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Abstract. Physical properties of the mantle lithosphere have a strong4

influence on the rifting processes and rifted structures. In particular, in con-5

text of rifting, two of these properties have been overlooked: (1) Mohr-Coulomb6

plasticity (localizing pressure-dependent) may not be valid at mantle depths7

as opposed to non-localizing pressure-independent plasticity (hereafter, per-8

fect plasticity), and (2) lithosphere buoyancy can vary, depending on the petro-9

logical composition of the mantle. Focussing on the Arabian plate, we show10

that the lithosphere may be negatively buoyant. We use thermomechanical11

modeling to investigate the importance of mantle rheology and composition12

on the formation of a passive margin, ocean-continent transition (OCT) and13

oceanic basin. We compare the results of this parametric study to observa-14

tions in the eastern Gulf of Aden (heat-flow, refraction seismics and topog-15

raphy) and show that (1) mantle lithosphere rheology controls the margin16

geometry and timing of the rifting; (2) lithosphere buoyancy has a large im-17

pact on the seafloor depth and the timing of partial melting; and (3) a per-18

fectly plastic mantle lithosphere 20 kg m−3 denser than the asthenosphere19

best fits with observed elevation in the Gulf of Aden. Finally, thermomechan-20

ical models suggest that partial melting can occur in the mantle during the21

Arabian crustal break-up. We postulate that the produced melt could then22

infiltrate through the remnant continental mantle lithosphere, reach the sur-23

face and generate oceanic crust. This is in agreement with the observed nar-24

row OCT composed of exhumed continental mantle intruded by volcanic rocks25

in the eastern Gulf of Aden.26
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1. Introduction

Whether or not a large amount of magmatic activity occurs during rifting has led to27

two separate classes of rifted passive margins: volcanic or non-volcanic margins. Volcanic28

margins are commonly associated with high thermal anomalies in the mantle, which are29

often due to mantle plumes like the Afar Plume in the western Gulf of Aden [e.g. Courtillot30

et al., 1999] or the Islandic Plume in Greenland and Norway [e.g. Eldholm and Grue,31

1994]. These are characterized by basalt flows (seaward dipping reflectors), volcanoes, and32

mafic underplating produced during the rifting process [e.g. Mutter et al., 1982; White33

and McKenzie, 1989; Geoffroy , 2005]. These margins present a sharp ocean-continent34

boundary or a very narrow ocean continent transition zone [OCT, e.g. Bauer et al., 2000;35

Mjelde et al., 2007].36

Non-volcanic rifted margins are usually compared to the Iberia margin and are char-37

acterized by (1) tectonized features (tilted blocks) and a well identified transitional zone38

between the continental crust and the oceanic crust, the OCT [e.g.Whitmarsh et al., 1991;39

Louden et al., 1997; Lavier and Manatschal , 2006], or (2) a wide zone of hyper-extended40

crust [e.g. Contrucci et al., 2004; Unternehr et al., 2010]. Non-volcanic margins actually41

contain a limited amount of magmatism and there is now a general agreement on de-42

scribing them as magma-poor margin. The nature of the OCT varies along magma-poor43

margins [e.g. Leroy et al., 2010a; Gerlings et al., 2011]. It is usually either made of (1) a44

Zone of Exhumed Continental Mantle [Z.E.C.M., e.g. Manatschal , 2004], (2) deeper man-45

tle serpentinized by percolation of the seawater through the sediments and faulted crust46

[e.g. Boillot et al., 1987; Pérez-Gussinyé and Reston, 2001], or (3) highly tectonized oceanic47
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crust formed by ultra-slow spreading [e.g. Srivastava and Roest , 1995; Sibuet et al., 2007].48

Another type of magma-poor margin, like the Angolan margin, shows hyper-extended49

continental crust and evidence of shallow sediments deposition (‘sag’ basins) during the50

late phase of rifting [e.g. Moulin et al., 2005].51

The factors that control the amount of melt produced at magma-poor margins, either by52

decompressional melting during crustal thinning [e.g. Minshull , 2002] or post-rift thermal53

anomaly [e.g. Lucazeau et al., 2009], are yet to be understood. Especially, it is still not54

always clear how the properties of the mantle lithosphere affect the rift evolution and the55

production of melt, i.e. the nature – volcanic or not – of the margin.56

To answer these types of questions, several studies have shown that comparing me-57

chanical models of rifted margin formation to data and field observations is an effec-58

tive approach [e.g. Brun and Beslier , 1996; Lavier and Manatschal , 2006; Huismans and59

Beaumont , 2011]. In particular, Huismans and Beaumont [2011] show the importance60

of a viscous lower crust on the necking of the mantle lithosphere and the geometry of61

Angolan-type magma-poor margins. The eastern Gulf of Aden has been chosen to tackle62

the problem of Iberia-type magma-poor margin. Indeed, (1) it is well documented, (2)63

the conjugate passive margins are known as magma-poor and the width and nature of64

the OCT vary along the margin [presence of magmatism where the OCT is narrow and65

exhumed mantle where the OCT is wider, Leroy et al., 2010a], and (3) the oceanic basin66

is young (oceanic accretion began at least 17.6 Ma ago), so the conjugate margins are67

easily correlable and numerical modeling of the whole basin is possible.68

Thermomechanical modeling has been widely used to study the mechanisms of litho-69

sphere extension and the parameters governing the geometry of rifted structures (e.g.70
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influence of the extension rate, Bassi , 1995; Van Wijk and Cloetingh, 2002; Huismans and71

Beaumont , 2003; Burov , 2007; or of the thermal structure of the lithosphere, Chéry et al.,72

1989). However, beyond the thermal state and ductile strength of the lithosphere, the73

effects of (1) plastic behaviour of the mantle lithosphere and (2) buoyancy of the litho-74

sphere with respect to the underlying asthenosphere, on the structure of passive margins,75

are not yet well understood. It is indeed questionable whether the standard brittle failure76

criterion [Byerlee, 1978] is applicable to mantle lithosphere [e.g. Watts and Burov , 2003;77

Bürgmann and Dresen, 2008; Burov , 2011] or if weaker mechanisms must be included.78

Similarly, it has become standard to include phase transition and realistic composition79

in the crust [e.g. Yamato et al., 2007; Gerya et al., 2008] to study the dynamic of active80

margins. However, the effect of petrological composition – and especially the extent of81

depletion – on the buoyancy of mantle lithosphere during continental extension is rarely82

taken into account, except to explain post rift subsidence anomalies [Kaus et al., 2005].83

This well might be an important parameter for rifts, which affect continental lithosphere,84

such as the Rio Grande rift [Van Wijk et al., 2008], the Baikal rift [Petit and Déverchère,85

2006], or the Gulf of Aden.86

In this paper, we therefore explore the effect of two overlooked key parameters on rift87

evolution: (1) the failure criterion acting in mantle lithosphere and (2) the buoyancy of88

the lithosphere. Then, we compare the results of this parametric study to the heat-flow89

measurements and wide-angle seismic models at the northern margin, and elevation data90

across the eastern Gulf of Aden. This allows us to better understand how these two91

parameters influence the presence of magmatism at the OCT together with the nature92

and width of the OCT.93
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2. Geodynamic settings

The Arabian plate shows a complex history, with the accretion of terranes in the Neo-94

Proterozoic [e.g. Al Husseini , 2000], the occurrence of the Oman obduction and continental95

subduction during late Cretaceous [e.g. Searle, 1983; Agard et al., 2010] the rifting episode96

in the Mesozoic [Bosence, 1997]. The formation of the Arabian lithosphere is the result of97

two major tectonic events [Al Husseini , 2000]: the Amar collision (640 – 620 Ma) and the98

Najd rifting (530 – 570 Ma). The ages of the basement rocks of Socotra (southern margin99

of the eastern Gulf of Aden) are 600 to 860 Ma [U-Pb dating, Denele et al., 2012]. In our100

models, we therefore consider an approximate age of the Arabian lithosphere of 700 Ma,101

defining it as a tecton [Neo-Proterozoic lithosphere, e.g. Griffin et al., 2003].102

The current Gulf of Aden is a young oceanic basin, which separates Arabia from Somalia,103

accommodating the difference between their plate velocities (Fig. 1). In absolute motion,104

both plates move to the north. However, the Arabian plate is faster than the Somalian105

plate [Vigny et al., 2006]. The difference in velocity leads to a present day opening rate of106

approximately 2 cm yr−1 in the eastern Gulf of Aden [e.g. Fournier et al., 2001]. The rifting107

of the Arabian-Nubian tecton began ∼34 Ma ago [e.g. Leroy et al., 2012]. Subsequently,108

seafloor spreading occurred at the latest at 17.6 Ma in the east of the Shukra-el-Sheik109

Fracture Zone [e.g. Leroy et al., 2004; d’Acremont et al., 2006; Leroy et al., 2012]. A110

post-rift high thermal regime is observed in the whole Gulf of Aden and is interpreted as111

being in relation to the Afar hotspot activity [Lucazeau et al., 2009; Basuyau et al., 2010;112

Leroy et al., 2010b; Chang and Van der Lee, 2011].113

Studies of dynamic topography show that the doming due to the presence of the Afar114

hotspot does not influence the topography of the eastern Gulf of Aden [e.g. Lithgow-115
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Bertelloni and Silver , 1998]. Indeed, the eastern Gulf of Aden is roughly 200 km away116

from the apex of the hotspot. Furthermore, the wavelengths of the structures of the117

dynamic topography are greater than 4000 km, as they are due to deep mantle sources118

[e.g. Hager and Richards , 1989]. Thus, we do not take the dynamic topography into119

account in this study.120

Tomographic studies show that the Arabian-Nubian lithosphere is approximately 250121

km thick [Ritsema and van Heijst , 2000; Debayle et al., 2001; Pasyanos and Nyblade,122

2007]. Receiver functions [Sandvol et al., 1998; Al Amri , 1999; Pasyanos and Walter ,123

2002; Al-Damegh et al., 2005; Tiberi et al., 2007; Al-Hashmi et al., 2011; Al-Lazki et al.,124

2012; Ahmed et al., 2013] and refraction seismic profiles [Mooney et al., 1985] constrain the125

thickness of the Arabian crust, which varies from 35 km (partly thinned crust, close to the126

Red Sea and the Gulf of Aden) to 49 km (thickened crust, Oman mountains). We adopt a127

mean crustal thickness of 44 km for our models, corresponding to the average value of non-128

thinned and non-thickened Arabian crust. Geophysical studies on the north-eastern Gulf129

of Aden magma-poor margin show that the OCT is narrow (15 km to 50 km) and presents130

strong along-margin variations with serpentinization and little volcanism [Lucazeau et al.,131

2008, 2009, 2010; Autin et al., 2010; Leroy et al., 2010a; Watremez et al., 2011a].132

This information will be used both to constrain the initial and boundary conditions133

of the thermomechanical models presented in section 3 and to compare them with the134

present structures of the Gulf of Aden. In the parametric study presented here, the aim135

of the modeling is to better understand the mechanisms of margin formation, such as the136

north-eastern Gulf of Aden, as well as the nature of their OCT.137
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3. Parametrization and modeling

3.1. Mantle lithosphere plasticity

The Byerlee [1978] failure criterion is commonly used to represent the yield strength138

behaviour of rocks. Byerlee’s law is written in terms of principal stresses. Hence, it139

may account for pore-fluid pressure or any other deviations from lithostatic pressure.140

Extrapolating Byerlee’s law at pressures corresponding to depths greater than 40 km141

implies unrealistically high yield strength for the lithosphere (up to several GPa). Thus,142

it may not be applicable to the mantle lithosphere [e.g. Watts and Burov , 2003; Précigout143

et al., 2007; Burov , 2011]. At this confining pressure, other mechanisms may limit the144

strength of rocks, including compaction bands, grain boundary sliding [GBS, e.g. Précigout145

et al., 2007] and Peierls creep [high stress creep for stresses > 103 MPa, Kameyama146

et al., 1999]. All these mechanisms limit the strength of the lithosphere at high deviatoric147

stresses by reducing the pressure dependance of the strength, and decreasing the ability148

of the lithosphere to localize strain at high strain-rate (except GBS). Furthermore, field149

observations of exhumed mantle shear zones show strain localization at all scales and no150

brittle deformation [see a review in Précigout et al., 2007; Bürgmann and Dresen, 2008].151

In contrast, geophysical imaging of active strike slip faults in the mantle suggests that152

they are broad (>10-100 km wide) zones of distributed shearing [Molnar et al., 1999;153

Little et al., 2002; Sol et al., 2007]. There is obviously a scale effect in this apparent154

contradiction.155

To model the brittle-ductile behaviour of rocks, one can use visco-elasto-plastic rheolo-156

gies based on Maxwell summation for deviatoric strain-rate (ε̇d):157
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ε̇d = ε̇dvis + ε̇delas + ε̇dplas (1)

The viscous part (ε̇dvis) corresponds to the ductile behaviour of rocks and accounts for158

deformation by creep. The elastic strain rate (ε̇delas) is very small but is needed to model159

the path dependance of the rheology. Finally, the brittle part (ε̇dplas) uses a plastic flow160

rule to limit the maximal rock strength when a brittle failure criterion is reached. For161

Byerlee behaviour, the plastic flow rule follows the Vermeer [1990] Mohr-Coulomb plastic162

model, but is limited to an incompressible flow (zero dilatation).163

At high confining pressure, Byerlee’s law [1978] shows that maximal brittle strength is164

proportional to 0.6 P , where P is the total pressure. Within our formulation, we model165

this experimental law using the cohesion C0 = 20 MPa and the internal friction angle166

φ = 30◦. If φ is not equal to zero, this results in strain localization (shear banding) due to167

the apparent strain weakening behaviour [Vermeer , 1990; Le Pourhiet , 2013]. Mechanisms168

such as Peierls [for lithospheric extension, e.g. Popov and Sobolev , 2008] and GBS [e.g.169

Précigout et al., 2007] creeps are shown to limit rock strength to 400 to 700 MPa [Burov ,170

2011] and to be weakly pressure dependent. Using the creep parameters of Hirth and171

Kohlstedt [2003] and considering the mean strain rate in the rift area of 10−14 s−1, a172

mantle temperature of 650◦C, corresponding to depths of approximately 100 km and an173

average grain size of 100 µm, the value of the GBS yield stress is approximately 400-500174

MPa. Thus, we roughly approximated these mechanisms with C0 = 450 MPa and φ = 0◦.175

As a result, the lithosphere behaves as a perfectly plastic material and no significant176

localization, without an additional softening law, is predicted to occur. This mechanism177

is also known as “stress limiter” [van Hunen et al., 2002].178
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Thus, while Byerlee’s parameters predict a large strength peak at ∼90 km depth (more179

than 1 GPa), the maximal strength in the perfectly plastic mantle lithosphere is constant180

and limited to a much smaller value (in this study, 450 MPa) for the whole depth interval181

in the mantle lithosphere, up to 100 km depth (Fig. 2).182

3.2. Lithosphere buoyancy

In order to get direct information on the buoyancy of the Arabian mantle lithosphere,183

density profiles have been calculated for the chemical compositions of Arabian plate mantle184

xenoliths available in the literature. These calculations have been carried out using the185

free energy minimization thermodynamic code PERPLEX07 [Connolly , 2009], together186

with a recent thermodynamic database and activity models developed for mantle pressure187

and temperature conditions and compositions [Xu et al., 2008]. Four average compositions188

of tecton subcontinental mantle lithosphere [Griffin et al., 2009] were also considered as189

standard compositions for lithospheres having similar age as the Arabian plate. Since the190

composition of the asthenosphere below the Arabian plate is unknown, we used the fertile191

Hawaiian pyrolite composition [Wallace and Green, 1991]. This standard is used as a192

proxy for the density of the asthenosphere influenced by the Afar hot-spot. The buoyancy193

is calculated as the density difference between asthenosphere and mantle lithosphere:194

ρasth−ρlith. The dataset of chemical compositions, the description of the method and the195

density curves are presented in the Supplementary material.196

The chemical composition of the xenoliths and the standards are plotted in a Mg# vs.197

%Al2O3 diagram (Fig. 3A). The xenoliths from the Arabian plate are divided into two198

chemical groups. The depleted group (lherzolites and harzburgites) plot in the depleted199

part of the tecton xenoliths (dotted red zone on Fig. 3A). The corresponding compositions200
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are also more depleted than the tecton and asthenosphere standards. The fertile group201

(clinopyroxenites and websterites) shows greater scatter.202

The clinopyroxenites and websterites are partly [Henjes-Kunst et al., 1990] or entirely203

[Stein et al., 1993] interpreted as cumulates formed in Pan-African times. These authors204

do not explicitly specify the geodynamic context for the formation of these rocks. Com-205

parison with modern magmatic arcs [e.g. Saleeby et al., 2003] suggests that they formed206

as cumulates below arcs, which is consistent with the accretion of the Arabian shield207

during the end of the Pan-African orogeny [Frisch and Al-Shanti , 1977; Hargrove et al.,208

2006]. These rocks could also correspond to recycled subducted oceanic crust that has209

been incorporated into the lithosphere during cooling of the mantle [Hofmann and White,210

1982]. Amounts of recycled oceanic crust in the asthenosphere range mainly between 10%211

and 20% and reach up to 30% [Sobolev et al., 2007].212

The calculated depth profiles of buoyancy are presented in Fig. 3B. Chemical variations213

are directly reflected by the buoyancy. The more depleted is the composition (low %214

of Al2O3 and high Mg#), the greater is the buoyancy. Lherzolites and harzburgites215

are buoyant or have a slightly negative buoyancy, whereas all clinopyroxenites and the216

websterites have a very negative buoyancy. Mean buoyancies averaged over the lithosphere217

are approximately 20 kg m−3 for the lherzolite-harburgite group, -100 kg m−3 for the218

clinopyroxenite-websterite group and 5 kg m−3 for the tecton standards.219

The Arabian plate mantle lithosphere is a mixing of depleted and fertile rocks, both220

groups having different buoyancies. The buoyancy of the whole lithosphere can therefore221

be estimated by a weighted average of the buoyancy of these two end-members. In order222

to take into account the complex history of the Arabian plate, we propose two models223
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(Fig. 3C). In the first model, the depletion of lherzolites and harzburgites is inherited from224

partial melting coeval with the formation of the Arabian shield [Stein et al., 1993]. The225

depleted end-member corresponds to the mean of the lherzolite-harzburgite group. The226

fertile end-member corresponds to the mean of the clinopyroxenite-websterite group (blue227

line on 3C). A mantle lithosphere composed of 35% clinopyroxenite-websterite and 65%228

lherzolite-harzburgite has a negative buoyancy of ∼20 kg m−3. In the second model, the229

depletion is due to Miocene partial melting that postdates the onset of rifting [McGuire,230

1988]. The depleted end-member is the mean of the tecton standards and the fertile231

end-member corresponds to the mean of the clinopyroxenite-websterite group (red line232

on 3C). 25% clinopyroxenite-websterite is sufficient to explain a negative buoyancy of233

∼20 kg m−3. A few 10s kg m−3 negative buoyancy can therefore be explained by a234

significant proportion (∼30%) of heavy clinopyroxenite and websterite. Using a different235

asthenosphere composition indicates a difference of ∼10 kg m−3. Hence, a reduction of the236

amount of clinopyroxenite and websterite by 15-25% would induce an average buoyancy237

of -20 kg m−3. In the parametric study, we apply a ±30 kg m−3 buoyancy in order to test238

extreme parameters.239

3.3. Parametrization and numerical modeling

We use Flamar 12 [an outgrowth of Paravoz, Burov and Yamato, 2008] that is inspired240

by the FLAC v3 algorithm [Cundall , 1989; Poliakov et al., 1993]. The numerical method241

has been described in full detail in previous studies [e.g. Burov and Poliakov , 2001; Burov242

and Cloetingh, 2009; François et al., in press]. This method can handle a free upper surface243

boundary condition and almost any visco-elasto-plastic rheology. The algorithm explicitly244

takes into account elastic-brittle-ductile properties of lithosphere and asthenosphere. Due245
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to the explicit nature of this code for elastic compressibility, temperature, gravity and246

pressure-dependent body forces are computed without the necessity to use assumptions247

such as potential temperature. The description is limited here to the details that are the248

most essential for this study.249

Our model setup is inspired by previous rifting models achieved with the same numerical250

thermomechanical code [Burov , 2007, Fig 2]. The modeling box is 400 km thick and 1200251

km wide; grid resolution is 4 km in both directions. The properties of each element of252

the numerical grid (cell) are defined by the density and the thermal and elasto-visco-253

plastic parameters of its material. We use a density and rheology structure from the254

lithosphere and asthenosphere derived from Ranalli [1995]. All models include a 44 km255

thick crust with four horizontal rheological layers. The parameters of the reference model256

are presented in Table 1. Materials in the specific numerical formulation used for the257

study are elasto-visco-plastic. To avoid activation of Mohr-Coulomb plastic deformation258

in the asthenosphere [which is unlikely, e.g. Watts and Burov , 2003], we assigned high259

cohesion values to the asthenosphere.260

The boundary conditions are (1) horizontal extension velocities (Vext) applied at each261

vertical side of the model, (2) a Winckler pliable basement that simulates the response to262

lithostatic pressure variations and (3) a free upper surface boundary condition (free stress263

and free slip conditions in all directions) combined with a moderate diffusion erosion264

and sedimentation (keros = 50 m2 yr−1) and water-column pressure dependent on the265

surface topography (Fig. 2). The elevation at each point of the free surface is calculated266

following the model of Culling [1960], which takes into account the effect of erosion and267

sedimentation.268
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The assumed initial thermal structure is constrained by the radiogenic heat production269

in the crust, the age the lithosphere and the temperature at the base of the lithosphere.270

It is noteworthy that, after 600 Ma, the thermal structure of thermally undisturbed litho-271

sphere reaches a permanent state. Thus, there is no practical difference in the thermal272

structure of a 600 Ma or, for example, a 2000 Ma old lithosphere [e.g. Burov and Diament ,273

1995]. The thermal age in the models is 700 Ma, to be consistent with the real age of the274

Arabian shield.275

The main parameters tested in this study are the plastic failure pressure dependence276

and the buoyancy of the mantle lithosphere.277

3.4. Areas of possible partial melting

Partial melting is not supposed to have a strong impact on the overall rift evolution278

of the Eastern Gulf of Aden, as its rifted margins are magma-poor. The lack of a small279

production of melt at break-up is therefore a non-negligible constraint on the validity of280

the models. Some codes include partial melting in the modeling, in order to simulate281

mantle convection [e.g. ONeill et al., 2006]. However, for the sake of simplicity, it is282

not necessary to directly include partial melting calculations. We follow the simplified283

approach developed by McKenzie and Bickle [1988], which consists in calculating the284

areas where partial melting can occur. We compute the location of these areas at the285

post-processing stage. The method uses the model-predicted pressure and temperature286

conditions in the mantle as input, and output a melt fraction. We consider the areas287

where the melt fraction [defined in McKenzie and Bickle, 1988] is between 0 and 1. This288

post-processing allows us to assess whether melt can be produced during the rifting and289

to characterize the nature of the OCT in the model.290
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4. Parametric study

4.1. Influence of mantle lithosphere rheology

Figure 4 compares two models with different mantle rheology and highlights the influ-291

ence of this parameter on rifting evolution and rifted margins formation.292

As expected from the rheology law, deformation is more diffuse in the perfectly plastic293

mantle than in a Byerlee’s mantle. Meanwhile, strain localization is also enhanced by the294

higher strength of a Byerlee’s lithosphere and the imposed velocity boundary condition.295

This lack of localization results in delaying the break-up of continental crust by 1.5 Myr296

for the model with the perfectly plastic mantle. As the strain localization is more in-297

tense in the Mohr-Coulomb mantle lithosphere, deformation propagates faster through298

the continental crust. Moreover, the strain rate patterns 0.5 Ma before the break-up of299

the continental crust show an asymmetric deformation in the upper mantle beneath the300

continental rift for the Mohr-Coulomb model, while the perfectly plastic model remains301

symmetric (Fig. 4A).302

Crustal flexure (shape of the continental crust aside the rift) – and hence flexural stresses303

– at the time of crustal break-up is more intense for the Mohr-Coulomb model than for304

the perfectly plastic model, contributing to an earlier break-up for the former (Fig. 4A).305

As can be seen the local extrema of topography coincide in either case, producing close306

values of flexural wavelength (∼250 km) and, hence, of elastic thickness (Fig. 4B). The307

corresponding equivalent flexural thickness estimated using analytical formulae for the308

flexural parameter [Turcotte and Schubert , 2002] is on the order of 40 km. This wavelength309

is largely controlled by the strongest part of the mantle lithosphere [Burov and Diament ,310

1995]. The difference in amplitude at rift flanks refers to smaller levels of flexural stress in311
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the crust in case of a less localizing, perfectly-plastic rheology. We observe that no partial312

melting can occur in the mantle lithosphere for either model, suggesting that continental313

mantle can be exhumed without production of oceanic crust in either case.314

In order to compare the models with the present day Gulf of Aden, we compare their315

geometries and bathymetries 18 Ma after break-up. The geometry of the structures at316

this moment also shows a slightly stronger flexure for the Mohr-Coulomb model than317

for the perfectly plastic model, while conjugate margins are still asymmetric (Fig. 4A).318

The slope of the Moho discontinuity is also steeper for the Mohr-Coulomb model than319

for the perfectly plastic model, implying a wider distal margin with the perfectly plastic320

configuration. Moreover, the ridge location shows a strong asymmetry in the Mohr-321

Coulomb model, contrary to the perfectly plastic model. This can be attributed to the322

fact that a Mohr-Coulomb mantle localizes the deformation better, allowing for further323

strain to occur on the fault formed along the margin at the break-up of the continental324

crust. Comparison of the topography 18 Ma after continental crust break-up provides a325

similar amplitude of the topography for both models, but the same asymmetry is recovered326

as the oceanic ridge is highlighted by a deeper zone along the model (Fig. 4B). We also327

observe the development of this asymmetry on the evolution of the topography (distance328

versus time, Fig. 4C). Indeed, after continental break-up, the ridge tends to be localized329

close to the margin during approximately 10-12 Myr for the Mohr-Coulomb model. The330

ridge remains stable until the fault zone reaches a hardening sufficient to cause a relocation331

of the ridge. On the contrary, the ridge in the perfectly plastic model is centered from332

the onset of the formation of the oceanic basin. This difference is due to the fact that333

the perfectly plastic mantle has a more diffuse deformation mechanism than the Mohr-334
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Coulomb mantle. The model with the perfectly plastic mantle also shows an oceanic335

ridge that is centered in the same way as observed in the Gulf of Aden, giving additional336

preference to the perfectly plastic model over the Mohr-Coulomb model.337

It can be concluded that the choice of the failure criterion in the mantle lithosphere has338

a significant impact on the extensional deformation in the upper mantle, and indirectly339

in the continental crust. Compared to the Mohr-Coulomb mantle, the assumption of a340

perfectly plastic mantle allows for a more diffuse deformation, with the following conse-341

quences: (1) more extension is needed to break the crust apart, (2) the flexure is more342

gentle, and (3) the horizontal position of the oceanic ridge, as observed in the Gulf of343

Aden, is more consistent with observation. However, oceanic basins predicted by both344

models are deeper than the observed topography profiles across the Gulf of Aden. Hence,345

additional factors such as mantle density should be explored to explain the shallowness346

of the oceanic basin of the Gulf of Aden.347

4.2. Influence of lithosphere buoyancy

The three model-setups are identical to the Mohr-Coulomb setup previously presented348

(Table 1), except for the density of the asthenosphere, in order to test the influence of349

the buoyancy of the lithosphere on the rifting and the formation of rifted structures (Fig.350

5). Thus, we compare three series of experiments with different lithosphere buoyancy351

(see paragraph 3.2 for definition). The three values of buoyancy tested here are -30, 0352

and +30 kg m−3. The model with a positive buoyancy (30 kg m−3) is the same as the353

Mohr-Coulomb configuration described in paragraph 4.1.354
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Our first observation is that the variation of the buoyancy of the lithosphere does not355

affect the timing of the break-up of the continental crust. Indeed, this break-up occurs356

7 Ma after the beginning of the extension for all three models.357

The strain rate patterns 0.5 Ma before the break-up of continental crust show an asym-358

metry beneath the center of the rift zone for the two models with non-zero buoyancy359

(Fig. 5A). This is probably due to the fact that the zero lithosphere buoyancy reduces360

the mechanical contrast between the mantle lithosphere and the asthenosphere, avoiding361

asymmetric processes to occur at this stage.362

The geometry of the models at the moment of the continental crust break-up shows363

a shallower boundary between mantle lithosphere and asthenosphere, as asthenosphere364

density is lower than for the other tested models (Fig. 5A). This is simply due to the365

fact that the lighter the material is, the more rapidly it uplifts. We observe that a zone366

of possible partial melting occurs at the center of the rift for the model with a negative367

buoyancy (-30 kg m−3). Indeed, in this model the 1300◦C isotherm (approximately the368

base of the lithosphere) is shallow enough at the time of break-up of the continental369

crust to allow for partial melting. This implies that oceanic crust can be produced at370

this time, while magmatism may occur earlier, producing underplated and/or intruded371

magma, as the continental crust is not yet broken apart. This process is characteristic of372

the formation of volcanic passive margins.373

Model geometries 18 Ma after the break-up of the continental crust show asymmetric374

margins in all cases. We observe that the lateral position of the oceanic ridge is more375

centered when buoyancy is negative (Fig. 5A-B, see also topographic profiles). Indeed,376

predicted evolution of the topography shows that the oceanic ridge relocates after 10-377
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12 Ma for the model with positive buoyancy and after 6-7 Ma for the model with zero378

buoyancy. The model with negative buoyancy shows an early relocation at the beginning379

of the formation of the oceanic basin (Fig. 5C). We also observe that the depth of the380

oceanic basin increases when asthenosphere is denser, which is consistent with the isostasy381

effect, and that the model with a negative lithosphere buoyancy provides a better fit to382

the present depth of the Gulf of Aden oceanic basin.383

Thus, the buoyancy of the lithosphere controls (1) the depth of the oceanic basin, (2)384

the position and the relocation of the oceanic ridge in the basin, and (3) the volcanic or385

magma-poor nature of the rifted margins. A negative buoyancy of the lithosphere allows386

for a depth of the oceanic basin comparable with observations in the eastern Gulf of Aden.387

5. Discussion

5.1. Comparison to the eastern Gulf of Aden

The choice of parameters for this model is governed by the results of the parametric388

study (failure criterion in the mantle lithosphere and buoyancy of the lithosphere) and the389

geodynamic context (kinematics). Thus, we use a perfectly plastic mantle and a negative390

lithosphere buoyancy of -20 kg m−3, which is petrologically more realistic than the value391

of -30 kg m−3 used in the parametric study. Then, we modify the boundary conditions392

to better fit the actual kinematics (see Section 2): a velocity of 0.5 cm yr−1 is applied on393

the left side (South), while a velocity of 1.5 cm yr−1 is applied on the right side (North),394

to keep a total opening velocity of 2 cm yr−1. The small initial thermal anomaly used395

to localize the rift is set closer to the left side of the box, to ensure that the rift is at396

the center of the box at the final stage (18 Ma after crustal break-up), comparable to the397

present-day Gulf of Aden.398
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We compare the model at 18 Ma after the break-up of the continental crust to the data399

available at the same scale in the eastern Gulf of Aden (Fig. 6). First, heat-flow at the400

surface of the model is similar to heat-flow measurements for large wave-lengths on the401

northern margin [Fig. 6A, Lucazeau et al., 2008]. Next, geometry of the crustal thinning402

is comparable with refraction and wide-angle reflection seismic velocity model along the403

same line [Fig. 6B, Leroy et al., 2010a]. However, the crude resolution of the model does404

not allow for a more detailed match with the observed structures in the sediments and405

crust. Finally, the topography of the model shows the same amplitude as profiles across406

the eastern Gulf of Aden, even though the morphology of the rift shoulders is steeper than407

the observation (Fig. 6C). The oceanic basin is also slightly deeper in the model than in408

the data. In the eastern Gulf of Aden, higher than expected mantle heat-flow and lower409

than expected seismic velocity and density values, inferred from wide-angle seismic and410

gravity modeling, might be explained by a persistent post-rift thermal anomaly [Lucazeau411

et al., 2008; Watremez et al., 2011a]. This topographic discrepancy might be explained by412

the high thermal regime affecting the entire Gulf [e.g. Lucazeau et al., 2008, 2009, 2010;413

d’Acremont et al., 2010; Leroy et al., 2010b].414

We also observe that pressure and temperature conditions in the asthenosphere at the415

center of the rift allow for partial melting at the exact moment of the break-up of the416

continental crust (Fig. 6B). The melt produced can infiltrate toward the surface and417

either (1) become trapped beneath the margin (underplating, magmatism) to form a418

volcanic margin and/or (2) generate oceanic crust, leaving very little time to serpentinize419

or exhume continental mantle, forming a magma-poor margin. This is consistent with420

the north-eastern Gulf of Aden margin that exhibits a very narrow OCT and even some421
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magmatism [Autin et al., 2010; Leroy et al., 2010a; Watremez et al., 2011a; Leroy et al.,422

2012], which may have triggered the continental break-up, as shown by Bronner et al.423

[2011] for the Iberia margin.424

5.2. Perfectly plastic failure criterion

The parametric study shows that a perfectly plastic mantle lithosphere allows for425

stronger ridge relocation than a Mohr-Coulomb lithosphere, resulting in a ridge topogra-426

phy more comparable to the present Gulf of Aden morphology.427

The choice of the failure criterion in the mantle governs the deformation in the mantle428

lithosphere and then the deformation in the continental crust. The perfectly plastic429

criterion makes deformation more diffuse in the lithosphere, while deformation is more430

localized with the Mohr-Coulomb mantle (narrower shear zones), using the same extension431

velocity (or strain rate). This explains why the break-up of the continental crust occurs432

earlier in the case of the Mohr-Coulomb mantle model.433

These results are compatible with recent rheological and modeling studies [e.g.434

Kameyama et al., 1999; Watts and Burov , 2003; Popov and Sobolev , 2008], which propose435

that a Mohr-Coulomb rheology (in the form of Byerlee’s frictional plastic law) is less suit-436

able for localized deformation of rocks in a high stress regime, especially in extension, than437

Peierls or GBS rheologies. An alternative model advances the potential role of diking that438

is supposed to weaken the lithosphere prior to rifting [e.g. Buck , 2004]. However, pre-rift439

diking would lead to extensive pre-rift magmatism and formation of volcanic margins,440

excluding the possibility to form a magma-poor rifted margin such as the eastern Gulf of441

Aden.442
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5.3. Negative buoyancy of the continental lithosphere

The parametric study shows that the buoyancy of the mantle lithosphere has a strong443

influence on the volcanic or magma-poor nature of the modeled rifted margin. Indeed, a444

highly negatively buoyant mantle lithosphere (-30 kg m−3) leads to the formation of melt445

in the asthenosphere prior to crustal breakup, as observed along volcanic margins. On446

the contrary, a greater buoyancy leads to the formation of typical magma-poor margins,447

with a zone of exhumed continental mantle.448

The comparison between observed and modeled Gulf of Aden topography suggests that449

the mantle lithosphere of the Arabian shield has a negative buoyancy of approximately450

-20 kg m−3. Such values have also been proposed for the Baikal rift [Gao et al., 1994;451

Petit and Déverchère, 2006]. Moreover, thermodynamical modeling of the density for a452

large mantle rock database has shown that mantle lithosphere of tectons can have slightly453

negative buoyancy for conductive geotherms [Griffin et al., 2009].454

The assumption of a subcontinental lithosphere composition close to lherzolitic leads to455

a positive buoyancy in the case of the Arabian shield (Fig. 3B), which is not in agreement456

with the result of the models (Section 4.2). However, the heterogeneity and the complex457

history of the mantle lithosphere are attested by many studies [Kuo and Essene, 1986;458

McGuire, 1988; Stein et al., 1993; Nasir and Safarjalani , 2000; Kaliwoda et al., 2007;459

Shaw et al., 2007].460

One can doubt the long-term stability of a continental lithosphere with negative buoy-461

ancy with respect to the asthenosphere. In this case, we expect Rayleigh-Taylor instabili-462

ties after 300-400 Ma, which lead to the collapse of the continental lithosphere [e.g. Burov463

and Watts , 2006]. However, Lenardic and Moresi [1999] show that a positive buoyancy464
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of the lithosphere is not sufficient to create conditions for its long term stability. This465

stability also depends on the strength of the lithosphere, an effective coupling between466

the very buoyant crust and the mantle, as well as the occurrence of compressive stresses467

[François et al., in press]. The Arabian plate actually experienced such significant com-468

pressive stresses due to successive subductions [Al Husseini , 2000], potentially explaining469

why it did not collapse.470

Similarly to our work, former observations and numerical models show that a negative471

lithosphere buoyancy should lead to the development of Rayleigh-Taylor instabilities at472

the mantle-asthenosphere boundary during the rifting, resulting in removal of an essential473

amount of lithosphere mantle [e.g. Burov , 2007; Van Wijk et al., 2008]. This has a strong474

influence on the rifted structures.475

6. Conclusions

The results of our modeling study show that the structure of the rifted continental476

margins is highly sensitive to the failure criterion of the mantle lithosphere while the477

buoyancy of the mantle lithosphere controls the depth of the oceanic basin and the relative478

timing of the partial melting. The model using a perfectly plastic rheology and negatively479

buoyant mantle lithosphere (-20 kg m−3) shows similar features as the eastern Gulf of480

Aden (heat-flow, topography, thinning of the continental crust, narrow OCT and position481

of the ridge).482

The perfectly plastic behavior represents a proxi for low temperature plasticity [e.g.483

Kameyama et al., 1999] whereas Mohr-Coulomb rheology produces higher stress and stress484

drop, which best represents brittle behaviour at geodynamic time-scale. In the case of the485

Gulf of Aden, structures are best fitted with a maximum yield strength of 450 MPa, which486
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is consistent with laboratory derived low temperature plasticity mecanism such as GBS487

and Peierls creep [Kameyama et al., 1999; Précigout et al., 2007]. Popov and Sobolev [2008]488

study, based on 3D model of continental rifting, argued that Mohr-Coulomb required489

unrealistic stress build-up during continental rifting. Here, we reach similar conclusions490

comparing our continental break-up model to the structures of the Gulf of Aden. Not491

only, stress build-up is too strong, causing the formation of far too high rift shoulders492

during continental rifting, but Mohr-Coulomb rheology also induced non realistic post-493

rift topography and extremely long lasting initial phase of asymmetric spreading (10-12494

Myr), which is neither observed in Aden nor anywhere else in world.495

The Gulf of Aden represents the tipping point between the formation of (1) volcanic496

rifted margins, where partial melting possibility occurs before the crustal break-up and497

oceanic crust is created as soon as the continental crust is broken apart by dikes, and498

(2) magma-poor rifted margins, where partial melting occurs after crustal break-up and a499

zone of exhumed continental mantle forms between the last continental crust and the first500

oceanic crust [e.g. White and McKenzie, 1989; Whitmarsh et al., 1991; Bauer et al., 2000].501

Our parametric study shows that negatively buoyant lithosphere favors early occurrence502

of melting, whereas neutrally to positively buoyant mantle lithosphere causes the melting503

to be delayed by up to 1.5 Myr [Watremez et al., 2011b]. Therefore, we posit that mantle504

buoyancy variation could control the timing of melting and oceanization observed over a505

wide range of passive margins. In the case of the Gulf of Aden, the first appearance of506

partial melting in the rift is synchronous with the crustal break-up, which is shown to507

correspond to a lithosphere that is negatively buoyant by a contrast of -20 kg m−3. This508

density contrast is confirmed by the petrological study of xenolith of the Arabian mantle509
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lithosphere and has also been shown to be a decisive factor for the occurrence of oceanic510

obduction in North Oman using different boundary condition and numerical approach511

[Duretz et al., 2013].512

This panel of evidences implies that the negatively buoyant mantle lithosphere of the513

Arabian plate has been stable for several hundreds of million years. It rises the question514

of the dynamic forces, which could be responsible for the long lasting stability and rapid515

destabilization of old continental lithosphere at the onset of rifting. Further thermome-516

chanical modeling of rifting, including petrological data to estimate the buoyancy of the517

lithosphere and comparison to other geological region such as the Rio Grande Rift [Song518

and Helmberger , 2007; Van Wijk et al., 2008], are needed to better constrain the links519

between partial melting and the rheology and buoyancy of continental mantle lithosphere520

highlighted by our study.521
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Chéry, J., M. Daignières, F. Lucazeau, and J. Vilotte (1989), Strain localization in rift603

zones (case of a thermally softened lithosphere): a finite element approach, Bull. Soc.604

Geol. Fr., 8, 437–443.605

Connolly, J. (2009), The geodynamic equation of state: what and how, Geochem. Geophys.606

Geosyst., 10, Q10,014.607
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C. Baurion, Y. Denèle, N. Bellahsen, F. Lucazeau, F. Rolandone, S. Rouzo, J. Serra Kiel,713

C. Robin, F. c. Guillocheau, C. Tiberi, C. Basuyau, M.-O. Beslier, C. Ebinger, G. Stuart,714

A. Ahmed, K. Khanbari, I. Al-Ganad, P. de Clarens, P. Unternehr, K. Al-Toubi, and715

A. Al-Lazki (2012), From rifting to oceanic spreading in the Gulf of Aden: a synthesis,716

Arab. J. Geosci., 5 (5), 859–901, doi:10.1007/s12517-011-0475-4.717

Lithgow-Bertelloni, C., and P. G. Silver (1998), Dynamic topography, plate driving forces718

and the African superswell, Nature, 395 (6699), 269–272.719

Little, T., M. Savage, and B. Tikoff (2002), Relationship between crustal finite strain and720

seismic anisotropy in the mantle, Pacific–Australia plate boundary zone, South Island,721

New Zealand, Geophys. J. Int., 151 (1), 106–116.722

Louden, K., J. Sibuet, and F. Harmegnies (1997), Variations in heat flow across the723

ocean-continent transition in the Iberia abyssal plain, Earth Planet. Sci. Lett., 151 (3-724

4), 233–254.725

Lucazeau, F., S. Leroy, A. Bonneville, B. Goutorbe, F. Rolandone, E. d’Acremont, L. Wa-726
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Figure 1. Geodynamic settings of the Gulf of Aden.

Arrows show GPS vectors considering the Eurasian plate fixed [from Vigny et al., 2006]; numbers

are the velocities in mm/yr. Black dots are epicentres of earthquakes (USGS database from

1973/01 to 2011/04, MW ≥ 3.5 - http://earthquake.usgs.gov/earthquakes/ eqarchives/epic/).

Hatched areas correspond to the Arabo-Nubian shield. Abbreviations: AFTZ, Alula-Fartak

Transform Zone; AR, Aden Ridge; CR, Carlsberg Ridge; EAR: East African Rift; OFZ, Owen

Fracture Zone; SHTZ, Socotra-Hadbeen Transform Zone; SR, Sheba Ridge; SSFZ, Shukra-el-

Sheik Fracture Zone. The direction of extension of the Gulf of Aden is highlighted by the

orientation of the transform zones. Relief is compiled from SRTM topography data [Farr et al.,

2007] and gravity-predicted bathymetry [Sandwell and Smith, 1997].

Figure 2. Model setup.

An extension velocity of 1 cm/yr is applied on each side of the model. The springs represent the

lithostatic pressure (Winkler basement) that is applied at the base of the model. The strength

envelopes (blue and red curves) compare the different rheological behaviour in depth for the two

different mantle failure criteria in the upper 150 km of the model. The black curve presents the

evolution of the temperature with depth in the upper 150 km of the model. A 50◦C thermal

anomaly is applied at the base of the crust to localize the deformation at the center of the model.
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Figure 3. The Arabian plate mantle lithosphere buoyancy.

A. Composition of xenoliths from the Arabian plate mantle lithosphere (see Supplementary

material for the references), of subcontinental mantle lithosphere standards from four tectons

[Griffin et al., 2009] and of the fertile Hawaiian pyrolite standard [Wallace and Green, 1991]

plotted in a Mg# vs. %Al2O3 diagram (Mg#=100 Mg/(Mg+Fe)). Also shown is the range

of the tecton xenolith suites [Griffin et al., 2009]. Two groups of xenoliths can be separated

according to their chemistry. Lherzolites (lhz) and harzburgites (haz) have low Al2O3 content

and high Mg#. In spite of the scattering, clinopyroxenites (cpx) and websterites (web) have high

Al2O3 content and low Mg#.

B. Buoyancy calculated for the compositions of the xenoliths and the tecton standards along the

initial thermal profile of the model (the buoyancy is calculated relative to the asthenosphere).

The rapid buoyancy decrease between 50 km and 80 km shown by several curves of the cpx-web

group corresponds to the plagioclase-spinel-garnet transitions.

C. Calculation of the Arabian plate mantle lithosphere buoyancy as a mixing of depleted and

fertile rocks. The depleted fractions correspond to either the mean lhz-haz group (mean buoyancy

∼20 kg m−3) or the mean of the tecton standards (mean buoyancy ∼5 kg m−3). The fertile

fraction corresponds to the cpx-web group (mean buoyancy ∼-100 kg m−3). The buoyancy

decreases with increasing fraction of cpx-web. The density of the “best fit model” (-20 kg

m−3, see section 5.1) can be achieved for a mantle lithosphere containing approximately 30%

clinopyroxenite and websterite.
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Figure 4. Influence of the mantle lithosphere rheology.

The two columns correspond to the results of the two models comparing mantle lithosphere rhe-

ology.

A. The first line shows the strain rate in the models 0.5 Ma before the break-up of the continental

crust, respecting the color scale shown below. The second and third lines show the geometry of

the model at the time of the break-up of the continental crust and 18 Ma later, respectively. The

color code for the materials is the same as in Figure 2. The black arrows show the position of

the oceanic spreading ridge.

B. Topography of the models at the moment of crustal break-up and 18 Ma afterwards compared

with the present-day topography of the Gulf of Aden.

C. Evolution of the model topography through time: at each time line correspond a 2D topo-

graphic line. Left panel: Mohr-Coulomb model . Right panel: Perfectly-plastic model (following

the columns of panel A). The higher elevations (dark red) show the positions of the rift shoulders

through time while the narrow green-to-blue zone shows the position of the oceanic ridge. The

black circles highlight the places where and times when the oceanic ridge relocates (ridge jumps).

The black horizontal lines correspond to the moment of crustal break-up.

Figure 5. Influence of the mantle lithosphere buoyancy.

The three columns correspond to the results of the three models comparing the buoyancy of the

lithosphere. Organization of this figure is similar to Figure 4.
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Figure 6. Comparison with the eastern Gulf of Aden.

We compare available information with the model 18 Ma after crustal break-up.

A. Comparison of the heat-flow of the model with the heat-flow profile across the northern

margin [Lucazeau et al., 2008]. The blue dots are heat-flow values corrected for sedimentation,

topography and refraction and the green line is the modeled heat-flow.

B. Comparison of the geometry of the model with a refraction and wide-angle reflection seismic

profile coincident with the heat-flow measurements in part A of this figure [Leroy et al., 2010a].

The grey box presents the geometry of the model and the possibility of partial melting in the

mantle at the moment of crustal break-up. Z.E.C.M. means zone of exhumed continental mantle.

C. Comparison the model topography with data along 4 profiles [Sandwell and Smith, 1997; Farr

et al., 2007]. The positions of the profiles are shown on the map at the right of the figure. The

red line corresponds to the position of the heat-flow/refraction line presented in A and B.

D R A F T May 14, 2013, 12:00pm D R A F T



WATREMEZ ET AL.: BUOYANCY AND PLASTICITY OF LITHOSPHERE X - 45

Table 1. Reference model parameters.

Parameters of the reference model having a Mohr-Coulomb failure criterion in the mantle litho-

sphere and equal densities in the mantle lithosphere and asthenosphere. Upper and lower crustal

rheologies are dry granite and felsic granulite, respectively [Ranalli , 1995].

Parameters Values
Half extension velocity, Vext 1×10−2 m yr−1

Temperature at the base of the lithosphere 1300 ◦C
Radioactive heat production, Hs 4.5x10−10 W kg−1

Radiogenic production decay length, hr 20 km
Crust thermal conductivity, kc 2.5 W K−1 m−1

Mantle thermal conductivity, km 3.3 W K−1 m−1

Specific heat, Cp 1000 J K−1 kg−1

Thermal age 700 Ma
Upper Lower Mantle

Asthenosphere
crust crust lithosphere

Thickness (km) 24 20 206
Density, ρ (kg m−3) 2750 2900 3330 3360
Initial scaling factor, A (Pa−n s−1) 2.0×10−4 8.0×10−3 1.0×104 1.0×104

Power-law exponant, n 1.9 3.1 3.0 3.0
Activation energy, Q (J mol−1) 137×103 243×103 520×103 520×103

Cohesion, C0 (MPa) 20 20 20 300
Internal angle of friction, φ (◦) 30 30 30 2
Elastic shear modulus, G (Pa) 4.4×1010 4.4×1010 6.7×1010 7.0×1010
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Supplementary material

1 Density of the Arabian mantle lithosphere and as-

thenosphere

Bulk rock chemical analyzes of xenoliths from the mantle lithosphere below the Arabian shield

have been gathered from literature [Kuo and Essene, 1986; Nasir and Safarjalani , 2000; Stein

et al., 1993; Ghent et al., 1980; Nasir , 1992; Nasir and Al-Fuqha, 1988]. These xenoliths are

found in neogene alkali basalts of Yemen, Saudi Arabia, Jordan, Israel and Syria [McGuire,

1988]. The dataset contains analyzes of lherzolites (N=16), harzburgites (N=7), clinopyrox-

enites (N=13) and websterites (N=5). The analyzes of the xenoliths as well as those of the

fertile Hawaiian pyrolite and of four standard compositions of mantle lithosphere below tectons

(lithospheres younger than 1 Ga) are presented in table 1. The densities corresponding to these

chemical analyzes have been computed with the free energy minimization program PERPLEX07

[Connolly , 2009]. We used a thermodynamic database that is dedicated to mantle rocks ther-

modynamics [Xu et al., 2008]. The activity model set takes into account solid solution in

plagioclase, spinel, garnet, olivine, wadsleyite, clinopyroxene, orthopyroxene and high-pressure

clinopyroxene (C2/C phase) in the six oxides Na2O-CaO-FeO-MgO-Al2O3-SiO2 system (NCF-

MAS). Even if the method is fairly similar, our results are not directly comparable to those

of Griffin et al. [2009] who have not considered Na2O in their computations. This assump-

tion leads to higher density contrasts at depths below 400 km than with the six oxides system

[Nakagawa et al., 2010]. Chemical analyzes are generally given in the Na2O-K2O-CaO-FeO-

MnO-MgO-Fe2O3-Al2O3-Cr2O3-TiO2-SiO2 eleven oxides system. Reduction from this whole

system to the six oxides system has been carried out with the following assumptions. (1) The

K molar amount, which is always minor, has been added to the Na molar amount. (2) The Mn

molar amount, which is always minor, has been added to the Fe molar amount. (3) All iron is

considered as Fe2+. (4) Cr and Ti are assumed to be only present as oxides (chromite Cr2O3 and

rutile TiO2) and are therefore not considered. Amongst all tested assumptions, this set allows

us avoiding large and probably unrealistic amount of excess Al2O3 and SiO2 in the clinopyrox-

enites and the websterites. The density with depth for all the considered chemical compositions

has been computed along the initial thermal profile of the models. These curves are presented

on figure 1. Following Nakagawa et al. [2010], only buoyancy curves rather than absolute den-

sities are presented in the text. We indeed consider that computing density differences reduces

the uncertainties unavoidably arising from the chemical analyzes, the thermodynamic database

and the activity models.
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Table 1: Chemical compositions of the mantle lithosphere xenoliths from the Arabian shield,
tectons mantle lithosphere [Griffin et al., 2009] and asthenosphere (fertile Hawaiian pyrolite)
[Wallace and Green, 1991]. The compositions are given in the reduced NCFMAS system,
which has been considered for density computation with the free energy minimization pro-
gram PERPLEX07 [Connolly , 2009]. Also given is the Mg# = 100 Mg/(Mg+Fe) relative
to the compositions.References: 1: Ghent et al. [1980], 2: Griffin et al. [2009], 3: Kuo and
Essene [1986], 4: Nasir [1992], 5: Nasir and Al-Fuqha [1988], 6: Nasir and Safarjalani
[2000], 7: Stein et al. [1993], 8: Wallace and Green [1991].

Lherzolites

Sample M-1 K-3 T-5 A-4 R-9 JAR1 JAR3 JAR9
SiO2 45.92 46.06 47.16 47.02 44.66 43.44 43.72 43.03
Al2O3 1.26 1.82 3.51 1.51 1.82 1.95 2.01 1.91
FeO 8.62 8.44 8.58 7.35 9.75 7.88 8.13 8.62
MgO 41.53 40.96 36.77 41.79 40.77 44.85 44.22 44.54
CaO 2.32 2.53 2.95 1.96 2.12 1.83 1.81 1.84
Na2O 0.35 0.20 1.02 0.37 0.87 0.05 0.11 0.06
Mg# 0.90 0.90 0.88 0.91 0.88 0.91 0.91 0.90
Ref. 4 4 4 4 4 5 5 5
Sample JAR15 JAR20 T6 B4 I1 TA-806 TA-842 MHZ-230
SiO2 43.62 43.39 44.70 44.69 43.01 45.16 44.69 46.81
Al2O3 1.72 1.78 3.42 3.30 3.18 2.11 2.60 3.23
FeO 7.92 8.44 8.84 6.89 8.82 8.08 8.01 8.97
MgO 44.83 44.38 40.32 42.23 41.55 42.35 41.99 37.32
CaO 1.86 1.92 2.36 2.57 3.06 2.01 2.40 3.44
Na2O 0.06 0.09 0.35 0.32 0.38 0.29 0.31 0.23
Mg# 0.91 0.90 0.89 0.92 0.89 0.90 0.90 0.88
Ref. 5 5 6 6 6 7 7 7
Harzburgites

Sample JT26A JT26B HAK-1 T3 B2 I3 H2
SiO2 44.70 45.05 44.25 42.85 44.32 43.54 42.24
Al2O3 0.80 2.01 1.51 2.81 2.65 2.10 1.05
FeO 8.19 8.19 7.98 9.02 7.90 9.57 9.15
MgO 45.41 43.54 45.16 43.59 43.57 42.92 46.33
CaO 0.80 1.01 0.92 1.46 1.40 1.70 1.17
Na2O 0.09 0.20 0.18 0.27 0.16 0.17 0.06
Mg# 0.91 0.90 0.91 0.90 0.91 0.89 0.90
Ref. 1 1 3 6 6 6 6
Pyroxenites

Sample M-5 T-8 A-7 R-2 A-3 R-5 T1 T5
SiO2 54.51 53.87 53.63 52.18 51.93 51.00 44.71 46.04
Al2O3 8.51 9.60 6.87 7.86 11.44 10.38 12.67 11.40
FeO 5.45 4.31 5.81 7.26 5.92 8.27 10.72 10.46
MgO 15.86 16.98 24.34 24.53 13.77 15.78 16.13 17.38
CaO 14.69 14.76 8.48 7.35 15.79 13.34 14.42 13.37
Continued on next page
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Continued from previous page
Na2O 0.98 0.48 0.87 0.82 1.15 1.23 1.36 1.34
Mg# 0.84 0.88 0.88 0.86 0.81 0.77 0.73 0.75
Ref. 4 4 4 4 4 4 6 6
Sample B7 T8 I14 BS-701 KM-1402
SiO2 48.45 47.63 48.80 48.84 44.07
Al2O3 8.69 9.64 10.53 12.01 12.65
FeO 8.34 7.68 9.15 4.95 11.60
MgO 17.65 18.86 19.57 17.02 14.55
CaO 15.24 15.30 11.16 16.07 15.92
Na2O 1.62 0.89 0.78 1.10 1.21
Mg# 0.79 0.81 0.79 0.86 0.69
Ref. 6 6 6 7 7
Websterites

Sample 58376A 58376B 58377 T15 M11
SiO2 51.44 51.98 52.06 46.59 48.92
Al2O3 7.39 6.29 5.48 11.03 9.52
FeO 5.90 8.94 8.61 9.68 7.53
MgO 17.72 19.49 18.37 23.87 23.89
CaO 16.61 12.28 14.72 8.10 8.35
Na2O 0.93 1.02 0.77 0.73 1.78
Mg# 0.84 0.80 0.79 0.81 0.85
Ref. 1 1 1 6 6
Asthenosphere

Sample Fert-Pyr
SiO2 45.80
Al2O3 3.59
FeO 8.74
MgO 38.07
CaO 3.13
Na2O 0.67
Mg# 0.89
Ref. 8
Tecton mantle lithosphere

Sample Tc-1 Tc-2 Tc-3 Tc-4
SiO2 44.83 45.34 44.80 44.59
Al2O3 3.53 3.93 2.62 2.33
FeO 8.19 8.23 8.41 8.66
MgO 40.09 38.99 41.47 41.95
CaO 3.12 3.22 2.52 2.23
Na2O 0.24 0.28 0.18 0.24
Mg# 0.90 0.89 0.90 0.90
Ref. 2 2 2 2
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Figure 1: Density evolution with depth for mantle lithosphere xenoliths from the Arabian shield,

tectons mantle lithosphere and asthenosphere. The computation of the density has been carried

out with the free energy minimization program PERPLEX07 [Connolly , 2009].
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