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A new technique based on the detection of the amplitude of the second harmonic was described

in a previous paper. To compute the elastic modulus and the hardness of materials, the technique

uses only the derivative of the contact radius with respect to the indentation depth. For this

reason, this method is applicable only to homogeneous materials. In this paper, the method is

extended to any materials with constant Young modulus. The indentation depth value is not

needed at all, thus eliminating uncertainties related to the displacement measurement, which are

very influent at small penetration depths. Furthermore, we also explain how to compute the

indentation depth from the detection of the amplitude of the second harmonic. This new

measurement technique was tested on three samples: fused silica, Poly(methyl methacrylate)

(PMMA), and calcite, which is expected to exhibit indentation size effect. The obtained results

show that mechanical properties and the indentation depth can be determined with good accuracy

for penetration depths between 25 and 100 nm using this method.

I. INTRODUCTION

The nanoindentation technique is widely used to

measure the hardness H and the reduced elastic modulus

E9* of materials at the nanometer scale. The first hardness

tests were realized by Brinell, who used a hard steel sphere

to indent samples (see Tabor1). Other hardness tests were

developed later, such as the Vickers test or the Knoop test,

which differ in the indenter geometry.2 To measure

hardness, the load and the projected contact area have to

be known. For these tests, the load is imposed, and the

contact area is measured after the test with an optical

microscope. At a smaller scale, optical measurement of the

contact area is not precise enough, so instrumented in-

dentation testing has been developed. With instrumented

nanoindentation testing, the load P and the displacement

hm are measured continuously during the test. With this

technique, which is based on load and displacement mea-

surement, Bulychev et al.3 showed that the reduced elastic

modulus of the material can be obtained from the unload-

ing curve. A great number of authors have contributed to

the understanding of the loading–unloading curves with

new methods of analysis.4–10

The past 20 years or so have seen the development of

a dynamic technique called Continuous Stiffness Mea-

surement (CSM).6 The principle is to superimpose a small

oscillation amplitude on the displacement (or load) signal

and to measure the load (or displacement) response.

The harmonic contact stiffness and the harmonic contact

damping of the tested material can be computed from the

analysis of the dynamic response of the system.Viscoelastic

properties are thus obtainedwith the CSMmethod, which is

useful for polymeric materials characterization.11 In addi-

tion, with the CSM technique, mechanical properties can

be measured as a function of the indentation depth, which

is helpful for the characterization of coatings or graded

materials.

To compute the static and dynamic properties cited

above, the projected contact area value is necessary. With

the nanoindentation technique, the tip displacement is

measured, not the contact depth or the projected contact

area. Many methods to estimate this area have been pro-

posed, but a lot of uncertainties related to the displacement

measurement influence the data, which is problematic for

contact area measurement, particularly at small penetration

depths (see Sec. II). This paper presents a new technique
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based on the detection of the amplitude of the second

harmonic. This technique was already suggested in

a previous paper, in which the equations were written

as a function of the derivative of the contact radius versus

indentation depth.12 Mechanical properties were more

precise at smaller penetration depths, but the proposed

equations were applicable only for materials with a con-

stant H/Ec
9* ratio (Ec

9* is the reduced contact modulus

between the tip and the sample). This paper presents an

improved technique that does not use the indentation depth

and thus is applicable to any materials with constant

reduced elastic modulus.

In this paper, we begin by the discussion of the pro-

jected contact area calculation and the uncertainties related

to the displacement measurement. It is followed by the

unloading curve study to show how it is possible to com-

pute the elastic modulus, the hardness, and the indenta-

tion depth without any use of the indentation depth. The

fourth part explains the link between the elastic modulus

and the amplitude of the second harmonic. The fifth part

presents the experimental tests, and the sixth part dis-

cusses the results.

II. DETERMINATION OF THE PROJECTED

CONTACT AREA

A. Mechanical properties measured with the CSM

method

With instrumented nanoindentation testing, the hard-

ness H, the reduced elastic contact modulus Ec
9*, and the

loss contact modulus Ec
0* of tested materials are com-

puted as a function of the indentation depth. The hardness

is defined as the load divided by the projected contact area

between the indenter and the sample1,6,11,12:

H ¼
P

Ac

; ð1Þ

where P is the applied load and Ac is the projected contact

area. The reduced elastic contact modulus can be com-

puted using the Sneddon relation13:

E9�
c
¼

S

2

ffiffiffiffiffi

p

Ac

r

; ð2Þ

where S is the harmonic contact stiffness measured

continuously with the CSM technique. This equation is

valid for any axisymmetric indenter. The loss modulus is

defined by the following equation14,15:

E0�
c
¼

DSx

2

ffiffiffiffiffi

p

Ac

r

; ð3Þ

where Ds is the harmonic contact damping and x is the

angular frequency. Equations (2) and (3) can be multiplied

by a constant coefficient to take into account the non-

axisymmetry of the indenter.8,15,16With the static method,

the hardness and the reduced elastic contact modulus are

obtained at maximum load. With the CSM technique, the

mechanical properties described by Eqs. (1)–(3) are mea-

sured as a function of the indentation depth h. All equations

depend on the projected contact area Ac. With a perfect con-

ical indenter, the projected contact area Ac can be calculat-

ed from the contact depth hc using a geometrical relation:

Ac ¼ pðtanðhÞhcÞ
2

; ð4Þ

where h is the equivalent angle of the conical indenter (for
a Berkovich tip, h 5 70.32°). In instrumented nano-

indentation, the contact depth hc is computed from the

indentation depth value h. The calculation of the actual

contact depth is very difficult because the relation between

the contact depth and the indentation depth is influenced

by measurement uncertainties (thermal drift, tip defect,

etc.) and by material pileup or sink-in around the indent

during the test. A lot of methods can be used to precisely

determine this relation. The Oliver and Pharr model6 is the

mainly used method. The contact depth is defined by the

following equation:

hc ¼ h� e
P

S
; ð5Þ

where h is the indentation depth and e is a constant

depending on the indenter geometry. Then, Oliver and

Pharr propose computing the projected contact area with

an area function, which takes into account the nonperfect

geometry of the indenter.6Loubet et al.17,18 propose another

method. The relation between the contact depth and the

indentation depth is given by the following equation:

hc ¼ a h�
P

S
þ h0

� �

; ð6Þ

where h0 is an equivalent height of the tip defect. Piling-up

and sinking-in phenomena are taken into account by the

coefficient a, the value of which is 1.2 for a Berkovich

indenter.17 The Loubet model can be used for a large range

of materials. We note that the ratio P/S can be written as

a function of hardness, reduced elastic modulus, and

contact depth by combining Eqs. (1), (2), and (4):

P

S
¼

p

2
tanðhÞ

H

E9�
c

hc : ð7Þ

This relation will be used in Sec. III.

B. Displacement uncertainties

To determine the indentation depth h, the precise

identification of the contact point hin is necessary. The
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indentation depth is related to the measured tip displace-

ment hm by the following equation:

h ¼ hm � hin : ð8Þ

Plotting the harmonic contact stiffness S versus the

measured displacement hm is one way of identifying the

contact point.8 When an abrupt increase of the harmonic

contact stiffness is detected, the indenter is considered to

be in contact with the sample. For very soft materials,

however, contact detection is difficult. In Fig. 1, the har-

monic contact stiffness of an elastomeric material is plotted

versus the measured displacement hm. Because of the low

stiffness of the material, the contact point is difficult to

detect; the contact detection error can reach 100 nm or

more, inducing an error on the calculation of the projected

contact area, and consequently on the mechanical proper-

ties, especially at small indentation depths.

A second uncertainty comes from the thermal drift

caused by temperature variation during the test (Fig. 2),

which induces contraction or dilatation of the sample, the

indenter, and other components such as the frame. The

most commonly used method to cope with this problem is

to place the tip on the surface, then to hold the load at a

low constant value of a few micronewtons during a period

of 100 s, while the displacement is monitored to identify

the displacement rate produced by thermal expansion

in the system.6 Other techniques can be used to account

for the thermal drift.15 All the cited methods suppose that

the thermal drift is constant during the test.

A third uncertainty is the tip defect. Indeed, the in-

denter is not perfectly sharp, so geometrical relation is not

adapted to compute the contact area. To estimate the

equivalent height of the tip defect, Loubet et al.17 suggest

plotting the dynamic contact stiffness versus penetration

depth hr
9 [the penetration depth is defined in Fig. 3 and in

Eq. (11) in Ref. 12] using a flat homogeneous material

like fused silica. Indeed, for a perfectly sharp indenter, the

dynamic contact stiffness is expected to vary proportion-

ally to the penetration depth, which is not the case for

rounded tips. Loubet et al. propose extrapolating to zero

the linear part of the stiffness curve versus penetration

depth to obtain the depth h0 corresponding to the equiv-

alent height of the tip defect. This value h0 is then added

to the calculated penetration depth to account for the tip

defect. Nevertheless, at penetration depths lower than

100 nm, the error in h0 calculation has great influence on

the calculation of the projected contact area.12 Thus, h0
needs to be precisely computed to obtain reliable hard-

ness values. However, for penetration depths lower than

20–30 nm, because of the nonperfect geometry of the

indenter, the tip cannot be considered as a Berkovich

indenter, so Eq. (4) cannot be used to calculate the

projected contact area.

FIG. 1. Harmonic contact stiffness versus measured displacement hm
for an elastomeric material. The precise contact point is difficult to

identify, so an error of 100 nm or more is possible.

FIG. 2. Loading–unloading curve with and without thermal drift

correction. Usual proposed corrections require assuming a constant

thermal drift during the test.

FIG. 3. Loading–unloading curve of fused silica with a Berkovich tip.

The dashed line is the theoretical unloading curve obtained with a flat

punch; hr is the remanent depth and hr
9 is the penetration depth.
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In a recent paper,12 we proposed a new method that

eliminates all these uncertainties. This method was based

on the measurement of the displacement second harmonic

amplitude but was only valid for homogeneous materials.

In the present paper, we extend this method to non-

homogeneous materials by computing the mechanical

properties only from dynamic measurements (i.e., CSM)

and not from static measurements (i.e., indentation depth).

III. STUDY OF THE UNLOADING CURVE

Figure 3 shows a typical loading–unloading curve ob-

tained on a fused silica sample. With the unloading part,

it is possible to calculate the contact stiffness S, expressed

as a function of the reduced elastic contact modulus Ec
9*

with the following equation13,15:

S ¼ 2E9�
c
a ; ð9Þ

where a is the equivalent tip contact radius. This expres-

sion is valid for an elastic contact for all axisymmetric

indenters.19 If the contact radius is substituted by the con-

tact depth hc, for a pyramid-shaped indenter, the following

equation is obtained:

S ¼ 2 tanðhÞE9�
c
hc : ð10Þ

For indentation test with a flat punch, the stiffness is

simply the slope of the unloading curve (dashed line in

Fig. 3). As shown in Fig. 3, the unloading curve for a

pyramid-shaped indenter is not linear, so a second de-

rivative is computable. After derivation of Eq. (10) with

respect to the indentation depth h, and assuming that the

reduced elastic contact modulus is constant during the

unloading, the following equation is obtained:

dS

dh
¼ 2 tanðhÞE9�

c

dhc

dh
: ð11Þ

This expression depends on the indenter geometry, on

the reduced elastic contact modulus, and on the derivative

of the contact depth hc with respect to the indentation

depth h. The last term is of primary importance, as it takes

into account the pileup or sink-in of the material. The

Loubet contact depth model in Eq. (7) yields to:

hc ¼
a

1þ ap tanðhÞ
2

H
E9�
c

ðhþ h0Þ : ð12Þ

After derivation of Eq. (12) with respect to the in-

dentation depth h, the following equation is obtained:

dhc

dh
¼

a

1þ ap tanðhÞ
2

H
E9�
c

: ð13Þ

The hardness H can also be substituted in Eq. (13) by

the following expression:

H ¼
4P

pS2
ðE9�

c
Þ2 : ð14Þ

The reduced elastic contact modulus can be then

computed from Eqs. (11), (13), and (14):

E9�
c
¼

dS
dh
S2

2a tanðhÞ S2 � P dS
dh

� � : ð15Þ

The hardness is computed with Eq. (14) and the

reduced elastic modulus E9* of the material is computed

with the following equation:

1

E9�
¼

1

E9�
c

�
1

E9�
i

; ð16Þ

where Ei
9* is the reduced elastic modulus of the indenter.

The displacement measurement is no longer needed,

which is of primary interest regarding the uncertainties

mentioned in the previous paragraph. The expression of

the derivative of the contact depth with respect to the

indentation depth has been computed with the Loubet

model, but the same calculation can be done with the

Oliver and Pharr model.

We note that the indentation depth h can be directly

computed from the ratio of the harmonic contact stiffness

[Eq. (10)] over the derivative of the contact stiffness

versus indentation depth [Eq. (11)], by noticing that:

S

�

dS

dh
¼ hc

�

dhc

dh
¼ hþ h0 : ð17Þ

To obtain the reduced elastic modulus, the hardness,

and the indentation depth without any displacement

measurement, it is necessary to determine the derivative

of the contact stiffness with respect to the indentation

depth. The following section presents the method that we

use to make such determination.

IV. SECOND DERIVATIVE AND SECOND

HARMONIC (CSM METHOD)

In a previous paper, with the expression of the Fourier

series and the Taylor development at the second order, it

was shown how to link the second derivative of load with

respect to the indentation depth with the second harmonic

of load12:

P2e
�ju2 ¼

h21
2

d2P

dh2
; ð18Þ

where P2 is the amplitude of the second harmonic of load,

u2 is the phase angle between the second harmonic of load
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and the second harmonic of displacement, and h1 is the

oscillation amplitude of displacement. For a system con-

trolled by CSM, the derivative of the load with respect

to the indentation depth is expressed by the following

equation:

dP

dh
¼ ðK � x2mÞð1þ j tanðu1ÞÞ ; ð19Þ

where K is the total harmonic stiffness, u1 is the phase

angle between the first harmonic of load and the first

harmonic of displacement, and m is the column mass. To

obtain the second derivative, Eq. (19) is derived with

respect to the indentation depth in the following way:

d2P

dh2
¼

d dP
dh

� �

dK
�
dK

dS
�

dS

dhc
�
dhc

dh
: ð20Þ

The first term is computed by deriving Eq. (19) with

respect to K and supposing the phase angle to be constant.

The second term is computed by deriving the following

equation with respect to S:

K ¼
1

S
þ

1

Kc

� ��1

þKS ; ð21Þ

where Kc is the column stiffness and Ks is the support

springs stiffness. The third and fourth terms are computed

with Eqs. (11) and (13).

Using Eqs. (18) and (20), the reduced elastic contact

modulus is thus expressed by the following equation:

E9�
c
¼

P2j jS2

a tanðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2ðu1Þ
p

h1j jKð Þ2�2P P2j j
� 	 :

ð22Þ

The reduced elastic modulus E9* of the tested material

is obtained from Eqs. (15) and (16) and the hardness

H from Eq. (14). This new expression is interesting

because the indentation depth is not needed to compute

the mechanical properties.

We note that the equations derived above are only

usable for displacement-controlled systems. In the case

of load-controlled systems, the amplitude of the second

harmonic of displacement is expressed by the following

equation:

h2e
�ju2 ¼

P2
1

2

d2h

dP2
; ð23Þ

where h2 is the amplitude of the second harmonic of

displacement. The second derivative of the indentation

depth with respect to the load can be expressed in a very

simple way as a function of the second derivative of the

load with respect to the indentation depth:

d2h

dP2
¼ �

1

v3
d2P

dh2
; ð24Þ

where v ¼ dP
dh
. With Eqs. (19), (20), (23), and (24), the

expression of the reduced elastic contact modulus is:

E9�
c
¼

h2j jS2

a tanðhÞ P1j jKð Þ2

ðK�x2mÞ3ð1þtan2ðu1ÞÞ
� 2P h2j j

� 	 : ð25Þ

The reduced Young modulus is computed with

Eq. (16) and the hardness with Eq. (14). In Eq. (25), the

amplitude of the second harmonic h2j j, the total harmonic

stiffness K, the applied load P, the phase angle u1, and the

harmonic load P1 are measured, the harmonic contact

stiffness S is computed, the angular frequency x is fixed,

and the indenter angle h and the column mass m are

known, so it is possible to calculate the reduced elastic

contact modulus Ec
9*, the reduced elastic modulus E9*, and

the hardness H from the detection of the amplitude of the

second harmonic, and thus the indentation depth h using

Eq. (17). With this new technique, the indentation depth

h is not needed, and the uncertainties related to the

assessment of the indentation depth, such as the tip defect

height estimation, the contact detection, and the thermal

drift, are eliminated. Thus, this new technique could be

interesting to use for high-temperature tests where reliable

indentation depth values are complicated to obtain. It is

very important to note that all equations are valid if Ec
9* is

constant during the unloading. With the CSM technique,

the unloading curve corresponds to the oscillation ampli-

tude, which is usually set between 0 and 5 nm. If the reduced

elastic modulus is quite constant along the indentation

depth, the above equations can be used.

V. EXPERIMENTATION

A. Samples and nanoindenter

Experiments were performed on three smooth materi-

als: fused silica, PMMA, and calcite. Fused silica and

PMMA samples are supposed to be homogeneous. The

calcite was chosen because it exhibits a small indentation

size effect (ISE) on the hardness results.20

A Nano Indenter SA2� equipped with a DCM head

system (Agilent Technologies, Santa Clara, CA) was used.

This load-controlled apparatus has high resolution in

displacement and force measurement (0.2 pm and 1 nN,

respectively). A Berkovich diamond tip was used in the

experiments. The equivalent height of the tip defect h0was

approximately 5 nm. To record the amplitude of the

second harmonic of the displacement signal, a second

lock-in amplifier (EG&G 7260DSP�, EG&G Technical

Services, Norfolk, VA) was attached to the SA2. For

more details about the apparatus and materials, please refer

to Guillonneau et al.12
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B. Indentation procedure

The maximum load applied to the specimens was 5 mN

for silica, 0.15 mN for PMMA, and 4.5 mN for calcite.

The oscillation amplitude was set to h1 5 4 nm for fused

silica and PMMA samples, whereas for calcite, the

oscillation amplitude was gradually increased with the

load to avoid loss of information and loss of contact at

small penetration depths.21 More precisely, the oscillation

amplitude was h1 5 2 nm for load between 0 and 0.2 mN

and 4 nm for load between 0.2 and 4.5 mN. The oscillation

frequency was 97 Hz for fused silica and calcite and 31 Hz

for PMMA. The strain rate was _P/P 5 0.005 s�1 for

PMMA and calcite and _P/P5 0.003 s�1 for fused silica.14

Ten indentation tests were realized on each sample. In the

following, all the data are mean curves from these 10 tests.

VI. RESULTS AND DISCUSSION

A. Amplitude of the second harmonic

Figures 4, 5, and 6 plot the amplitude of the second

harmonic measured on fused silica, PMMA, and calcite,

respectively, as a function of the penetration depth hr
9. The

theoretical curve obtained from Eq. (25) is also plotted

(using a reduced elastic modulus for fused silica, PMMA,

and calcite of 73,6 5,12 and 77 GPa,22 respectively). The

agreement between experimental data and theoretical data

is very satisfactory. Furthermore, experimental values are

in good agreement with theoretical values for penetration

depths between 25 and 100 nm, so mechanical properties

will also be accurate in this range of penetration depths.

In the case of the fused silica sample (Fig. 4), experi-

mental and theoretical values differ for penetrations depths

lower than 25 nm. It can be explained by the geometrical

imperfection of the tip (see Sec. II. B). This can be ob-

served by plotting the harmonic contact stiffness versus

the penetration depth, which is expected to vary linearly

for a homogeneous material such as fused silica (Fig. 7).

Here, the linearity is broken below hj 5 25 nm, which is

in good agreement with the limit identified in Fig. 4.

In the case of PMMA (Fig. 5), the amplitude of the

second harmonic at small penetration depths (,50 nm)

increases before decreasing for larger penetration depths.

This is caused by the CSM system, which is in transitory

mode at the beginning of the test (i.e., the amplitude of the

first harmonic is not stabilized). Note that, in the stabilized

regime, the amplitude of the second harmonic decreases

with the indentation depth. That is why this method is

accurate only for small penetration depths; at larger pene-

tration depths, the noise becomes more and more influent.

B. Mechanical properties

The reduced elastic modulus E9* and the hardness H of

fused silica and PMMA versus the penetration depth are

FIG. 5. Amplitude of the second harmonic of displacement versus

penetration depth for PMMA: experimental and theoretical curves.

FIG. 4. Amplitude of the second harmonic of displacement versus

penetration depth for fused silica: experimental and theoretical curves.

FIG. 6. Amplitude of the second harmonic of displacement versus

penetration depth for calcite: experimental and theoretical curves.
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plotted respectively in Figs. 8 and 9. The mechanical

properties are computed both from the detection of the

amplitude of the second harmonic and from the classical

CSM method. The results are similar for both methods,

except that the standard deviation is higher in the case of

the second harmonic method. This is not surprising

because of the low values of the second harmonic

amplitude. To solve this problem, it would be interesting

to be able to increase automatically the oscillation ampli-

tude with the penetration depth to get an accurate value

of the amplitude of the second harmonic during the

whole test. Unfortunately, it is not possible with existing

devices.

Figures 10 and 11 plot the reduced elastic modulus and

the hardness of calcite, respectively, versus the penetration

depth. As explained before, the oscillation amplitude was

manually increased during the test to get a more precise

second harmonic signal. More precisely, for penetration

depths between 30 and 70 nm, the oscillation amplitude

h1 was 2 nm, and for higher penetration depths, the

oscillation amplitude h1 was 4 nm. For penetration depths

higher than 75 nm approximately, the mechanical proper-

ties computed with the two methods are similar, except

that the standard deviation is higher in the case of the

second harmonic method, as previously observed for fused

silica and PMMA.

At small penetration depths, the hardness computed

with the two methods is slightly different. The ISE makes

the hardness of calcite decrease during the first nano-

meters of penetration, but this decrease appears to be

different with the two methods. This could be explained

by noting that the reduced elastic modulus is constant

with the second harmonic method, whereas it slightly

increases with the classical CSM method until it reaches

a constant value (around 76 GPa). This apparent increase

in elastic modulus in the first nanometers may be caused

by uncertainties related to the indentation depth calcula-

tion. Calcite is supposed to have a constant reduced

elastic modulus, which is what is obtained with the

second harmonic method. To go further, we computed

the hardness from the CSM method using Eqs. (1) and (2)

and assuming a constant elastic modulus (76 GPa). As

shown in Fig. 12, when assuming a constant elastic

modulus, the hardness curve obtained through the CSM

method is very close to hardness values obtained with

the second harmonic method. This points to the influence

of the uncertainties related to classical CSM methods,

which could be removed thanks to the second harmonic

method.

The above analysis shows that the hardness values

obtained with the two methods are similar for high

penetration depths, and the results are more precise with

the second harmonic method for penetration depths be-

tween 25 and 100 nm. The obtained mechanical properties
FIG. 7. Harmonic contact stiffness of fused silica versus penetration

depth; hj is the limit from which the harmonic contact stiffness is linear

with the penetration depth.

FIG. 8. (a) Reduced elastic modulus and (b) hardness versus penetration depth for fused silica.
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are close to literature values.20,22,23 As shown with the

calcite sample, mechanical properties for inhomogeneous

materials can be determined with the second harmonic

method.

C. Indentation depth

Figures 13, 14, and 15 plot the load–indentation depth

curves for fused silica, PMMA, and calcite, respectively.

The indentation depth was computed using Eq. (17). It is

in very good agreement with the classical indentation

depth. The indentation depth is obviously more accurate at

small penetration depths because of the higher quality of

the second harmonic signal. This indicates that the in-

dentation depth can be computed without using any

measurement. This is very promising because it removes

the problems related to thermal drift. For instance, this

technique could be useful for high-temperature tests where

thermal drift is of primary importance.24

D. Limitation of the technique

The standard deviation is important with the curves

obtained from the second harmonic method. This is

caused by the noise in the recorded signal because the

nanoindenter is not designed to record second harmonic

amplitude. As shown in Figs. 4–6, the amplitude of the

second harmonic decreases with the penetration depth, so

the noise is more and more important. That is why the

mechanical properties and the indentation depth are more

accurate at small penetration depths. To increase the signal/

noise ratio, the oscillation amplitude h1 should be in-

creased with the penetration depth. Nevertheless, the

oscillation amplitude has to be low enough to avoid los-

ing contact between the tip and the sample.21 Thus, to

obtain accurate results, the oscillation amplitude has to be

carefully chosen. The second limit is the curvature of the

FIG. 9. (a) Reduced elastic modulus and (b) hardness versus penetration depth for PMMA.

FIG. 10. Reduced elastic modulus versus penetration depth for calcite:

second harmonic method versus classical CSM method.

FIG. 11. Hardness versus penetration depth for calcite (material

expected to exhibit an ISE in hardness): second harmonic method

versus classical CSM method.
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unloading curve. For near fully plastic materials like

aluminum, which exhibits a quasilinear unloading curve,

the second harmonic signal is too small, so the present

method cannot be used.

VII. CONCLUSIONS

In this paper, a new technique based on the detection

of the amplitude of the second harmonic of displacement

signal has been proposed. With this new method, the

reduced elastic modulus and the hardness of materials can

be calculated. The obtained expressions do not depend on

the indentation depth, so uncertainties related to the

displacement measurement, especially at small penetra-

tion depths, are eliminated. Furthermore, the indentation

depth can be obtained without any use of displacement

measurement. This technique can be used for any

materials with constant Young modulus. The experimen-

tal tests show that the material mechanical properties of

fused silica and PMMA can be computed with precision

at penetration depths between 25 and 100 nm, which is

more difficult with classical tests because the uncertain-

ties related to the indentation depth calculation are very

influent in this penetration range. The tests realized on

calcite show that the technique can be applied to

materials exhibiting ISE, and that the hardness measured

with second harmonic method is more precise. In the last

part, the indentation depth was computed from second

harmonic method. The results obtained with this tech-

nique are close to the indentation depth as classically

measured. This innovative technique will be interesting

for high-temperature tests. Current apparatus, however,

are not designed to record precisely the second har-

monic, inducing scattering on the results. We expect

that future developments will include such type of

measurement.

FIG. 12. Hardness versus penetration depth for calcite assuming

a constant reduced elastic modulus value in the calculation of the

hardness with the CSM method.

FIG. 14. PMMA load–displacement curve obtained with displacement

measurement and second harmonic method.

FIG. 15. Calcite load–displacement curve obtained with displacement

measurement and second harmonic method.

FIG. 13. Fused silica load–displacement curve obtained with displace-

ment measurement and second harmonic method.
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