
HAL Id: hal-00826274
https://hal.science/hal-00826274v1

Submitted on 27 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full abstraction for fair testing in CCS
Tom Hirschowitz

To cite this version:
Tom Hirschowitz. Full abstraction for fair testing in CCS. 5th Conference on Algebra and Coalgebra
in Computer Science, 2013, Varsovie, France. pp.175-190, �10.1007/978-3-642-40206-7_14�. �hal-
00826274�

https://hal.science/hal-00826274v1
https://hal.archives-ouvertes.fr

Full abstraction for fair testing in CCS

Tom Hirschowitz‹

CNRS and Université de Savoie

Abstract. In previous work with Pous, we defined a semantics for CCS

which may both be viewed as an innocent presheaf semantics and as a

concurrent game semantics. It is here proved that a behavioural equiv-

alence induced by this semantics on CCS processes is fully abstract for

fair testing equivalence.

The proof relies on a new algebraic notion called playground, which rep-

resents the ‘rule of the game’. From any playground, two languages,

equipped with labelled transition systems, are derived, as well as a strong,

functional bisimulation between them.

Keywords: Programming languages; categorical semantics; presheaf se-

mantics; game semantics; concurrency; process algebra.

1 Introduction

Motivation and previous work Innocent game semantics, invented by Hy-
land and Ong [20], led to fully abstract models for a variety of functional lan-
guages, where programs are interpreted as strategies in a game. Presheaf mod-
els [22, 6] were introduced by Joyal et al. as a semantics for process algebras,
in particular Milner’s CCS [28]. Previous work with Pous [19] (HP) proposes a
semantics for CCS, which reconciles these apparently very different approaches.
Briefly, (1) on the one hand, we generalise innocent game semantics to both
take seriously the possibility of games with more than two players and consider
strategies which may accept plays in more than one way; (2) on the other hand,
we refine presheaf models to take parallel composition more seriously. This leads
to a model of CCS which may both be seen as a concurrent game semantics, and
as an innocent presheaf model, as we now briefly recall.

To see that presheaf models are a concurrent, non-innocent variant of game
semantics, recall that the base category, say C, for such a presheaf model typ-
ically has as objects sequences of labels, or configurations in event structures,
morphisms being given by prefix inclusion. Such objects may be understood as
plays in some game. Now, in standard game semantics, a strategy is a prefix-
closed (non-empty) set of plays. Unfolding the definition, this is the same as a
functor Cop Ñ 2, where 2 is the poset category 0 ď 1: the functor maps a play
to 1 when it is accepted by the strategy, and to 0 otherwise. It is known since

‹ Partially funded by the French ANR projet blanc “Formal Verification of Distributed

Components” PiCoq ANR 2010 BLAN 0305 01 and CNRS PEPS CoGIP.

2 T. Hirschowitz

Harmer and McCusker [15] that this notion of strategy does not easily adapt
to non-determinism or concurrency. Presheaf semantics only slightly generalises
it by allowing strategies to accept a play in several ways. A strategy S now
maps each play p to a set Sppq. The play is accepted when Sppq is non-empty,
and, because there are then no functions Sppq Ñ H, being accepted remains a
prefix-closed property of plays. The passage from 2 to more general sets allows
to express branching-time semantics.

This links presheaf models with game models, but would be of little interest
without the issue of innocence. Game models, indeed, do not always accept any
prefix-closed set of plays S as a strategy: they demand that any choice of move
in S depends only on its view. E.g., consider the CCS process P “ pa|pb ‘ cqq,
where ‘ denotes internal choice, and a candidate strategy accepting the plays
ǫ, paq, pbq, pcq, pabq, but not pacq. This strategy refuses to choose c after a has
been played. Informally, there are two players here, one playing a and the other
playing b‘c; the latter should have no means to know whether a has been played
or not. We want to rule out this strategy on the grounds that it is not innocent.

Our technical solution for doing so is to refine the notion of play, making
the number of involved players more explicit. Plays still form a category, but
they admit a subcategory of views, which represent a single player’s possible
perceptions of the game. This leads us to two equivalent categories of strategies.
In the first, strategies are presheaves on views. In the second category, strate-
gies are certain presheaves on arbitrary plays, satisfying an innocence condition.
Parallel composition, in the game semantical sense, is best understood in the for-
mer category: it merely amounts to copairing. Parallel composition, in the CCS
sense, which in standard presheaf models is a complex operation based on some
labelling of transitions or events, is here just a move in the game. The full cate-
gory of plays is necessary for understanding the global behaviour of strategies. It
is in particular needed to define our semantic variant of fair testing equivalence,
described below. One may think of presheaves on views as a syntax, and of in-
nocent presheaves on plays as a semantics. The combinatorics of passing from
local (views) to global (arbitrary plays) are dealt with by right Kan extension.

Discussion of main results In this paper, we further study the semantics
of HP, to demonstrate how close it is to operational semantics. For this, we
provide two results. The most important, in the author’s view, is full abstraction
w.r.t. fair testing semantics. But the second result might be considered more
convincing by many: it establishes that our semantics is fully abstract w.r.t.
weak bisimilarity. The reason why it is here considered less important is that it
relies on something external to the model itself, namely an lts for strategies,
constructed in an ad hoc way. Considering that a process calculus is defined
by its reduction semantics, rather than by its possibly numerous ltss, testing
equivalences, which rely on the former, are more intrinsic than various forms of
bisimilarity.

Now, why consider fair testing among the many testing equivalences? First of
all, let us mention that we could probably generalise our result to any reasonable

Full abstraction for fair testing in CCS 3

testing equivalence. Any testing equivalence relies on a ‘testing predicate’ K.
E.g., for fair testing, it is the set of processes from which any unsuccessful,
finite reduction sequence extends to a successful one. We conjecture that for
any other predicate K1, if K1 is stable under weak bisimilarity, i.e, P » Q P K1

implies P P K1, then we may interpret the resulting equivalence in terms of
strategies, and get a fully abstract semantics. However, this paper is already quite
complicated, and pushes generalisation rather far in other respects (see below).
We thus chose to remain concrete about the considered equivalence. It was then
natural to consider fair testing, as it is both one of the most prominent testing
equivalences, and one of the finest. It was introduced independently by Natarajan
and Cleaveland [30], and by Brinksma et al. [3, 33] (under the name of should
testing in the latter paper), with the aim of reconciling the good properties of
observation congruence [29] w.r.t. divergence, and the good properties of previous
testing equivalences [7] w.r.t. choice. Typically, a.b ` a.c and a.pb ‘ cq (where
` denotes guarded choice and ‘ denotes internal choice) are not observation
congruent, which is perceived as excessive discriminating power of observation
congruence. Conversely, p!τq | a and a are not must testing equivalent, which
is perceived as excessive discriminating power of must testing equivalence. Fair
testing rectifies both defects, and has been the subject of further investigation,
as summarised, e.g., in Cacciagrano et al. [5].

Overview We now give a bit more detail on the contents, warning the reader
that this paper is only an extended abstract, and that more technical details may
be found in a (submitted) long version [18]. After recalling the game from HP in
Section 2, as well as strategies and our semantic fair testing equivalence „f in
Section 3, we prove that the translation L´M of HP from CCS to strategies is such
that P „f,s Q iff LP M „f LQM, where „f,s is standard fair testing equivalence
(Theorem 4.6).

Our first attempts at proving this where obscured by easy, yet lengthy case
analyses over moves. This prompted the search for a way of factoring out what
holds ‘for all moves’. The result is the notion of playground, surveyed in Sec-
tion 4.1. It is probably not yet in a mature state, and hopefully the axioms will
simplify in the future. We show how the game recalled above organises into such
a playground DCCS . We then develop the theory in Section 4.2, defining, for any
playground D, two ltss, TD and SD, of process terms and strategies, respectively,
over an alphabet FD. We then define a map J´K : TD Ñ SD between them, which
we prove is a strong bisimulation.

Returning to the case of CCS in Section 4.3, we obtain that SDCCS indeed
has strategies as states, and that „f may be characterised in terms of this lts.
Furthermore, unfolding the definition of TDCCS , we find that its states are terms

in a language containing CCS. So, we have maps obpCCS q
θ

ãÝÑ obpTDCCS q
J´K
ÝÝÑ

obpSDCCS q, where ob takes the set of vertices, and with J´K ˝ θ “ L´M. Now, a
problem is that CCS and the other two are ltss on different alphabets, respec-

tively A and FDCCS . We thus define morphisms A
ξ

ÐÝ L
χ

ÝÑ FDCCS and obtain
by successive change of base (pullback when rewinding an arrow, postcomposi-

4 T. Hirschowitz

tion when following one) a strong bisimulation J´K : TA

DCCS Ñ S
A

DCCS over A. We
then prove that θ, viewed as a map obpCCS q ãÑ obpTA

DCCS q, is included in weak
bisimilarity, which yields for all P , P »A LP M (Corollary 4.5). Finally, drawing
inspiration from Rensink et al. [33], we prove that CCS and S

A

DCCS both have
enough A-trees, in a suitable sense, and that this, together with Corollary 4.5,
entails the main result.

Related work Trying to reconcile two mainstream approaches to denotational
semantics, we have designed a (first version of a) general framework aiming at
an effective theory of programming languages. Other such frameworks exist [31,
32, 36, 10, 4, 2, 17, 1], but most of them, with the notable exception of Kleene
coalgebra, attempt to organise the traditional techniques of syntax with variable
binding and reduction rules into some algebraic structure. Here, as in Kleene
coalgebra, syntax and its associated lts are derived notions. Our approach may
thus be seen as an extension of Kleene coalgebra to an innocent/multi-player
setting, yet ignoring quantitative aspects.

In another sense of the word ‘framework’, recent work of Winskel and col-
leagues [34] investigates a general notion of concurrent game, based on earlier
work by Melliès [26]. In our approach, the idea is that each programming lan-
guage is interpreted as a playground, and that morphisms of playgrounds denote
translations between languages. Winskel et al., instead, construct a (large) bicat-
egory, into which each programming language should embed. Beyond this crucial
difference, both approaches use presheaves and factorisation systems, and con-
tain a notion of innocent, concurrent strategy. The precise links between the
original notion of innocence, theirs, and ours remain to be better investigated.

Melliès’s work [27], although in a deterministic and linear setting, incorpo-
rates some ‘concurrency’ into plays by presenting them as string diagrams. Our
innocentisation procedure further bears some similarity with Harmer et al.’s [14]
presentation of innocence based on a distributive law. Hildebrandt’s approach to
fair testing equivalence [16] uses closely related techniques, e.g., presheaves and
sheaves — indeed, our innocence condition may be viewed as a sheaf condition.
However, (1) his model falls in the aforementioned category of presheaf models
for which parallel composition is a complex operation; and (2) he uses sheaves
to correctly incorporate infinite behaviour in the model, which is different from
our notion of innocence. Finally, direct inspiration is drawn from Girard [12],
one of whose aims is to bridge the gap between syntax and semantics.

Perspectives We plan to adapt our semantics to more complicated calculi like
π, the Join and Ambients calculi, functional calculi, possibly with extra fea-
tures (e.g., references, data abstraction, encryption), with a view to eventually
generalising it. Preliminary investigations already led to a playground for π,
whose adequacy remains to be established. More speculative directions include
(1) defining a notion of morphisms for playgrounds, which should induce trans-
lations between strategies, and find sufficient conditions for such morphisms to
preserve, resp. reflect testing equivalences; (2) generalising playgrounds to apply

Full abstraction for fair testing in CCS 5

them beyond programming language semantics; in particular, preliminary work
shows that playgrounds easily account for cellular automata; this raises the ques-
tion of how morphisms of playgrounds would compare with existing notions of
simulations between cellular automata [8]; (3) trying and recast the issue of
deriving transition systems (ltss) from reductions [35] in terms of playgrounds.

Notation Set is the category of sets; set is a skeleton of the category of finite
sets, namely the category of finite ordinals and arbitrary maps between them;
ford is the category of finite ordinals and monotone maps between them. For any
category C, pC “ rCop , Sets denotes the category of presheaves on C, while pCf “
rCop , sets and uC “ rCop , fords respectively denote the categories of presheaves of
finite sets and of finite ordinals. One should distinguish, e.g., ‘presheaf of finite
sets’ Cop Ñ set from ‘finite presheaf of sets’ F : Cop Ñ Set. The latter means
that the disjoint union

ř
cPobpCq F pcq is finite. Throughout the paper, any finite

ordinal n is seen as t1, . . . , nu (rather than t0, . . . , n ´ 1u).
The notion of lts that we’ll use here is a little more general than the usual

one, but this does not change much. We thus refer to the long version for details.
Let us just mention that we work in the category Gph of reflexive graphs, and
that the category of ltss over A is for us the slice category Gph{A. Ltss admit
a standard change of base functor given by pullback, and its left adjoint given
by postcomposition. Given any lts p : G Ñ A, an edge in G is silent when it is
mapped by p to an identity edge. This straightforwardly yields a notion of weak
bisimilarity over A, which is denoted by »A.

Our (infinite) CCS terms are coinductively generated by the typed grammar

Γ $ P Γ $ Q

Γ $ P |Q

Γ, a $ P

Γ $ νa.P

. . . Γ $ Pi . . .

Γ $
ř

iPnαi.Pi

pn P Nq ,

where αi is either a, a, for a P Γ , or ♥. The latter is a ‘tick’ move used in the
definition of fair testing equivalence. As a syntactic facility, we here understand
Γ as ranging over N, i.e., the free names of a process always are 1 . . . n for some
n. E.g., Γ, a denotes just n ` 1, and a P Γ means a P t1, . . . , Γ u.

Definition 1.1. Let A be the reflexive graph with vertices given by finite ordi-
nals, edges Γ Ñ Γ 1 given by H if Γ ‰ Γ 1, and by Γ ` Γ ` tid ,♥u otherwise,
id : Γ Ñ Γ being the identity edge on Γ . Elements of the first summand are
denoted by a P Γ , while elements of the second summand are denoted by a.

We view terms as a graph CCS over A with the usual transition rules. The graph
A only has ‘endo’-edges; some ltss below do use more general graphs.

2 Recalling the game

2.1 Positions, Moves, and Plays

In this section, we define plays in our game. For lack of space, we cannot be
completely formal. A formal definition, with a gentle introduction to the required

6 T. Hirschowitz

techniques, may be found in HP (Section 3). Here is a condensed account. We
start by defining a category C. Then, positions in our game are defined to be
particular finite presheaves in pCf . Moves in our game are defined as certain

cospans X
s

ÝÑ M
t

ÐÝ Y in pCf , where t indicates that Y is the initial position of
the move, while s indicates that X is the final position. Plays are then defined
as finite composites of moves in the bicategory CospanppCf q of cospans in pCf . By
construction, positions and plays form a subbicategory, called DCCS

v .

In order to motivate the definition of our base category C, recall that (di-
rected, multi) graphs may be seen as presheaves over the category freely gener-
ated by the graph with two objects ‹ and r1s, and two edges s, t : ‹ Ñ r1s. Any
presheaf G represents the graph with vertices in Gp‹q and edges in Gr1s, the
source and target of any e P Gr1s being respectively Gpsqpeq and Gptqpeq. A way
to visualise how such presheaves represent graphs is to compute their categories
of elements [25]. Recall that the category of elements

ş
G for a presheaf G over

C has as objects pairs pc, xq with c P C and x P F pcq, and as morphisms pc, xq Ñ
pd, yq all morphisms f : c Ñ d in C such that F pfqpyq “ x. This category admits

a canonical functor πF to C, and F is the colimit of the composite
ş
F

πFÝÝÑ C
y

ÝÑ pC
with the Yoneda embedding. Hence, e.g., the category of elements for the repre-
sentable presheaf over r1s is the poset p‹, sq Ñ pr1s, id r1sq Ð p‹, tq, which could
be pictured as , thus recovering some graphical intuition.

We now define our base category C. Let us first give the raw definition, and
then explain. C is freely generated from the graph G, defined as follows, plus
some equations. As objects, G has (1) an object ‹, (2) an object rns for all n P N,
(3) objects on,i (output), ιn,i (input), νn (channel creation), πl

n (left fork), πr
n

(right fork), πn (fork), ♥n (tick), τn,i,m,j (synchronisation), for all i P n, j P
m,n,m P N. G has edges, for all n, (1) sn1 , . . . , s

n
n : ‹ Ñ rns, (2) sc, tc : rns Ñ c,

for all c P tπl
n, π

r
n,♥nu Y pYiPnton,i, ιn,iuq, (3) rn ` 1s

sνn
ÝÝÑ νn

tνn
ÐÝÝ rns, (4)

πl
n

ln

ÝÑ πn
rn

ÐÝ πr
n, on,i

ǫn,i,m,j

ÝÝÝÝÝÑ τn,i,m,j
ρn,i,m,j

ÐÝÝÝÝÝ ιm,j , for all i P n, j P m. In
the following, we omit superscripts when clear from context. As equations, we
require, for all n, m, i P n, and j P m, (1) sc˝sni “ tc˝sni , (2) s

νn ˝sn`1
i “ tνn ˝sni ,

(3) l ˝ t “ r ˝ t, (4) ǫ ˝ t ˝ si “ ρ ˝ t ˝ sj .

p‹, s1q p‹, s2q p‹, s3q

pr3s, id r3sq

In order to explain this seemingly arbitrary def-
inition, let us compute a few categories of elements
for representable presheaves. Let us start with an
easy one, that of r3s (we implicitly identify any c P C

with yc). An easy computation shows that it is the
poset pictured above. We will think of it as a posi-
tion with one player pr3s, id r3sq connected to three
channels, and draw it as above, where the bullet represents the player, and cir-
cles represent channels. (The graphical representation is slightly ambiguous, but
nevermind.) In particular, elements over r3s represent ternary players, while el-
ements over ‹ represent channels. Positions are finite presheaves empty except
perhaps on ‹ and rns’s. Let DCCS

h be the subcategory of pCf consisting of positions
and monic arrows between them.

Full abstraction for fair testing in CCS 7

A more difficult category of elements is that of π2. It is the poset generated
by the graph on the left:

lss1 “ rss1 ls rs lss2 “ rss2

l idπ2
r

lts1 “ rts1 lt “ rt lts2 “ rts2

.

We think of it as a binary player (lt) forking into two players (ls and rs), and
draw it as on the right. The vertical edges on the outside are actually identities:
the reason we draw separate vertices is to identify the top and bottom parts of
the picture as the respective images of both legs of the following cospan. First,
consider the inclusion r2s | r2s ãÑ π2: its domain is any pushout of rs1, s2s : p‹ `
‹q Ñ r2s with itself, i.e., the position consisting of two binary players sharing
their channels; and the inclusion maps it to the top part of the picture. Similarly,
we have a map r2s ãÑ π2 given by the player lt and its channels (the bottom
part). The cospan r2s | r2s Ñ π2 Ð r2s is called the local fork move of arity 2.

For lack of space, we cannot spell out all such cat-
egories of elements and cospans. We give pictorial de-
scriptions for pm, j, n, iq “ p3, 3, 2, 1q of τm,j,n,i on the
right and of πl

n, π
r
n, om,j , ιn,i, ♥n, and νn below:

♥

.

In each case, the representable is the middle object of a cospan determined
by the top and bottom parts of the picture. E.g., for synchronisation we have

rms j|i rns
s

ÝÑ τm,j,n,i
t

ÐÝ rms j|i rns, where rms j|i rns denotes the position X with
one m-ary player x, one n-ary player y, such that Xpsjqpxq “ Xpsiqpyq. Note
that there is a crucial design choice in defining the legs of these cospans, which
amounts to choosing initial and final positions for our moves.

I

X M Y

(1)
These cospans altogether form the set of local

moves, and are the ‘seeds’ for (global) moves, in the
following sense. Calling an interface any presheaf
consisting only of channels, local moves may be equipped with a canonical in-

terface, consisting of the channels of their initial position. If X
s

ÝÑ M
t

ÐÝ Y is a
local move (with final position X), and I is its canonical interface, we obtain a

commuting diagram (1) in pCf (with all arrows monic). For any morphism I Ñ Z

to some position Z, pushing I Ñ X , I Ñ M , and I Ñ Y along I Ñ Z yields,
by universal property of pushout, a new cospan, say X 1 Ñ M 1 Ð Y 1. Letting
(global) moves be all cospans obtained in this way, and plays be all composites

of moves in CospanppCf q, we obtain, as promised a subbicategory D
CCS

v .

8 T. Hirschowitz

“ “ (2)

Passing from local to global moves
allows moves to occur in larger po-
sitions. Furthermore, we observe that
plays feature some concurrency. For in-
stance, composing two global moves as
on the right, we obtain a play in which the order of appearance of moves is no
longer visible. In passing, this play embeds into a synchronisation, but is not one,
since the input and output moves are not related. This play may be understood
as each player communicating with the outside world. We conclude with a useful
classification of moves.

Definition 2.1. A move is full iff it is neither a left nor a right fork. We call
F the graph of global, full moves.

Intuitively, a move is full when its final position contains all possible avatars of
involved players.

3 Behaviours, strategies, and fair testing

3.1 Behaviours

U U 1

X X 1

Recall from HP the category E whose objects are maps
U Ð X in pC, such that there exists a play Y Ñ U Ð X ,
i.e., objects are plays, where we forget the final position.
Its morphisms pU Ð Xq Ñ pU 1 Ð X 1q are commuting
diagrams as on the right with all arrows monic. Morphisms
U Ñ U 1 in E represent extensions of U , both spatially (i.e., embedding into a
larger position) and dynamically (i.e., adding more moves).

We may relativise this category E to a particular position X , yielding a
category EpXq of plays on X : take the fibre overX of the functor cod: E Ñ DCCS

h

mapping any play U Ð X to its initial position X . The objects of EpXq are just
plays pU Ð Xq on X , and morphisms are morphisms of plays whose lower border
is idX . This leads to a category of ‘naive’ strategies, called behaviours.

Definition 3.1. The category BX of behaviours on X is the category {EpXq
f

of
presheaves of finite sets on EpXq.

Behaviours suffer from the deficiency of allowing unwanted cooperation between
players. HP (Example 12) exhibits a behaviour where players choose with whom
they synchronise, which clearly is not allowed in CCS.

3.2 Strategies

To rectify this, we consider the full subcategory V of E consisting of views,
i.e., compositions of basic local moves. We relativise views to a position X , as
follows. Let, for any n P N, rns denote the single n-ary player, i.e., a single player
connected to n distinct channels. Players of X are in 1-1 correspondence with

Full abstraction for fair testing in CCS 9

pairs pn, xq, with x : rns Ñ X in DCCS

h . Relativisation of V to X is given by the
category VX with as objects all pairs pV, xq, where x : rns Ñ X , and V is a view
with initial position rns. Morphisms are induced by those of E.

Definition 3.2. The category SX of strategies on X is the category ŊVX of
presheaves of finite ordinals on VX .

V
op
X E

op
X EpXqop

ford set,

S

i

S1

j

S

This rules out undesired behaviours.
Recall from HP how to map strategies
to behaviours: let first EX be the cat-
egory obtained as VX from all plays
instead of just views. Then, starting from a strategy S, let S1 be obtained
by right Kan extension of i ˝ S (by V

op
X ãÑ E

op
X being full and faithful), and

let S “ S1 ˝ j. The assignment S ÞÑ S extends to a full and faithful functor
p´q : SX Ñ BX . Furthermore, p´q admits a left adjoint, which we call inno-
centisation, maping naive strategies (behaviours) to innocent ones. By standard
results [24], we have for any S: SpUq “

ş
vPVX

SpvqEXpv,Uq. Equivalently, SpUq is

a limit of pVX{Uqop
dom

ÝÝÝÑ V
op
X

S
ÝÑ ford ãÑ set.

3.3 Decomposition: a syntax for strategies

Our definition of strategies is rather semantic in flavour. Indeed, presheaves are
akin to domain theory. However, they also lend themselves well to a syntactic
description. First, it is shown in HP that strategies on an arbitrary position X

are in 1-1 correspondence with families of strategies indexed by the players of X .
Recall that rns is the position consisting of one n-ary player, and that players of
X may be defined as elements of PlpXq “

ř
nPN DCCS

h prns, Xq.

Proposition 3.3. We have SX –
ś

pn,xqPPlpXq Srns. For any S P SX , we denote

by Spn,xq the component corresponding to pn, xq P PlpXq under this isomorphism.

This result yields a construction letting two strategies interact along an interface,
i.e., a position consisting only of channels. This will be the basis of our semantic
definition of fair testing equivalence. Consider any pushout Z of X Ð I Ñ Y

where I is an interface. We have

Corollary 3.4. SZ – SX ˆ SY .

Proof. We haveVZ – VX`VY , and conclude by universal property of coproduct.

We denote by rS, T s the image of pS, T q P SX ˆ SY under this isomorphism.
So, strategies over arbitrary positions may be decomposed into strategies over

‘typical’ players rns. Let us now explain that strategies over such players may
be further decomposed. For any strategy S on rns and basic move b : rn1s Ñ rns,
let the residual S ¨ b of S after b be the strategy playing like S after b, i.e., for
all v P Vrn1s, pS ¨ bqpvq “ Spb ‚ vq, where ‚ denotes composition in DCCS

v . S is
almost determined by its residuals. The only information missing from the S ¨b’s
to reconstruct S is the set of initial states and how they relate to the initial

10 T. Hirschowitz

states of each pS ¨ bq. Thus, for any position X , let idv
X denote the identity play

on X (i.e., nothing happens). For any initial state σ P Spid rnsq, let S|σ be the
restriction of S to states derived from σ, i.e., for all v, those σ1 P Spvq which are
mapped to σ under the restriction Sp!q : Spvq Ñ Spid rnsq. S is determined by its
set Spid rnsq of initial states, plus the function pσ, bq ÞÑ pS|σ ¨ bq. Since Spid rnsq is
a finite ordinal m, we have for all n:

Theorem 3.5. Srns –
ř

mPNp
ś

b : rn1sÑrns Srn1sq
m – p

ś
b : rn1sÑrns Srn1sq

‹.

This result may be understood as saying that strategies form a fixpoint of a cer-
tain (polynomial [23]) endofunctor of Set{I, where I is the set of ‘typical’ players
rns. This may be strengthened to show that they form a terminal coalgebra, i.e,
that they are in bijection with infinite terms in the following typed grammar,
with judgements n $D D and n $ S, where D is called a definite prestrategy
and S is a strategy:

. . . nb $ Sb . . . p@b : rnbs Ñ rns P rBsnq

n $D xpSbqbPrBsny

. . . n $D Di . . . p@i P mq

n $ ‘iPmDi

pm P Nq,

where rBsn denotes the set of all isomorphism classes of basic moves from rns.
We need to use isomorphism classes here, because strategies may not distinguish
between different, yet isomorphic basic moves. This achieves the promised syn-
tactic description of strategies. We may readily define the translation of CCS
processes, coinductively, as follows. For processes with channels in Γ , we define

L
ř

iPn αi.PiM “ xb ÞÑ ‘tiPn|b“LαiMuLPiMy
Lνa.P M “ xνΓ ÞÑ LP M, ÞÑ Hy
LP | QM “ xπl

Γ ÞÑ LP M, πr
Γ ÞÑ LQM, ÞÑ Hy

LaM “ ιΓ,a
LaM “ oΓ,a
L♥M “ ♥Γ .

E.g., a.P ` a.Q ` b̄.R is mapped to xιΓ,a ÞÑ pLP M ‘ LQMq, oΓ,b ÞÑ LRM, ÞÑ Hy.

3.4 Semantic fair testing

We may now recall our semantic analogue of fair testing equivalence.

Definition 3.6. Closed-world moves are (the global variants of) ν,♥,πn, and
τn,i,m,j. A play is closed-world when it is a composite of closed-world moves.

Let a closed-world play be successful when it contains a ♥ move. Let then
KKZ denote the set of behaviours B such that for any unsuccessful, closed-world
play U Ð Z and σ P BpUq, there exists f : U Ñ U 1, with U 1 closed-world and
successful, and σ1 P BpU 1q such that Bpfqpσ1q “ σ. Finally, let us say that a
triple pI, h, Sq, for any h : I Ñ X and strategy S P SX , passes the test consisting
of a morphism k : I Ñ Y of positions and a strategy T P SY iff rS, T s P KKZ ,
where Z is the pushout of h and k. Let SKK denote the set of all such pk, T q.

Definition 3.7. For any h : I Ñ X, h1 : I Ñ X 1, S P SX , and S1 P SX1 ,
pI, h, Sq „f pI, h1, S1q iff pI, h, SqKK “ pI, h1, S1qKK.

Full abstraction for fair testing in CCS 11

This yields an equivalence relation, analogous to standard fair testing equiva-
lence, which we hence also call fair testing equivalence.

We have defined a translation L´M of CCS processes to strategies, which raises
the question of whether it preserves or reflects fair testing equivalence. The rest
of the paper is devoted to proving that it does both.

4 Playgrounds and main result

4.1 Playgrounds: a theory of individuality and atomicity

X X 1 X2

Y Y 1 Y 2

Z Z 1 Z2,

h

u

h1

u1

k

k1

u2

v

h2

v1

k2

v2

α α1

β β1

We start by trying to give an idea of the
notion of playground. To start with, we or-
ganise the game into a (pseudo) double cat-
egory [13, 11]. This is a weakening of Ehres-
mann’s double categories [9], where one direc-
tion has non strictly associative composition.
Although we consider proper pseudo double
categories, we often may treat them safely as double categories. A pseudo dou-
ble category D consists of a set obpDq of objects, shared by two categories Dh

and Dv. Dh is called the horizontal category of D, and Dv is the vertical cat-
egory. Composition in Dh is denoted by ˝, while we use ‚ for Dv. D is fur-
thermore equipped with a set of double cells α, which have vertical, resp. hor-
izontal, domain and codomain, denoted by domv pαq, codvpαq, domhpαq, and
codhpαq. We picture this as, e.g., α above, where u “ domhpαq, u1 “ codhpαq,
h “ domvpαq, and h1 “ codv pαq. D is furthermore equipped with operations for
composing double cells: ˝ composes them along a common vertical morphism,
‚ composes along horizontal morphisms. Both vertical compositions (of mor-
phisms and double cells) may only be associative up to coherent isomorphism.
The full axiomatisation is given by Garner [11], and we here only mention the
interchange law, which says that the two ways of parsing the above diagram
coincide: pβ1 ˝ βq ‚ pα1 ˝ αq “ pβ1

‚ α1q ˝ pβ ‚ αq.

Example 4.1. Returning to the game, we have seen that positions are the ob-
jects of the category DCCS

h , whose morphisms are embeddings of positions. But
positions are also the objects of the bicategory DCCS

v , whose morphisms are plays.

X X 1

U V

Y Y 1

h

k

l

s s1

t t1

It should seem natural to define a pseudo double category
structure with double cells given by commuting diagrams as on
the right in pC. Here, Y is the initial position and X is the final
one; all arrows are mono. This indeed forms a pseudo double
category DCCS . Furthermore, for any double categoryD, let DH

be the category with objects all morphisms of Dv, and with
morphisms u Ñ u1 all double cells α such that domhpαq “ u and codhpαq “ u1.
A crucial feature of DCCS is that the canonical functor codv : DH Ñ Dh mapping
any such α to codv pαq is a Grothendieck fibration [21]. This means that one
may canonically ‘restrict’ a play, say u1 : X 1 Ñ Y 1, along a horizontal morphism
h1 : Y Ñ Y 1, and obtain a universal cell as α above, in a suitable sense.

12 T. Hirschowitz

d Y

dy,M X

y

vy,M M

yM

αy,M

Playgrounds are pseudo double categories with ex-
tra data and axioms, the first of which is that codv
should be a fibration. To give a brief idea of further
axioms, a playground D is equipped with a set of ob-
jects I, called individuals, which correspond to our ‘typical’ players above. Let
PlpXq “

ř
dPIDhpd,Xq denote the set of players of X . It also comes with classes

F and B of full, resp. basic moves; and every play (i.e., vertical morphism) is
assumed to admit a decomposition into moves in FYB (hence atomicity). Basic
moves are assumed to have individuals as both domain and codomain, and views
are defined to be composites of basic moves. The crucial axiom for innocence
to behave well assumes that, for any position Y and player y : d Ñ Y , there
exists a cell αy,M as above, with vy,M a view, which is unique up to canonical
isomorphism of such. Intuitively: any player in the final position of a play has
an essentially unique view of the play. A last, sample axiom shows how some se-
quentiality is enforced, which is useful to tame the concurrency observed in (2).
It says that any double cell as in the center below, where b is a basic move and
M is any move, decomposes in exactly one of the forms on the left and right:

A X

B Y

C Z

α1

α2

ø

A X

B Y

C Z

h

w

b

u

M

k

α

ù

A X

B Y

C Z.

α1

α2

The idea is that, C being an individual, if M has a non-trivial restriction to C,
then b must be one of its views. Again, for the formal definition, see [18].

Proposition 4.2. DCCS forms a playground (basic moves being the local ones).

4.2 Syntaxes and labelled transition systems

Notions of residuals and restrictions defined above for CCS are easily generalised
to arbitrary playgrounds. They lead to the exact same syntax as in the concrete
case (below Theorem 3.5). They further yield a first, naive lts over full moves

for strategies. The intuition is that there is a transition S
M

ÝÑ S1, for any full
move M , when S ¨ M “ S1. (Residuals S ¨ M are here defined analogously
to the case of basic moves S ¨ b above.) An issue with this lts is that S ¨ M
may have several possible initial states, and we have seen that it makes more
sense to restrict to a single state before taking residuals. We thus define our lts
SD to have as vertices pairs pX,Sq of a position X and a definite strategy S,
i.e., a strategy with exactly one initial state (formally, Spd,xqpiddq “ 1 for all
pd, xq P PlpXq — recalling that idd is an (initial) object in Vd). We then say

that there is a transition pX,Sq
M

ÝÑ pX 1, S1q for any full move M : X 1 Ñ X ,
when S1 “ pS ¨ Mq|σ1 , for some initial state σ1 of S ¨ M .

Full abstraction for fair testing in CCS 13

Example 4.3. Consider a strategy of the shape S “ xπr
n ÞÑ S1, π

l
n ÞÑ S2, ÞÑ Hy

on rns, with definite S1 and S2. There is a πn transition to the position with
two n-ary players x1 and x2, equipped with S1 and S2, respectively. If now S1

and S2 are not definite, any πn transition has to pick initial states σ1 P S1pid rnsq

and σ2 P S2pid rnsq, i.e., S
πnÝÝÑ rpS1q|σ1

s | rpS2q|σ2
s. Here, we use a shorthand

notation for pairs pX,Sq, defined as follows. First, for any strategy S over rns
and position X with exactly one n-ary player x and names in Γ , we denote by
Γ $ rx : Sspa1, . . . , anq the pair pX,Sq, where ai “ Xpsiqpxq, for all i P n. If
now X has several players, say x1, . . . , xp, of respective arities n1, . . . , np, and
S1, . . . , Sp are strategies of such arities, we denote by Γ $ rx1 : S1spa11, . . . , a

1
n1

q |
. . . | rxp : Spspap1, . . . , a

p
np

q the pair pX, rS1, . . . , Spsq. When they are irrelevant,

we often omit Γ , the xj ’s, and the a
j
i ’s, as in our example.

. . . dx $ Tx . . .

d $ MxpTxqxPPlpMqy

. . . di $ Ti . . . p@i P nq

d $
ř

iPnMi.Ti

Beyond the one for strategies, there is another syn-
tax one can derive from any playground. Instead of re-
lying on basic moves as before, one now relies on full
moves. Thinking of full moves as inference rules (e.g.,
in natural deduction), the premises of the rule for any
full M : X Ñ Y should be those players pdx, xq of X whose view through M is
non-trivial, i.e., is a basic move. We call this set of players PlpMq. The natural
syntax rule is thus the first one above (glossing over some details), which defines
process terms T . We add a further rule for guarded sum allowing to choose be-
tween several moves. One has to be a little careful here, and only allow moves
M : X Ñ Y such that PlpMq is a singleton. This yields the second rule above,
where n P N, and @i P n, Mi is such a move and di is the arity of the unique
element of PlpMiq. Calling Td the set of infinite terms for this syntax, there is
a natural translation map J´K : Td Ñ Sd to strategies, for all d P I, which looks
a lot like L´M, and an lts TD, whose vertices are pairs pX,T q of a position X ,
with T P

ś
d,xPPlpXq Td. The main result on playgrounds is

Theorem 4.4. The map J´K : TD Ñ SD is a functional, strong bisimulation.

4.3 Change of base and main result

The lts SDCCS obtained for DCCS is much too fine to be relevant for bisimilarity
to make behavioural sense. E.g., the translations of a|b and b|a are not bisimilar.
Indeed, labels, i.e., full moves in FDCCS , bear the information of which player is
involved in the transition. So both strategies have a πΓ translation to a position
with two Γ -ary players, say x1 and x2. But then, a | b has a transition where x1

plays an input on a, which b | a cannot match. Refining the above notation, and

omitting L´M, we may write the former transitions as ra | bs
πΓÝÝÑ ras | rbs

x1,ιΓ,a
ÝÝÝÝÑ

r0s | rbs. There is another problem with this lts, namely that there are undue

transitions. E.g., we have rνa.as
ν0ÝÑ ras

ιpaq,a
ÝÝÝÑ 0. The transition system does not

yet take privacy of channels into account.
Let us first rectify the latter deficiency. To this end, we pull back our lts

SDCCS Ñ FDCCS along a morphism of graphs L Ñ FDCCS defined as follows. Let L

14 T. Hirschowitz

have interfaced positions as vertices, i.e., morphisms h : I Ñ X from an interface
to a position. I specifies the public channels, and hence we let edges h Ñ h1 be
commuting diagrams of the shape (1), where M may be any full move (X being
the final position), except inputs and outputs on a channel outside the image
of I. We then straightforwardly define χ : L Ñ FDCCS to map h to X and any
diagram above to M . The pullback S

L

DCCS Ñ L of SDCCS along χ is rid of undue
communications on private channels.

To rectify the other deficiency mentioned above, recalling from Definition 1.1
that A is the alphabet for CCS, we define a morphism ξ : L Ñ A by mapping
pI Ñ Xq to its set Ip‹q of channels, and any M to (1) ♥ if M is a tick move, (2)
id if M is a synchronisation, a fork, or a channel creation, (3) a if M is an input
on a P Ip‹q, (4) a if M is an output on a P Ip‹q. (Positions are formally defined
as presheaves to set, hence channels directly form a finite ordinal number.) It is
here crucial to have restricted attention to L beforehand, otherwise we would not
know what to do with communications on private channels. Let SA

DCCS “ ξ!pS
L

DCCS q
be the post-composition of SL

DCCS Ñ L with ξ.
The obtained lts S

A

DCCS Ñ A is now ready for our purposes. Proceeding sim-
ilarly for the lts TDCCS of process terms, we obtain a strong, functional bisimu-
lation J´K : obpTA

DCCS q Ñ obpSA
DCCS q over A. We then prove that θ : obpCCS q ãÑ

obpTA

DCCS q is included in weak bisimilarity over A, and, easily, that L´M “ J´K˝θ.

Corollary 4.5. For all P , P »A LP M.

Furthermore, we prove that „f coincides with the standard, lts-based definition
of fair testing, i.e., P „f,s Q iff for all sensible T , pP | T P Ksq ô pQ | T P Ksq,
where P P Ks iff any ♥-free reduction sequence P ñ P 1 extends to one with
♥. To obtain our main result, we finally generalise an observation of Rensink
and Vogler [33], which essentially says that for fair testing equivalence in CCS,
it is sufficient to consider a certain class of tree-like tests, called failures. We
first slightly generalise the abstract setting of De Nicola and Hennessy [7] for
testing equivalences, e.g., to accomodate the fact that strategies are indexed
over interfaces. This yields a notion of effective graph. We then show that, for
any effective graph G over an alphabet A, the result on failures goes through,
provided G has enough A-trees, in the sense that, up to mild conditions, for
any tree t over A, there exists x P G such that x »A t. Consequently, for any
relation R : G G1 between two such effective graphs with enough A-trees, if R
is included in weak bisimilarity over A, then R preserves and reflects fair testing
equivalence. We thus obtain our main result:

Theorem 4.6. For any Γ P N, let IΓ be the interface consisting of Γ channels,
and hΓ : IΓ Ñ rΓ s be the canonical inclusion. For any CCS processes P and Q

over Γ , we have P „f,s Q iff pIΓ , hΓ , LP Mq „f pIΓ , hΓ , LQMq.

Remark 4.7. Until now, we have considered arbitrary, infinite CCS processes.
Let us now restrict ourselves to recursive processes (e.g., in the sense of HP).
We obviously still have that LP M „f LQM implies P „f,s Q. The converse is
less obvious and may be stated in very simple terms: suppose you have two

Full abstraction for fair testing in CCS 15

recursive CCS processes P and Q and a test process T , possibly non-recursive,
distinguishing P from Q; is there any recursive T 1 also distinguishing P from Q?

References

[1] B. Ahrens. Initiality for typed syntax and semantics. In C.-H. L. Ong, R. J. G. B. de Queiroz,
eds., WoLLIC, vol. 7456 of Lecture Notes in Computer Science. Springer, 2012.
[2] M. M. Bonsangue, J. J. M. M. Rutten, A. Silva. A Kleene theorem for polynomial coalgebras.
In L. de Alfaro, ed., FOSSACS, vol. 5504 of Lecture Notes in Computer Science. Springer, 2009.
[3] E. Brinksma, A. Rensink, W. Vogler. Fair testing. In I. Lee, S. A. Smolka, eds., CONCUR,
vol. 962 of Lecture Notes in Computer Science. Springer, 1995.
[4] R. Bruni, U. Montanari. Cartesian closed double categories, their lambda-notation, and the
pi-calculus. In LICS ’99. IEEE Computer Society, 1999.
[5] D. Cacciagrano, F. Corradini, C. Palamidessi. Explicit fairness in testing semantics. Logical
Methods in Computer Science, 5(2), 2009.
[6] G. L. Cattani, G. Winskel. Presheaf models for concurrency. In D. van Dalen, M. Bezem, eds.,
CSL, vol. 1258 of Lecture Notes in Computer Science. Springer, 1996.
[7] R. De Nicola, M. Hennessy. Testing equivalences for processes. Theor. Comput. Sci., 34, 1984.
[8] M. Delorme, J. Mazoyer, N. Ollinger, G. Theyssier. Bulking I: An abstract theory of bulking.
Theoretical Computer Science, 412(30), 2011.
[9] C. Ehresmann. Catégories et structures. Dunod, 1965.
[10] F. Gadducci, U. Montanari. The tile model. In G. D. Plotkin, C. Stirling, M. Tofte, eds., Proof,
Language, and Interaction. The MIT Press, 2000.
[11] R. Garner. Polycategories. PhD thesis, University of Cambridge, 2006.
[12] J.-Y. Girard. Locus solum: From the rules of logic to the logic of rules. Mathematical Structures
in Computer Science, 11(3), 2001.
[13] M. Grandis, R. Pare. Limits in double categories. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, 40(3), 1999.
[14] R. Harmer, M. Hyland, P.-A. Melliès. Categorical combinatorics for innocent strategies. In
LICS. IEEE Computer Society, 2007.
[15] R. Harmer, G. McCusker. A fully abstract game semantics for finite nondeterminism. In
LICS ’99, 1999.
[16] T. T. Hildebrandt. Towards categorical models for fairness: fully abstract presheaf semantics
of SCCS with finite delay. Theoretical Computer Science, 294(1/2), 2003.
[17] T. Hirschowitz. Cartesian closed 2-categories and permutation equivalence in higher-order
rewriting. Preprint, 2010.
[18] T. Hirschowitz. Full abstraction for fair testing in CCS. Draft available from http://lama.univ-
savoie.fr/˜hirschowitz, 2012.
[19] T. Hirschowitz, D. Pous. Innocent strategies as presheaves and interactive equivalences for
CCS. Scientific Annals of Computer Science, 22(1), 2012. Selected papers from ICE ’11.
[20] J. M. E. Hyland, C.-H. L. Ong. On full abstraction for PCF: I, II, and III. Inf. Comput.,
163(2), 2000.
[21] B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the
Foundations of Mathematics. North Holland, Amsterdam, 1999.
[22] A. Joyal, M. Nielsen, G. Winskel. Bisimulation and open maps. In LICS ’93. IEEE Computer
Society, 1993.
[23] J. Kock. Polynomial functors and trees. International Mathematics Research Notices, 2011(3),
2011.
[24] S. Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in
Mathematics. Springer, 2nd edition, 1998.
[25] S. MacLane, I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos
Theory. Universitext. Springer, 1992.
[26] P.-A. Melliès. Asynchronous games 2: the true concurrency of innocence. In Proc. CON-
CUR ’04, vol. 3170 of LNCS. Springer Verlag, 2004.
[27] P.-A. Melliès. Game semantics in string diagrams. In LICS. IEEE, 2012.
[28] R. Milner. A Calculus of Communicating Systems, vol. 92 of LNCS. Springer, 1980.
[29] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[30] V. Natarajan, R. Cleaveland. Divergence and fair testing. In Z. Fülöp, F. Gécseg, eds., ICALP,
vol. 944 of Lecture Notes in Computer Science. Springer, 1995.
[31] T. Nipkow. Higher-order critical pairs. In LICS ’91. IEEE Computer Society, 1991.
[32] G. D. Plotkin. A structural approach to operational semantics. DAIMI Report FN-19, Computer
Science Department, Aarhus University, 1981.
[33] A. Rensink, W. Vogler. Fair testing. Inf. Comput., 205(2), 2007.
[34] S. Rideau, G. Winskel. Concurrent strategies. In LICS ’11. IEEE Computer Society, 2011.
[35] P. Sewell. From rewrite rules to bisimulation congruences. In D. Sangiorgi, R. de Simone, eds.,
CONCUR, vol. 1466 of Lecture Notes in Computer Science. Springer, 1998.
[36] D. Turi, G. D. Plotkin. Towards a mathematical operational semantics. In LICS ’97, 1997.

