemma 2.2. Note next that, for any triangle v 1 v 2 u i v 1 different from u 1 u 2 u 3 u 1 where i ∈ {2, 3}, one of v 1 and v 2 has weighted degree a + b, while the other vertex has weighted degree either 2a or 2b depending on how v 1 v 2 u i v 1 is coloured (but we can "choose" this weighted degree thanks to local recolouring). Besides, one of u 2 and u 3 has weighted degree (k + 1)(a + b) by w, while the other vertex has weighted degree either (k + 2)a + kb or ka + (k + 2)b according to Lemma 4.1. Once again, this last weighted degree can be "chosen" freely by recolouring the edge u 2 u 3 .

Suppose χ w (u 2 ) = (k + 1)(a + b), and χ w (u 3 ) is either (k + 2)a + kb or ka + (k + 2)b without loss of generality. On the one hand, consider u 2 and any triangle attached to it. Note first that if we have χ w (u 2 ) = a + b, i.e. (k + 1)(a + b) = a + b, then either k = 0 or b = -a. Now, observe that we cannot both have χ w (u 2 ) = 2a and χ w (u 2 ) = 2b, unless a = b which is impossible. On the other hand, consider u 3 . Firstly, if we have both (k + 2)a + kb = a + b and ka + (k + 2)b = a + b, then a = b. Secondly, if both χ w (u 3 ) = 2a and χ w (u 3 ) = 2b hold, then a = b once again. Hence, the only possible conflict by w under our assumptions on a and b is χ w (u 1 ) = χ w (u 2 ) or χ w (u 1 ) = χ w (u 3 ).

Let k ≥ 1 be fixed, and assume v 1 v 2 v 3 is the path of length 2. As T k , we refer to the graph obtained by identifying v 2 and the root of each of k graphs T k . The two inputs of

T k are i 1 (T k ) = v 1 v 2 and i 2 (T k ) = v 2 v 3 .
We show that T k is a replacement gadget for {a, b} under our assumptions on a and b. Proof. Assume w is a vertex-colouring {a, b}-edge-weighting of T k . Suppose w(i 1 (T k )) = a without loss of generality. For each of the graphs T k attached to v 2 , one of the two edges incident with v 2 is coloured a by w, while the one is coloured b according to Lemma 4.1. Hence, the graphs T k attached to v 2 provide k(a + b) in the weighted degree of v 2 . Besides, in each graph T k there is a vertex neighbouring v 2 which has weighted degree (k + 1)(a + b), while we may suppose that the other vertex neighbouring v 2 has weighted degree ka

+ (k + 2)b. Note then that if w(v 2 v 3 ) = b, then we get χ w (v 2 ) = (k + 1)(a + b)
and v 2 has the same weighted degree as some of its neighbours. Therefore, we have w(v 2 v 3 ) = a. In this situation we have χ w (v 2 ) = (k + 2)a + kb while the vertices from the graphs T k neighbouring v 2 have weighted degree (k +1)(a+b) and ka+(k +2)b, respectively. Since v 2 and these vertices have the same degree, these weighted degrees are distinct by Observation 2.1.

Corollary 4.4. Any triplet (T i , T j , T k ) is a replacement triplet for every pair {a, b}, such that 0 ∈ {a, b} and b = -a, when i, j and k are distinct. Now suppose w(u 1 u 2 ) = a, and consider the edges u 2 u 3 and u 2 u 4 . First, if w(u 2 u 3 ) = w(u 2 u 4 ), then note that w cannot be vertex-colouring according to the arguments above since we would necessarily have w(u 3 u 5 ) = w(u 4 u 6 ) so that χ w (u 3 ) = χ w (u 4 ). Thus, w(u 2 u 3 ) = a and w(u 2 u 4 ) = b without loss of generality, and χ w (u 2 ) = 2a + b. Now note that if w(u 3 u 4 ) = a, then we necessarily get that χ w (u 3 ) or χ w (u 4 ) is equal to χ w (u 2 ) since we need w(u 3 u 5 ) = w(u 4 u 6 ). Thus w(u 3 u 4 ) = b. We then have w(u 3 u 5 ) = b so that χ w (u 3 ) = χ w (u 2 ), and also w(u 4 u 6 ) = b so that χ w (u 4 ) = χ w (u 3 ).

T 1 u 1 u 3 u 5 u 6 u 4 u 2 (a) Case ci = 2. T 2 T 2 u 1 u 3 u 6 u 7 u 2 u 5 u 8 u 4 (b) Case ci = 3.
According to the arguments above, we have w(u 3 u 5 ) = w(u 4 u 6 ) = b and w(u 7 u 8 ) = w(u 7 u 11 ) = b under the assumption w(u 1 u 2 ) = a. By Observation 2.1, we have w(u 9 u 10 ) = w(u 12 u 13 ) = a.

Clause gadgets G F (C i ) for {a, b}

We distinguish two forms for G F (C i ), depending on whether c i = 2 or c i = 3. These two forms are depicted in Figure 5. In the first case, i.e. c i = 2, the inputs of G F (C i ) are u 3 u 4 , which is supposed to be coloured a, and u 1 u 2 , which is supposed to be coloured b, while the two outputs of G F (C i ) are u 4 u 5 and u 4 u 6 . In the second case, i.e. c i = 3, the three inputs of G F (C i ) are u 1 u 2 , which is supposed to be coloured b, and u 3 u 5 and u 4 u 5 which are supposed to be coloured a. The three outputs of G F (C i ) are u 5 u 6 , u 5 u 7 and u 5 u 8 in this case.

We prove that these two types of gadgets satisfy Property 2 under our assumptions on a and b.

Proposition 4.6. The graph G F (C i ) for c i = 2 satisfies Property 2 for {a, b} under our assumptions on a and b. Proof. Assume w is a vertex-colouring {a, b}-edge-weighting of G such that the forcing inputs of G are coloured as requested. Consider first the left side of G , i.e. the subgraph of G induced by the u i 's. Note first that we have w(u 4 u 11 ) = w(u 8 u 11 ) so that χ w (u 4 ) = χ w (u 8 ). Now note that we cannot have w(u 4 u 8 ) = b, since otherwise we would have {χ w (u 4 ), χ w (u 8 )} = {2a + 3b, 3a + 2b}, and we would necessarily get χ w (u 11 ) ∈ {χ w (u 4 ), χ w (u 8 )} whatever is w(u 11 u 15 ). Thus w(u 4 u 8 ) = a, and {χ w (u 4 ), χ w (u 8 )} = {4a + b, 3a + 2b}. Note now that we have w(u 11 u 15 ) = b since otherwise we would have χ w (u 11 ) = 3a + 2b. It follows that χ w (u 11 ) = 2a + 3b, and we have w(u 15 v 3 ) = a since otherwise we would have χ w (u 15 ) = 2a + 3b = χ w (u 11 ). Besides, χ w (u 15 ) = 3a + 2b.

u 1 u 2 u 4 u 3 u 1 u 2 u 1 u 2
Thanks to the symmetric structure of G , we can deduce similar facts regarding the right side of G , i.e. the subgraph of G induced by the u i 's. In particular, we have w(v 3 u 15 ) = b and χ w (u 15 ) = 2a + 3b. Now observe that we cannot have w(v 1 v 3 ) = w(v 2 v 3 ) since otherwise by having w(v 3 v 4 ) = a or w(v 3 v 4 ) = b we would get χ w (v 3 ) = 3a + 2b = χ w (u 15 ) or χ w (v 3 ) = 2a + 3b = χ w (u 15 ), respectively. Therefore, we have w(v 1 v 3 ) = w(v 2 v 3 ), and also w(v 3 v 4 ) = w(v 1 v 3 ) since otherwise we would get χ w (v 3 ) ∈ {χ w (u 15 ), χ w (u 15 )}.

Second implementation: b = 0

The second implementation of our reduction framework is dedicated to the case where one of the two weights from {a, b} is 0. We assume throughout this section that b = 0. The thick (resp. thin) edges in our figures represent edges coloured a (resp. 0) by a vertex-colouring {a, 0}-edge-weighting.

Auxiliary gadget Y k and replacement triplet for {a, 0}

Similarly as in the first implementation, we first give an auxiliary graph which is used in our gadgets to "force" the propagation of a vertex-colouring {a, 0}-edge-weighting. The graphs Y k with k ≥ 1 are defined inductively. By construction, any graph Y k has only one vertex with degree 1, called the root of Y k . Start with an edge u 1 u 2 . To build Y 1 , just identify u 2 and one vertex from a triangle. Now for the general case, i.e. k ≥ 2, start over from the edge uv, and identify u 2 and the root of each of k -1 copies of Y 1 and one copy of Y k-1 . This construction is depicted in Figure 7. In the figures of the following sections, any pendant triangle marked "Y k " indicates that a vertex is identified with the root of a graph Y k .

Any graph Y k has the following colouring property.

Lemma 5.1. Assume w is a vertex-colouring {a, 0}-edge-weighting of Y k for some k ≥ 1. Then w(u 1 u 2 ) = a and χ w (u 2 ) = (k + 1)a.

Proof. We prove this lemma by induction on k. Consider Y 1 first, and denote the vertices of the triangle attached to u 2 by u 2 u 3 u 4 u 2 . Note that if w(u 2 u 3 ) = w(u 3 u 4 ), then χ w (u 3 ) = χ w (u 4 ). Then w(u 2 u 3 ) = a and w(u 2 u 4 ) = 0 without loss of generality, and w(u 3 u 4 ) = 0 since otherwise we would have either χ w (u 2 ) = χ w (u 3 ) or χ w (u 2 ) = χ w (u 4 ) by setting w(u 1 u 2 ) = a or w(u 1 u 2 ) = 0, respectively. Then {χ w (u 3 ), χ w (u 4 )} = {0, a}, and we have w(u 1 u 2 ) = a since otherwise we would have χ w (u 2 ) = a. In particular, we have χ w (u 2 ) = 2a. Now suppose the claim is true for every k up to some i, and consider k = i + 1. The graph Y k is made of k -1 copies of Y 1 and one copy of Y k-1 whose roots are identified with u 2 . By the induction hypothesis, these copies are coloured by w in such a way that their respective edge incident with u 2 is coloured a, and the vertex from Y k-1 neighbouring u 2 has weighted degree ka. Thus, these copies provide ka in the weighted degree of u 2 . Finally, we have w(u 1 u 2 ) = a so that χ w (u 2 ) = ka, and we get χ w (u 2 ) = (k + 1)a.

Let k ≥ 1 be fixed, and let v 1 v 2 v 3 denote the vertices of a path with length 2. As L k , we refer to the graph obtained by identifying v 2 and the roots of k copies of the graphY k . The two inputs of L k are the edges v 1 v 2 and v 2 v 3 . We show that L k is a replacement gadget for {a, 0}. Lemma 5.2. Let k ≥ 1 be fixed. The graph L k is a ((k+2)a, ka)-replacement gadget for {a, 0}.

Proof. Assume w is a vertex-colouring {a, 0}-edge-weighting of L k . By Lemma 5.1, the k copies of Y k attached to v 2 provide ka to the weighted degree of v 2 , and v 2 is adjacent to vertices with weighted degree (k + 1)a. Note then that if {w(v 1 v 2 ), w(v 2 v 3 )} = {a, 0}, then the weighted degree of v 2 is (k + 1)a, and w is not vertex-colouring. On the contrary, if w(v Corollary 5.3. Any triplet (L i , L j , L k ) is a replacement triplet for {a, 0} when i, j and k are distinct.

1 v 2 ) = w(v 2 v 3 ) = a or w(v 1 v 2 ) = w(v 2 v 3 ) = 0,

Spreading gadget G for {a, 0}

Consider, as G , the graph depicted in Figure 8, whose input is u 1 u 2 , and whose two outputs are u 6 u 7 and u 6 u 8 . We show that G is a spreading gadget for {a, 0}.

Proposition 5.4. The graph G satisfies Property 1 for {a, 0}.

Proof. Assume w is a vertex-colouring {a, 0}-edge-weighting of G . Recall that the graphs Y 2 , Y 3 and Y 4 attached to u 6 provide 3a in the weighted degree of u 6 , and that u 6 is adjacent to vertices with weighted degree 3a, 4a, and 5a according to Lemma 5.1. Then we cannot have {w(u 4 u 6 ), w(u 5 u 6 )} = {0, 0} since otherwise we would have χ w (u 6 ) ∈ {3a, 4a, 5a} whatever are w(u 6 u 7 ) and w(u 6 u 8 ). Observe also that if {w(u 4 u 6 ), w(u 5 u 6 )} = {0, a}, then we have w(u 6 u 7 ) = w(u 6 u 8 ) = a. In this situation, we have χ w (u 6 ) = 6a.

Consider the edge u 1 u 2 . By Lemma 5.1, the weighted degree of u 2 is at least 2a, and u 2 is adjacent with vertices whose weighted degrees are 2a and 3a. Then we have w(u 1 u 2 ) = w(u 2 u 3 ) = a since otherwise we would have χ w (u 2 ) ∈ {2a, 3a}. In particular, we have χ w (u 2 ) = 4a. Now note that we cannot have w(u 3 u 4 ) = w(u 3 u 5 ) = 0 since one of u 4 or u 6 would have weighted degree χ w (u 3 ) = a. Indeed, no matter what is the colour of u 4 u 5 , we have {w(u 4 u 6 ), w(u 5 u 6 )} = {0, a} so that χ w (u 4 ) = χ w (u 5 ). But then, one of u 4 or u 6 necessarily gets weighted degree a, which is χ w (u 3 ).

Suppose now w(u 3 u 4 ) = w(u 3 u 5 ) = a. In this situation, we have χ w (u 3 ) = 3a. Note that if w(u 4 u 5 ) = a, then we have {w(u 4 u 6 ), w(u 5 u 6 )} = {0, a} so that u 4 and u 5 have distinct weighted degrees. But then, one of these two vertices has weighted degree 3a. So w(u 4 u 5 ) = 0. Once again, we have {w(u 4 u 6 ), w(u 5 u 6 )} = {0, a} so that u 4 and u 5 are distinguished. According to the remarks above, we then have w(u 6 u 7 ) = w(u 6 u 8 ) = a, as requested.

u 6 u 5 u 1 u 2 u 4 u 3 Y 1 (a) Case ci = 2. u 5 u 1 u 2 u 4 u 3 Y 1 u 7 u 6 (b) Case ci = 3.
Suppose finally that w(u 3 u 4 ) = a and w(u 3 u 5 ) = 0 without loss of generality. Then χ w (u 3 ) = 2a. Note that we cannot have w(u 4 u 5 ) = 0 since otherwise we would have w(u 4 u 6 ) = 0 so that χ w (u 4 ) = χ w (u 3 ), and w(u 5 u 6 ) = 0 so that χ w (u 4 ) = χ w (u 5 ). But then {w(u 4 u 6 ), w(u 5 u 6 )} = {0, 0}, and w is not vertex-colouring. Thus, w(u 4 u 5 ) = a. Because χ w (u 4 ) = χ w (u 3 ) and χ w (u 5 ) = χ w (u 3 ), we have both w(u 4 u 6 ) = a and w(u 5 u 6 ) = 0. According to the arguments above, we have w(u 6 u 7 ) = w(u 6 u 8 ) = a once again.

Clause gadgets

G F (C i ) for {a, 0}
The two forms of G F (C i ) for {a, 0}, i.e. for the cases c i = 2 and c i = 3, are depicted in Figure 9. In both cases, the input of G F (C i ) is u 1 u 2 and is supposed to be coloured 0. The outputs of G F (C i ) are u 4 u 5 , u 4 u 6 , and also u 4 u 7 when c i = 3. We show that G F (C i ) satisfies Property 2 in any of the two cases.

Proposition 5.5. The graph G F (C i ) satisfies Property 2 for {a, 0} whatever is the value of c i .

Proof. Assume w is a vertex-colouring {a, 0}-edge-weighting of G F (C i ) such that w(u 1 u 2 ) = 0. Recall that the edge of the graph Y 1 incident with u 3 has colour a, and that the vertex of the graph Y 1 adjacent with u 3 has weighted degree 2a (Lemma 5.1). Therefore, we have w(u 3 u 2 ) = 0 so that χ w (u

3 ) = v 4 v 3 v 1 v 2 u 1 u ′ 1 u ′ 2 u 2 Y 2 Y 3
Figure 10: The collecting gadget G for the second implementation of the reduction framework, and a vertex-colouring {a, b}-edge-weighting of G . a = 2a, and w(u 2 u 4 ) = 0 so that χ w (u 2 ) = χ w (u 3 ). In particular, we get χ w (u 2 ) = 0. Then note that at least one of the outputs of G F (C i ) receives colour a by w since otherwise we would have χ w (u 4 ) = 0 = χ w (u 2 ).

Collecting gadget G for {a, 0}

Now consider the graph depicted in Figure 10 as G . The two regular inputs of G are v 1 v 3 and v 2 v 3 , and its output is v 3 v 4 . The forcing inputs of G are u 1 u 2 and u 1 u 2 , which are supposed to be coloured a. We prove that G satisfies Property 3 for {a, 0}.

Proposition 5.6. The graph G satisfies Property 3 for {a, 0}.

Proof. Suppose w is a vertex-colouring {a, 0}-edge-weighting of G F (G ) such that w(u 1 u 2 ) = w(u 1 u 2 ) = a. We have w(u 2 v 3 ) = w(u 2 v 3 ) = a according to Lemma 5.2. Plus, we have χ w (u 2 ) = 3a and χ w (u 2 ) = 4a. Under these assumptions, we cannot have w(v 1 v 3 ) = w(v 2 v 3 ). Indeed, in such a situation, by having w(v 3 v 4 ) = a or w(v 3 v 4 ) = 0, we would get χ w (v 3 ) = 4a or χ w (v 3 ) = 3a, respectively. Now suppose w(v 1 v 3 ) = w(v 2 v 3 ). On the one hand, if w(v 1 v 3 ) = w(v 2 v 3 ) = a, then we have w(v 3 v 4 ) = a since otherwise we would get χ w (v 3 ) = 4a = χ w (u 2 ). In this situation, we get χ w (v 3 ) = 5a. On the other hand, suppose w(v

1 v 3 ) = w(v 2 v 3 ) = 0. Note that if w(v 3 v 4 ) = a, then χ w (v 3 ) = 3a = χ w (u 2
). On the contrary, we have χ w (v 3 ) = 2a when w(v 3 v 4 ) = 0.

Third implementation: b = -a

In this section, we give the gadgets for implementing our reduction framework in the case where {a, b} = {a, -a}. In all the figures of this section, the thick (resp. thin) edges represent edges coloured a (resp. -a) by a vertex-colouring {a, -a}-edge-weighting.

Auxiliary gadget T and replacement triplet for {a, -a}

Once again, we use a graph to force the propagation of a vertex-colouring {a, -a}-edge-weighting in a graph. This graph, denoted T , is just a triangle u 1 u 2 u 3 u 1 whose vertex u 1 is the root of T . Hence, every triangle marked "T " in our figures of further sections refers to the graph T . This graph T has some interesting properties when dealing with vertex-colouring {a, -a}edge-weightings. Lemma 6.1. Assume w is an {a, -a}-edge-weighting of T . If χ w (u 2 ) = χ w (u 3 ), then one of u 2 and u 3 has weighted degree 0, while the other vertex has weighted degree 2a or -2a. Besides, we have {w(u 1 u 2 ), w(u 1 u 3 )} = {a, -a}.

Proof. The proof is similar to the one of Lemma 4.1 since T is isomorphic to T 0 . Because χ w (u 2 ) = χ w (u 3 ), we have w(u 1 u 2 ) = w(u 1 u 3 ). Suppose e.g. w(u 1 u 2 ) = a and w(u 1 u 3 ) = -a without loss of generality. Now, by setting either w(u 2 u 3 ) = a or w(u 2 u 3 ) = -a, we get χ w (u 3 ) = 0 or χ w (u 2 ) = 0, respectively. Besides, we have χ w (u 2 ) = 2a or χ w (u 3 ) = -2a, respectively.

We now introduce the replacement gadgets for {a, -a}. The first replacement gadget R 1 is obtained by identifying the root of T and v 2 , where v 2 denotes the inner vertex of some path v 1 v 2 v 3 with length 2. The two inputs of R 1 then are v 1 v 2 and v 2 v 3 . Lemma 6.2. The graph R 1 is a (2a, -2a)-replacement gadget for {a, -a}.

Proof. Assume w is a vertex-colouring {a, -a}-edge-weighting of R 1 . By Lemma 6.1, the weighted degrees of the vertices adjacent with v 2 which belong to the graph T are 0, and either 2a or -2a, where this last weighted degree can be "chosen" thanks to local recolouring of T . Besides, the colouring of T provides a + (-a) = 0 in the weighted degree of v 2 . Note then that if w(v 1 v 2 ) = w(v 2 v 3 ), then we have χ w (v 2 ) = 0. Hence, we have w(v 1 v 2 ) = w(v 2 v 3 ), and χ w (v 2 ) = 2a or χ w (v 2 ) = -2a depending on w(v 1 v 2 ) = a or w(v 1 v 2 ) = -a, respectively.

The second replacement gadget R 2 for {a, -a} is obtained as follows. As for R 1 , start from a path v 1 v 2 v 3 with length 2, and identify v 2 and u 1 , where u 1 u 2 u 3 u 4 u 5 u 1 is a cycle with length 5. The inputs of R 2 are v 1 v 2 and v 2 v 3 . On the contrary, if w(u 7 u 8 ) = w(u 7 u 11 ) = -a, then we get χ w (u 7 ) = -4a.

Besides, we have w(u 9 u 10 ) = w(u 12 u 13 ) = a by Observation 2.1. Now assume w(u 1 u 2 ) = a. First, note that we cannot have w(u 2 u 3 ) = w(u 2 u 4 ). Indeed, in this situation, we would have w(u 3 u 5 ) = w(u 4 u 6 ) so that u 3 and u 4 have distinct weighted degree, and this whatever is w(u 3 u 4 ). According to the arguments above, w is not vertex-colouring under this assumption. Then, w(u 2 u 3 ) = a and w(u 2 u 4 ) = -a without loss of generality. In this situation, χ w (u 2 ) = a. On the one hand, if w(u 3 u 4 ) = a, then w cannot be vertex-colouring. Indeed, we would have w(u 3 u 5 ) = a so that χ w (u 3 ) = χ w (u 2 ), and w(u 4 u 6 ) = -a so that χ w (u 4 ) = χ w (u 2 ). But then w(u 3 u 5 ) = w(u 4 u 6 ), and w is not vertex-colouring, again according to the arguments above. On the other hand, i.e. w(u 3 u 4 ) = -a, then we have w(u 3 u 5 ) = -a so that χ w (u 2 ) = χ w (u 3 ), and w(u 4 u 6 ) = -a so that χ w (u 3 ) = χ w (u 4 ). As pointed out above, we have w(u 9 u 10 ) = w(u 12 u 13 ) = a as requested.

Clause gadgets G F (C i ) for {a, -a}

Consider, as G F (C i ), the graphs depicted in Figure 12. In the first (resp. second) form, i.e. for c i = 2 (resp. c i = 3), the inputs of G F (C i ) are u 1 u 3 and u 2 u 3 (resp u 1 u 4 , u 2 u 4 and u 3 u 4 ) and are supposed to be coloured a. The outputs of G F (C i ) are u 3 u 4 and u 3 u 5 (resp. u 4 u 5 , u 4 u 6 and u 4 u 7 ). We show that the two forms of G F (C i ) satisfy the clause gadget property. to vertices with respective weighted degree a and -a. Now observe that we cannot have w(v 1 v 3 ) = w(v 2 v 3 ). Indeed, by then having w(v 3 v 4 ) = a or w(v 3 v 4 ) = -a, we would get χ w (v 3 ) = a or χ w (v 3 ) = -a, respectively. On the contrary, if w(v 1 v 3 ) = w(v 2 v 3 ) = a (resp. w(v 1 v 3 ) = w(v 2 v 3 ) = -a), then we have w(v 3 v 4 ) = a (resp. w(v 3 v 4 ) = -a) since otherwise we would have χ w (v 3 ) = a (resp. χ w (v 3 ) = -a). In particular, we get χ w (v 3 ) = 3a (resp. χ w (v 3 ) = -3a).
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 5 Figure 5: The two forms of the clause gadget G F (C i ) for the main implementation of the reduction framework, and vertex-colouring {a, b}-edgeweightings of G F (C i ).
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 7 Figure 7: The graphs Y 1 , Y 2 and Y 3 , and vertex-colouring {a, b}-edgeweightings of Y 1 , Y 2 and Y 3 .

  then the weighted degree of v 2 is (k + 2)a or ka, respectively.
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 128 Figure 8: The spreading gadget G for the second implementation of the reduction framework, and a vertex-colouring {0, a}-edge-weighting of G .
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 9 Figure 9: The two forms of the clause gadget G F (C i ) for the second implementation of the reduction framework, and vertex-colouring {0, a}-edgeweightings of G F (C i ).
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 12 Figure 12: The two forms of the clause gadget G F (C i ) for the third implementation of the reduction framework, and vertex-colouring {a, -a}-edgeweightings of G F (C i ).

Proposition 6 . 7 .

 67 The graph G F (C i ) satisfies Property 2 for {a, -a} whatever is the value of c i .

Spreading gadget G for {a, b}

Now consider the graph G depicted in Figure 4, whose input is u 1 u 2 , and whose two outputs are u 9 u 10 and u 12 u 13 . We show that G is a spreading gadget for {a, b}, i.e. that G satisfies Property 1, under our assumptions on a and b. Proof. Assume w is a vertex-colouring {a, b}-edge-weighting w of G . Note that we cannot have w(u 3 u 5 ) = w(u 4 u 6 ). Indeed, suppose e.g. that w(u 3 u 5 ) = a and w(u 4 u 6 ) = b. Because u 5 and u 6 are both attached to two graphs T 2 , which form a graph T 2 , then we have w(u 5 u 7 ) = a and w(u 6 u 7 ) = b by Lemma 4.3. Besides, we have χ w (u 5 ) = 4a + 2b and χ w (u 6 ) = 2a + 4b. We also know that a neighbour of u 7 from the graph T 2 attached to it has weighted degree 3a + 3b, and that this graph T 2 provides a + b in the weighted degree of u 7 according to Lemma 4.1. Then, the vertex u 7 has weighted degree at least 2a + 2b, and the two edges u 7 u 8 and u 7 u 11 are coloured in such a way that the weighted degree of u 7 does not meet any value in {2a + 4b, 3a + 3b, 4a + 2b}, but this is impossible.

On the contrary, if w(u 3 u 5 ) = w(u 4 u 6 ) = a without loss of generality, then w can be vertex-colouring. Because of the arguments above, we have w(u 5 u 7 ) = w(u 6 u 7 ) = a and χ w (u 5 ) = χ w (u 6 ) = 4a+2b. Recall that we may assume that the colouring of the graph T 2 attached to u 7 is such that the two vertices that are adjacent with u 7 have weighted degree 3a + 3b and 4a + 2b. Besides, the colouring of this graph T 2 provides a + b in the weighted degree of u 7 . Thus, the weighted degree of u 7 is at least 3a + b, and the edges u 7 u 8 and u 7 u 11 are coloured in such a way that the weighted degree of u 7 is not 3a + 3b or 4a + 2b. The only possibility is to have w(u 7 u 8 ) = w(u 7 u 11 ) = a since, in this situation, we get χ w (u 7 ) = 5a + b. 

Collecting gadget G for {a, b}

The collecting gadget G for this main implementation is depicted in Figure 6. The two regular inputs of G are v 1 v 3 and v 2 v 3 , and its output is v 3 v 4 . The edges u 1 u 4 , u 2 u 4 , u 5 u 8 , u 6 u 8 , u 9 u 11 , u 12 u 15 , u 13 u 15 , u 3 u 4 , u 7 u 8 , u 10 u 11 and u 14 u 15 of G are forcing inputs which are supposed to be coloured a.

The edges u 3 u 4 , u 7 u 8 , u 10 u 11 , u 14 u 15 , u 1 u 4 , u 2 u 4 , u 5 u 8 , u 6 u 8 , u 9 u 11 , u 12 u 15 and u 13 u 15 are forcing inputs supposed to be coloured b.

Under our assumptions on a and b, we prove that G is a collecting gadget, i.e. it satisfies Property 3.

Proposition 4.8. The graph G satisfies Property 3 for {a, b} under our assumptions on a and b. Lemma 6.3. The graph R 2 is a (4a, -4a)-replacement gadget for {a, -a}.

Proof. Assume w is a vertex-colouring {a, -a}-edge-weighting of R 2 . Note first that w(u 1 u 2 ) = w(u 5 u 1 ) according to Observation 2.1. Besides, we have {χ w (u 2 ), χ w (u 5 )} = {0, 2 • w(u 1 u 2 )} and the cycle attached to v 2 provides 2 • w(u 1 u 2 ) in the weighted degree of v 2 . Suppose now w(u

2a, and w is not vertex-colouring. Hence w(v 1 v 2 ) = w(v 2 v 3 ) = a and χ w (v 2 ) = 4a in this situation. The proof follows similarly from the assumption w(u

The other replacement gadgets for {a, -a} are defined inductively. To obtain the graph R k with k ≥ 3, start from a path v 1 v 2 v 3 with length 2. Next identify v 2 and the root of each of k-1 copies of the graph T . For every i th resulting copy v 2 u 2 u 3 v 2 of T , with i ∈ {1, ..., k -1}, now R i -subdivide each of the edges v 2 u 2 and v 2 u 3 . This results in a cycle s 1 s 2 s 3 s 4 s 5 s 1 with length 5 such that s 1 = v 2 , and the edges s 1 s 2 and s 2 s 3 , and s 1 s 5 and s 5 s 4 are the inputs of two replacement gadgets R i . To finish the construction of R k , identify v 2 and one vertex of each of k -1 cycles with length 5. The inputs of R k are v 1 v 2 and v 2 v 3 . Lemma 6.4. Let k ≥ 3 be fixed. The graph R k is a (2ka, -2ka)-replacement gadget for {a, -a}.

Proof. Assume the claim is true for every k up to some value of i, and consider k = i+1. Let w be a vertex-colouring {a, -a}-edge-weighting of R k . Consider first every cycle v 2 s 2 s 3 s 4 s 5 v 2 with length 5 such that the edges v 2 s 2 and s 2 s 3 , and s 4 s 5 and s 5 v 2 are the inputs of two graphs R k , with k < k. Note that we cannot have w(s 2 s 3 ) = w(s 4 s 5 ) since otherwise we would have χ w (s 3 ) = χ w (s 4 ) (Observation 2.1). Thus we have w(s 2 s 3 ) = a and w(s 4 s 5 ) = -a without loss of generality, and w(v 2 s 2 ) = a and w(v 2 s 5 ) = -a according to the induction hypothesis. Besides, χ w (s 2 ) = 2k a and χ w (s 5 ) = -2k a. Hence, the k -1 cycles of this form attached to v 2 provide (k -1)(a+ (-a)) = 0 in the weighted degree of v 2 , and v 2 is adjacent with vertices whose weighted degrees lie in {-2(k -1)a, -2(k -2)a, ..., -2a, 2a, ..., 2(k -2)a, 2(k -1)a}. Now consider any "regular" cycle v 2 s 2 s 3 s 4 s 5 v 2 with length 5 attached to v 2 . For the same reasons as those given in the proof of Lemma 6.3, we have w(v 2 s 2 ) = w(v 2 s 5 ), and 0 ∈ {χ w (s 2 ), χ w (s 5 )}. Hence, each regular cycle provides either 2a or -2a in the weighted degree of v 2 . Is is then easy to check that the only way for w to be vertex-colouring is to have each of the k -1 regular cycles providing 2a (resp. -2a) to the weighted degree of v 2 , and w(v

In this situation, we get χ w (v 2 ) = 2ka (resp. χ w (v 2 ) = -2ka). For every other possible colouring, we necessarily get that χ w (v 2 ) lies in {-2(k -1)a, -2(k -2)a, ..., -2a, 0, 2a, ..., 2(k -2)a, 2(k -1)a}. Corollary 6.5. Any triplet (R i , R j , R k ) is a replacement triplet for {a, -a} when i, j and k are distinct.

Spreading gadget G for {a, -a}

The spreading gadget G for {a, -a} is depicted in Figure 11. The input of G is u 1 u 2 , while its outputs are u 9 u 10 and u 12 u 13 . We prove that G satisfies the spreading gadget property. Proposition 6.6. The graph G satisfies Property 1 for {a, -a}.

Proof. Suppose w is a vertex-colouring {a, -a}-edge-weighting of G . Note first that we cannot have w(u 3 u 5 ) = w(u 4 u 6 ). Indeed, suppose e.g. that w(u 3 u 5 ) = a and w(u 4 u 6 ) = -a. Then w(u 5 u 7 ) = a and w(u 6 u 7 ) = -a according to Lemma 6.2. Besides, χ w (u 5 ) = 2a and χ w (u 6 ) = -2a. Note further that the colouring of the T graph attached to u 7 provides a+(-a) = 0 in the weighted degree of u 7 , and that u 7 has a neighbour with weighted degree 0 (Lemma 6.1). Then note that for any value of {w(u 7 u 8 ), w(u 7 u 11 )}, i.e. {a, a}, {a, -a} or {-a, -a}, we get that χ w (u 7 ) is either 2a, 0 or -2a, respectively. Hence w is not vertex-colouring under the assumption w(u 3 u 5 ) = w(u 4 u 6 ).

On the contrary, note that if w(u 3 u 5 ) = w(u 4 u 6 ) = -a, then w can be vertex-colouring. Note first that we have w(u 5 u 7 ) = w(u 6 u 7 ) = -a according to Lemma 6.2. Besides, χ w (u 5 ) = χ w (u 6 ) = -2a. Recall that u 7 has a neighbour with weighted degree 0, and that the graph T attached to u 7 provides 0 to the weighted degree of u 7 . Now note that if {w(u 7 u 8 ), w(u 7 u 11 )} is {a, a} or {a, -a}, then we have χ w (u 7 ) = 0 or χ w (u 7 ) = -2a, respectively.

Figure 13: The collecting gadget G for the third implementation of the reduction framework, and a vertex-colouring {a, -a}-edge-weighting of G .

Proof. Assume w is a vertex-colouring {a, -a}-edge-weighting of G F (C i ) such that all the inputs of G F (C i ) are coloured a. We show the claim to be true when c i = 2, but the proof is similar for the case c i = 3. Recall that the graph T attached to u 3 provides a + (-a) = 0 in the weighted degree of u 3 , and that one of its vertices has weighted degree 0 (Lemma 6.1). Note then that if w(u 3 u 4 ) = w(u 3 u 5 ) = -a, then χ w (u 3 ) = 0. Therefore, at least one output of G F (C i ) receives colour a by w.

Collecting gadget G for {a, -a}

Let G be the graph depicted in Figure 13. The two regular inputs of G are v 1 v 3 and v 2 v 3 , while its output is v 3 v 4 . The forcing inputs of G are u 1 u 2 and u 3 u 4 , which are supposed to be coloured -a, and u 1 u 2 and u 3 u 4 which are supposed to be coloured a. We show that G is a collecting gadget for {a, -a}.

Proposition 6.8. The graph G satisfies Property 3 for {a, -a}.

Proof. Suppose w is a vertex-colouring {a, -a}-edge-weighting of G such that w(u 1 u 2 ) = w(u 3 u 4 ) = -a and w(u 1 u 2 ) = w(u 3 u 4 ) = a. Note that we cannot have w(u 2 u 4 ) = a. Indeed, in this situation, we would have w(u 2 u 5 ) = w(u 4 u 5 ) so that χ w (u 2 ) = χ w (u 4 ). But then we would get {χ w (u 2 ), χ w (u 4 )} = {a, -a} and we would have χ w (u 5 ) ∈ {a, -a} no matter what is w(u 5 v 3 ). Therefore w(u 2 u 4 ) = -a. For the same reasons, we have w(u 2 u 5 ) = a and w(u 4 u 5 ) = -a without loss of generality. Then, χ w (u 2 ) = -a and χ w (u 4 ) = -3a, and we have w(u 5 v 3 ) = a since otherwise we would have χ w (u 5 ) = -a. Besides, we have χ w (u 5 ) = a.

Repeating the same arguments for the graph induced by {u 1 , u 2 , u 3 , u 4 , u 5 , v 3 }, we get that w(u 5 v 3 ) = -a and χ w (u 5 ) = -a. Therefore, the edges u 5 v 3 and u 5 v 3 provide a + (-a) = 0 in the weighted degree of v 3 , and v 3 is adjacent