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ABSTRACT. The aim of this paper is to study the elastic behaviour of a periodic composite 
geomaterial by applying a micromechanical approach. The macroscopic anisotropic rigidity 
tensor is computed using the asymptotic expansion homogenization method. The results are 
partially validated through the triaxial testing of a composite in which the spheres made of 
sintered clay are periodically embedded in a matrix (Hostun sand HN38). Good agreement 
was observed between calculated and measured elastic parameters. 
RÉSUMÉ. L’objectif de cet article est d’étudier le comportement élastique d’un géomatériau 
composite périodique en appliquant l’approche micromécanique.  Le tenseur de rigidité 
macroscopique anisotrope a été calculé en utilisant la méthode des développements 
asymptotiques. Les résultats ont été partiellement validés par les essais triaxiaux sur un 
composite constitué des sphères d’argile solidifiée réparties périodiquement dans la matrice 
(sable d’Hostun HN38). La comparaison montre un bon accord entre les paramètres 
élastiques calculés et mesurés. 
KEYWORDS: Homogenization – Rigidity tensor – Triaxial tests – Geomaterials – Numerical 
computations - Anisotropy 
 
 



 

1. Introduction 

The elastic behaviour of composite geomaterials is of interest because of 
potential applications of such materials in environmental geomechanics.  In 
particular, many ideas have been recently developed concerning the so called “green 
geotechnics”, that focuses on the re-utilisation of waste materials like for example 
the coal combustion products in civil engineering and road making. The use of tire 
shreds in construction projects, such as highway embankments, is also becoming one 
of the commonly accepted ways of beneficially recycling scrap tires. Although the 
general idea of recycling the industrial wastes is not new, there is a new context for 
such activity due to recent regulatory initiatives at the European level (see for 
example REACH available on the web).  

The literature concerning the effective elastic properties of heterogeneous 
materials is very rich. There exist many different methods, using classical to modern 
approaches based on micromechanical considerations. The very comprehensive 
review of the state of the art can be found for example in the books by Bornert et al. 
(2001), Torquato (2005), François et al. (2009) and Suquet (1997). The most 
classical approach consisted in the prediction of limits (upper and lower) for the 
effective parameters such as effective bulk and shear modulus. The commonly 
known limits based on the volumetric fractions and the elastic parameters of the 
components were proposed by Voigt (1887) - Reuss (1929) and Hashin - Shtrikman 
(1962, 1963). Although they can be useful in some cases, the general practical 
applicability of the method of bounds is very limited.  

It is evident that more precise prediction requires more information about the 
internal structure of the material, which is  now accessible thanks to the recent 
development of X-ray microtomography and the image correlation techniques 
(computed tomography) (Hall et al., 2010), (Lenoir et al., 2007).  

The microstructural information can be provided in a statistical sense or in a 
deterministic (explicit) manner. Some of the modern methods use the approach of 
estimations to construct a big number of solutions for some morphological classes of 
materials (see for example in François et al. (2009). In this case the morphological 
information is given through the assumption about the form and the spatial 
distribution of inclusions. In Torquato (2005) a systematic theory of random 
heterogeneous materials is proposed. “The details of the microstructure” like the 
phase volume fractions, surface area of interfaces, orientations, sizes, shapes and 
spatial distribution the phase domains or connectivity of the phases are approached 
statistically by n-point correlation functions. A large number of solutions for 
particular cases were developed.  

Another approach concerns the media with periodic microstructure.  In this case 
the microstructure of the medium is given explicitly, which is very important when 
modelling the coupled transient phenomena taking place in heterogeneous porous 
materials. For example, the knowledge of connectivity of phases is essential in 
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modelling of chemo-mechanical couplings. Qualitatively different macroscopic 
models (with different effective parameters) should be applied to model mass 
transfer, in case of fractured material when the network of fractures is connected or 
not. 

The asymptotic expansion homogenization method (called also periodic 
homogenization), dealing with periodic structures, was firstly introduced by 
(Sanchez-Palencia, 1980) and (Bensoussan et al., 1978). Since then, it has been 
widely used for modelling of different periodic composite materials (see for example 
the numerical computations in Bornert at al. (2001) or homogenization of a special 
case recently presented in Chatzigeorgiou et al., 2011, among others). The 
homogenization makes it possible to link the microstructure and the elastic 
parameters of the components with the macroscopic behaviour of the composite 
system when the size of the heterogeneity with respect to the macroscopic length is 
small. Thus, it is possible to construct materials of desired properties for specific 
engineering applications.  

The aim of the paper is to present the application of the upscaling method by 
using the asymptotic expansions (Sanchez-Palencia, 1980) and (Bensoussan et al., 
1978) for the prediction of the macroscopic elasticity parameters of the three 
dimensional anisotropic composite. It is shown how the asymptotic expansion 
homogenization method can be used in a particular case of periodic porous 
composite made of sand and solidified clay spheres (double porosity medium). In 
addition, the results obtained by numerical calculations of the macroscopic rigidity 
tensor were verified experimentally by performing a series of triaxial tests in 
consolidated drained conditions (CD triaxial compression tests). 

The paper is structured as follows. In Section 2 we describe the composite 
material and the experimental investigations of this material in the triaxial apparatus. 
The homogenization analysis of the elasticity problem for the double porosity 
composite is discussed in section 3. Section 4 presents the numerical calculations of 
the rigidity tensor, and the interpretation and comparison with the experimental data. 
In the last section 5 the final conclusions are formulated. 

2. Double porosity composite material and triaxial testing 

The double porosity composite material investigated in this paper was build from 
two components: Hostun fine sand and small spheres made of solidified clay 
embedded periodically in the sand. This material was conceived for modelling 
purposes, in particular for experimental verification of theoretical and numerical 
modelling of macroscopic multiphysical behaviour by using the multi-scale 
homogenization approach (Lewandowska et al. 2005, 2008), (Szymkiewicz et al., 
2008), (Tran Ngoc at al., 2011). 



 

Several mechanical tests were performed in the triaxial apparatus in order to 
determine the elastic parameters of the composite geomaterial (Grinke, 2007). The 
same tests were also carried out in pure sand to obtain the characteristics of matrix 
component of the composite, that is a necessary input data for numerical 
computations. Moreover, the inter-comparison of the triaxial curves enabled us to 
experimentally observe the influence of the second component (solidified clay) on 
the behaviour of the whole system. 

2.1. Double porosity composite material 

       The two components i.e. the homogenous Hostun sand HN38 and the 
solidified clayey spheres were used to build a composite in a triaxial cylinder of the 
diameter of 10 cm and the height of 10 cm. The cylinder was filled up alternatively 
with sand and spheres (layer by layer) by controlling the mass and the mechanical 
energy of compaction. We proceeded in the following way: i) a layer of a given 
quantity of spheres was carefully put into the cylinder, so that the spheres touched 
each other in the horizontal plane, ii) a layer of a given mass of sand was put on the 
top of the spheres in order to cover the spheres, iii) then both layers were compacted 
by using a small hammer. This procedure was continued until the cylinder was filled.  
The volumetric fractions of each component material were 50 % and 50 %, 
respectively. The established and rigorously respected experimental protocol 
(Grinke, 2007) enabled us to obtain the composite material of periodic structure of 
the cubic-centered type (but not exactly the cubic-centered), Figure 1. More details 
about the microstructure can be found in section 3.2. 

The laser granulometry of the sand HN38 showed a uniform grain size 
distribution with the mean grain size of 162 µm. The mean diameter of the clay 
spheres was 6.4 mm. The mercury porosity test gave the porosity of spheres φ = 
0.376 and the mean pore size around 0.7 µm. The skeleton specific density of the 
spheres material was ρs = 3.01 g/cm3 and the dry bulk density ρd = 1.88 g/cm3. The 
porosity of the homogeneous sand samples and the porosity of sand used in the 
composite material samples were controlled and kept constant in both cases, n = 
0.40. Prior to mechanical testing both materials were subjected to different kind of 
tests for other modelling purposes, so their physical properties are well known 
(Lewandowska et al. 2005, 2008), (Szymkiewicz et al., 2008), (Tran Ngoc at al., 
2011).  

The triaxial tests were perfomed at the Laboratory 3S-R in Grenoble, France. The 
apparatus was manufactured by Wykeham Farrance. It was equipped with a load cell 
of the capacity 100kN. The variations of volume of the sample were measured by a 
manometric volume gauge. We followed the procedure of CD triaxial testing of 
granular materials established at the Laboratory 3S-R (Desrues and Orestis, 2006). 
The precision of measurements were:  26 N for force and 0.08% for volume change. 
The details concerning the tests presented in this paper can be found in (Grinke, 
2007) and (Pilawski, 2011). 



Revue. Volume X – n° x/année, pages 1 à X  

 

Figure 1. Periodic structure of the composite (Grinke, 2007) 

2.2. Experimental program 

In order to determine the elastic parameters a series of classical triaxial tests in 
the composite and in the pure sand, was performed. All samples were initially 
saturated by water using the back pressure technique (100 kPa). The values of 
Bishop coefficient were relatively high and varied between B = 82% and B= 90%. 
The speed of the axial loading displacement device in strain controlled conditions 
was 0.12 mm/min. 

Two kinds of triaxial tests were performed: 

- the CD shearing test under constant confining pressure of 100 kPa 



 

- the isotropic compression test in drained conditions; the range of pressure 
was 50 kPa - 400 kPa. The pressure was increased by steps of 50 kPa 

During all tests the volume changes were registered by measuring the volume of 
water drained out of the sample. The shearing tests continued until 10% of axial 
deformation was reached. During each shearing experiment three unloadings were 
done, after 7, 14 and 21 minutes from the beginning of the test respectively. Thus, 
we restricted the deformation zone to max 2%. Both materials were tested in the 
same conditions. Note that this composite material of periodic microstructure was 
studied under conditions of scale separation. The scale separation means the ratio of 
the dimension of the period over the dimension of the macroscopic domain (here the 
size of the sample). 

 

2.3. Results 

2.3.1. Comparison of the triaxial curves 

In Fig. 2 and Fig. 3 the results of shearing tests in sand and in the composite, are 
presented. In Fig 2 the curve of axial stress as a function of axial strain, whereas in 
Fig 3 the curve of relative volume change ( 0/VV∆  where 0V  is the initial volume) 
as a function of axial strain, are plotted. By comparing the curves for the two 
materials we can observe the qualitative difference in the mechanical behaviour of 
both materials, from rather ductile (for sand) to rather fragile (for composite) type of 
behaviour.  

In Fig. 4 an example of unloading during triaxial test in the double porosity 
medium (composite) in the strain range:  0.0183 - 0.0194, is shown. The 
interpretation of these results is presented in section 2.3.2.  In Fig. 5 we can see the 
relative volume changes with time corresponding to each isotropic stress increment 
for both materials. It can be seen that the volume changes in case of composite are 
considerably less than in case of sand. Moreover, some irregularities in the curve for 
composite are observed (see section 4.3 for discussion of this effect).
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Figure 2. Axial stress as a function of axial strain 
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Figure 3. Relative volume change as a function of axial strain 
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Figure 4. Example of the unloading during triaxial test in the double porosity 
medium (composite)  in the strain range:  0.0183 - 0.0194. 
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Figure 5. Relative volume change as a function of time during isotropic 
compression test 
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2.3.2. Interpretation of the results of the triaxial tests 

The obtained results were interpreted in the framework of the theory of elasticity. 
From three unloadings parts of the triaxial shearing curves in sand and in the 
composite we calculated the Young modulus in the axial (vertical) direction, and the 
Poisson ratio in both lateral directions (corresponding to the axial loading). On 
another hand, a bulk modulus K was calculated from the isotropic compression tests 
results for each material. Two tests in sand (Test 1 and Test 2) were used. The 
results of all calculations are presented in Tab. 1.  

It can be noticed that the elastic parameters of both materials depend on the range 
of the strains and stresses. For sand a clear increase of the Young modulus is seen. 
For the composite the increase is less evident. Moreover, the presence of solidified 
clay inclusions leads to substantial increase of elastic parameters of the composite 
with respect to the pure sand: 2.36 times for the Young modulus, 1.16 times for the 
Poisson ratio and the 1.78 times for the bulk modulus. Finally, the Poisson ratio of 
the composite seems to be rather unrealistically high (close to 0.5), especially if we 
compare it with the value obtained for pure sand (the matrix in the composite). It will 
be further discussed in section 4.3. 
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Table 1. Triaxial tests results 
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3. Homogenization analysis of the double porosity composite material 

3.1. Multiscale approach 

In order to obtain the effective elastic properties of the double porosity 
composite the asymptotic expansion homogenization method was used. The method 
is well established in the literature (Sanchez-Palencia, 1980; Bensoussan et al. 
1978). In its classical form the method concerns two scales, the microscopic and the 
macroscopic sale. The double porosity composite material analyzed in this paper is 
considered as a three scale material, with micro, meso and macroscopic scales. 
Therefore, to carry out the homogenization we have to start from the smallest scale 
(the pore scale) by freezing all larger scales. Once the homogenization is done at this 
scale, the material properties and the corresponding physical description can be 
shifted to the next scale, and the process starts again. The required condition for such 
a multiscale approach to be possible is the scale separation at each scale level 
(Auriault, 1991).  

In the paper it is considered that the first homogenization process has been 
already done (Sanchez-Palencia, 1980), (Bensoussan et al. 1978), and we focus on 
the second step of homogenization. For simplicity of the presentation in the 
following development the notations “micro” and “macro” will be used for the 
second step of homogenization  

3.2. Microstructure and microscopic properties 

The choice of the three dimensional microstructure analysed in this paper was 
motivated by the interest of dealing with a composite material presenting 
macroscopic anisotropy. Moreover, the inclusions are interacting in the horizontal 
directions and the material of inclusions is compressible. For the composite material 
of such microstructure the experimental data presented in section 2 are available. 
Thus, the comparison between computations and measurements will be possible.  

Three layers of spheres embedded in a matrix material, can be seen in Figure 6. 
The spheres touch each other in each horizontal layer and form cubic-like 
arrangements in the horizontal and vertical planes. Taking into account the whole 
three dimensional structure, the arrangement can be called of “centered-cubic” like. 
The external dimensions of the period are: 6.4 mm × 6.4 mm × 13.404 mm. 
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Figure 6 Geometry of the periodic cell 

 

 

The first process of homogenization (not presented here) concerns the 
constituents of the composite i.e. sand and sintered clay, taken individually. We 
assume that the after the first step of homogenization both components of the 
composite are homogeneous isotropic elastic materials, characterized by two elastic 
constants: Young’s modulus E and Poisson ratio ν (or the Lamé coefficients: 
λ and µ). We denote: E1, ν1 − the elastic constants of matrix material (sand) and E2, 
ν2 −the elastic constants of inclusions (sintered clay). 

3.3. Formulation of the homogenization problem 

In the process of homogenization three coordinates systems are introduced: 

),,( 321 XXXX  -  dimensional coordinate system   [1] 

LXXXxxx /),,(),,( 321321 Xx =  - macroscopic coordinate system [2] 

lXXXyyy /),,(),,( 321321 Xy =  - microscopic coordinate system [3] 

where l is the characteristic microscopic length (here: dimension of the period) 
and L is the characteristic macroscopic length (here: dimension of the triaxial 
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sample). The ratio ε=Ll / defines the scale separation parameter. We assume that 

the scale separation conditions are satisfied: 1<<ε (Auriault, 1991). 

The equilibrium equation at the microscopic scale when inertia and body forces 
can be neglected, is written: 

Ω=
∂
∂

in
X j

ij
0

σ
       [4] 

together with the Hooke’s law: 

)(uklijklij C εσ =        [5] 

where the rigidity tensor ijklC (y) is spatially dependent. The tensor 

)(2/1 ,, kllkkl uu +=ε is the microscopic small deformation tensor.  

At the interface Γ (Figure 6) the continuity conditions of displacements and 
surface loads, are verified: 

[ ] 0=Γu    and     [ ] 0=
Γjij Nσ  

These conditions indicate that there is no jump of displacements and surface 
loads at the boundary Γ . In the asymptotic expansion homogenization method the 
homogenization problem has to be formulated using non-dimensions quantities. Note 
that we assumed that the properties of both constituents in all directions are of the 
same order of magnitude with respect to the scale separation parameter ε . 
Therefore, we can rewrite the problem [4] –[5] in the non-dimensional form 

Ω=
∂
∂

in
y j

ij
0

σ
       [6] 

with )(uklijklij C εσ =       [7] 

In [6]-[7] we use the same notations for the non-dimensional displacements, 
stresses and rigidity tensor as for the dimensional quantities in [4]-[5].  

In the next step, the unknown displacement is represented in a series expansion 
form: 

...),(),(),(),( )2(2)1(1)0( +++= yxuyxuyxuyxu εε   [8] 

where all successive order terms are periodic functions. 

Therefore, we have also: 
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...),(),(),(),( )2(2)1(1)0( +++= yxyxyxyx εεεεεεεεεεεεεεεεεεεε ε  

...),(),(),(),( )2(2)1(1)0( +++= yxyxyxyx σσσσσσσσσσσσσσσσ εε  

As usual in the two scale homogenization the derivative operator is defined as  

iii xydy

d

∂
∂+

∂
∂= ε        [9] 

3.4. Homogenization 

By applying the classical asymptotic expansion homogenization method to the 
problem [6]-[7], we can obtain the following results for the displacement function at 
successive orders (Sanchez-Palencia, 1980), (Bensoussan et al., 1978): 

)(),( )0()0( xyx ii uu =       [10] 

)(+)(=),(
)1((0))1(

xuyx ixkh
kh
ii uu εξ     [11] 

where )( ykh
iξ is a particular periodic solution of the elasticity problem 

corresponding to the unit macroscopic strain tensor Ekh= ( ke ⊗ he  + he ⊗ ke )/2. 

where k, h = 1, 2, 3. The symbol ⊗ means the tensorial product between the unit 
vectors of the basis. This solution should also verify the zero volume average 

condition. The function )()1( xiu is arbitrary.  

At the next order homogenization of the problem [6]-[7] the macroscopic 
description is found as in (Sanchez-Palencia, 1980), (Bensoussan et al., 1978): 

       0
)0(

=
∂

><∂

j

ij

x

σ
       [12] 

where the macroscopic stress tensor is defined as a volumetric average: 

       
Ω

Ω
>=< ∫

Ω
dijij

)0()0( 1 σσ
      [13] 

The macroscopic constitutive equation is obtained in the form: 



16     Revue. Volume X – n° x/année  

 

      )( )0(*)0( uxkhijkhij C εσ >=<      [14] 

where the macroscopic (effective) rigidity tensor is defined as: 

      >+=< )(* kh
ylmijlmijkhijkh CCC ξξξξε     [15] 

The tensors xεεεε in [14] and yεεεε in [15] are the macroscopic and the microscopic 

strain tensor, respectively. 

     As it can be seen from [12]-[15] the homogenization process provides us with the 
macroscopic description of the behaviour of the composite in form of the 
macroscopic Hooke’s law in which the macroscopic rigidity tensor is a function of 
the elastic parameters of the components i.e. the microscopic rigidity tensors and the 
microstructure of the medium. 

4. Numerical computations of the rigidity tensor of the double porosity 
composite material 

4.1. Local boundary value problem 

The rigidity tensor of the double porosity material can be computed from the 
solution of the local boundary value problem obtained from homogenization 
(Sanchez-Palencia, 1980), (Bensoussan et al., 1978): 

ΩinC
y xkhykhijkh

j
0=)))(+)(((∂

∂ )0()1( uu εε   [16] 

[ ] 0=))(+)(( )0()1(
Γjxkhykhijkh NC uu εε    [17a] 

[ ] 0=)1(
Γu                    [17b] 

where the first-order displacement field 
)1(u is defined by equation [11]. 

Therefore, the unknown in the problem [16]-[17] is the periodic displacement field 
ξξξξ . The problem [16]-[17] can also be written in the form: 

ΩinCC
y ijkh

kh
ylmijlm

j
0=)+)((∂

∂
ξξξξε    [18] 
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[ ] 0=)+)((
Γjijkh

kh
ylmijlm NCC ξξξξε                             [19a] 

[ ] 0=
Γ

khξξξξ                                 [19b] 

The problem [16]-[17] (or [18]-[19]) has to be solved six times by imposing six 
unit macroscopic strain tensors Ekh = ( ke ⊗⊗⊗⊗ he  + he ⊗⊗⊗⊗ ke )/2. 

Then, the effective rigidity tensor 
*
ijkhC can be obtained by calculating the 

volume integral [15] based on homogenization.  Using the engineering notations the 

fourth order tensor 
*
ijkhC  can be converted into the second order tensor 

*
ijD  by 

applying the usual conversion rule (Bacon and Pouyet, 2000, page 107). According 

to the above procedure the complete tensor 
*
ijkhC  (and

*
ijD ) can be determined, if 

the microstructure of the medium is known. 

4.2. Numerical results 

In this section the full macroscopic rigidity tensor for the microstructure of the 
composite geomaterial presented in Figure 1, is computed. The problem [16]-[17] 
issue from homogenization was solved taking into account the elasticity parameters 
of sand determined in the triaxial tests, Table 1. Since these parameters are strain-
stress dependent, the macroscopic rigidity tensor was calculated three times (for each 
unloading). On the contrary, the elastic parameters of sintered clay material were 
taken from the literature for bricks: E = 14 GPa and ν = 0.2 ( constant values). In 
order to obtain the full tensor (6× 6 components) the problem [16]-[17] has to be 
solved (for each couple of the local elastic parameters) six times. 

Since the microstructure possesses three symmetry planes (Figure 6), the material 
can be considered as orthotropic with 9 independent coefficients. The general form 
of the macroscopic tensor is (Berthelot, 1992): 
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55

44

332313

232212

131211

D00

0D0

00D    

0  0     0

0  0      0

0   0      0

0     0    0

0     0    0

0     0    0  

DDD

DDD

DDD

=D*  

 

In the numerical computations we used the commercial finite elements code 
Comsol Multiphysics. 

The three macroscopic rigidity tensors computed independently for three ranges 
of the axial strain are given in Annex 2. In particular, the following values of the 

component 
*
33D were obtained: 

- For the axial strain range: 0.0128 – 0.0140, we get MPaD 9.484=*
33  

- For the axial strain range: 0.0177 – 0.0192 we get MPaD 7.615=*
33  

- For  the axial strain range:  0.0230- 0.0246 we get MPaD 9.656=*
33  

 

In Annex 2 we can observe that the rigidity tensor possesses the structure of an 

orthotropic tensor. The small values of the non-zero components like *
41D ,

*
51D , 

*
61D  can be considered as numerical errors of approximation. It can also be seen 

that the terms *
11D and *

22D are approximately equal. Also, the terms *44D and 

*
55D are very close to each other. This can be an indication of the state close to 

transversal isotropy with respect to the axis 3 (z). However, there is no full 
transversal isotropy. 

As an example, in Figures 7 and 8 the displacement vector ξξξξ  corresponding to 
the case of unit macroscopic traction strain in the direction z (or 3) with the 
periodicity conditions, is presented. We can observe the three dimensional solution 
of the local boundary value problem (18)-(19). In Fig.7 the z-component, while in 

Fig. 8 the x-component, of the vector ξξξξ  corresponding to the case of unit 
macroscopic strain in the z direction, are presented. The displacement field (the 
displacement corrector) is periodic in all directions which means that it takes the 
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same values on the opposite external walls of the period. We can also see the zones 
of the maximum gradients (see the contribution in the definition [15]).  

 

Figure 7 The z-component of the displacement field ξ  ξ  ξ  ξ  for the case of unit 
macroscopic gradient in the z direction 

 

 

Figure 8 The x-component of the displacement field ξξξξ for the case of unit 
macroscopic gradient in the z direction 
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4.3. Interpretation and comparison with the experimental results 

The results of the numerical calculations of the rigidity tensor presented in 
section 4.2 can be compared with the results of experiments summarized in section 
2.3.2. The comparison concerns only two elasticity parameters determined from 
triaxial tests: the Young modulus in the direction 3 (E3) and the Poisson ratioν , 
Table 1. According to the theory of elasticity for orthotropic media the component 

*
33D of the rigidity tensor can be expressed as (Berthelot, 1992.) 

∆
−=

21

2112*
33

1

EE
D

νν
        [20] 

where the coefficient ∆ is expressed as a function of nine elastic parameters of 
orthotropy: 

321

133221133132232112 21

EEE

ννννννννν −−−−=∆    [21] 

Further, as an approximation it will be assumed that the Poisson ratio of the 
double porosity medium is isotropic, which means that we can write: 

332

2
*
33

2-3-1

-1
= ED

νν
ν

      [22] 

The relation [22] makes it possible to calculate the Young modulus E3 for each 

calculated value of 
*
33D  by considering that the Poisson ratio of the double porosity 

composite is known. Then, the value of E3 calculated from homogenization can be 
directly compared with the experimental value given in Table 1. 

The interpretation was carried out in two steps: 

i) In the first interpretation the measured value of the Poisson ratio of the 
composite was used in relation [22] 

The results are given in Table 2. As we can see the macroscopic Young modulus 
shows important discrepancy between the calculated 

( MPa1.296 , MPa25.182 , MPa69.109 ) and the measured values 

( MPa11.286 , MPa72.362 , MPa08.323 ). It is believed that the origin of this 
discrepancy is the Poisson ratio determined from the triaxial apparatus. It has to be 
pointed out the calculations proved to be very sensitive to the value of the Poisson 
ratio. This value is based on the measurement of the volume of water drained out of 
the medium. As we know, in the case of double porosity media there exists a 
memory effect in the water drainage, due to the low permeability of the second 
porosity ((Lewandowska et al. 2005), (Szymkiewicz et al., 2008), (Tran Ngoc at al., 
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2011).). Therefore, the standard triaxial measurement conditions seem to be not 
appropriate in this case.  

ii)  In the second interpretation the value of the Poisson ratio of the 
composite used in the relation [22] was evaluated based on 
homogenization results and experimental data. 

We calculated the average value of the coefficient related to the Poisson ratio 

namely )2-3-1/()-1(= 322 νννδ ([22]), using the ratios 3
*
33 / ED  for each 

range of the strain-stress state, where3E  is the measured Young modulus. The three 

values of the coefficient δ/1 are close to each other and equal respectively: 0.590, 

0.589, 0.492. The average value is δ/1 = 0.557. The corresponding Poisson ratio is 
equal to 0.374. This value seems physically more realistic and was used in the 
comparison presented in Table 2.  

 

 

 

 

Table 2. Comparison between computed and measured values of Young modulus 

 

0.0128-0.0140 0.39 296.11 0.374 270.11

0.0177-0.0192 0.46 186.25 0.374 342.94

0.0230-0.0246 0.48 109.69 0.374 365.93

Range of axial 
strain

362.72

323.08

First interpretation Second interpretation

Poisson 
ratio ν 

(measured) D33 (computed) / E3 

(measured)

E3 

(computed) 
[MPa]

286.11

Measured 

values of E3 

[MPa]

Poisson ratio ν 
obtained from the 

ratio

E3 

(computed) 
[MPa]

 

 

 

Now, we obtain the following values for the Young modulus: MPa11.270 , 
MPa94.342 , MPa93.365  to be compared with MPa11.286 , 
MPa72.362 , MPa08.323 . It can be seen that the differences between the 

calculated and measured values are of the order of 10% in all cases Therefore, it can 
be concluded that good agreement was found. 
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5. Conclusions 

In this paper we presented the homogenization approach, based on the asymptotic 
expansion homogenization method, in order to compute the effective elasticity 
properties of a composite geomaterial (double porosity). The homogenization 
process was focused on the passage from the scale of the porous components to the 
scale of the composite. 

A part of numerical simulations of the macroscopic rigidity tensor was validated 
through the experimental tests in the triaxial apparatus using a model periodic 
composite of anisotropic microstructure. The comparison showed good agreement 
between the computed and measured values of the Young modulus of the composite. 
To our knowledge very few validations of homogenization with experiments have 
been performed so far, especially for granular materials.  

Some limitations of classical triaxial testing of highly heterogeneous porous 
media are discussed. In particular, the technique of measurement of volume changes 
based on the volume of water drained out of from the medium seems not appropriate 
in this case. Therefore, more experimental studies, using more advanced techniques, 
are postulated.  

Finally, it can be concluded that asymptotic expansion homogenization is an 
excellent method of modelling physical phenomena in media with periodic 
microstructure and a useful technique to study the mechanical behaviour of 
composite geomaterials. 
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Annex 1 

The first column of the tensor 
*D is obtained by solving the problem [16]-[17] 

with periodic conditions for ξξξξ  and with unit macroscopic strain in the direction 1. 
We have: 

)()()(

)()()(

222

111

3322211222

3322111111
*
11

ΩΩΩ

ΩΩΩ

><+><+><++

+><+><+><++=

εελεφµλ
εελεφµλD
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ΩΩΩ

ΩΩΩ
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2222331122

2211331111
*
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222
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3311221111
*
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ΩΩΩ
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21 232231
*
41 22 ΩΩ ><+><= εµεµD  

21 132131
*
51 22 ΩΩ ><+><= εµεµD  

21 122121
*
61 22 ΩΩ ><+><= εµεµD      

where: 

Ω⋅
Ω

=>⋅< ∫
Ω

Ω d

1
1

1
   Ω⋅

Ω
=>⋅< ∫

Ω
Ω d

2
2

1
 

Ω
Ω

= 1
1φ is the volumetric fraction of the material 1  

Ω
Ω

= 2
2φ is the volumetric fraction of the material 2 
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Annex 2 

The three macroscopic rigidity tensors for three ranges of axial strain are 
respectively: 

- For the axial strain range: 0.0128 – 0.0140 

with : E1=119.94 MPa, ν1= 0.35, λ1= 103.7 MPa, µ1= 44.42 MPa 

 

MPa

2065.40.6-      0.2      

0.6-     2614.6   0.2-     

0.2        0.2-      2616.9

1.5    1.5      0.1   

0.1-  0.1-     0.3-  

0.3     0.4-     0.2-   

0.3      0.1-      0.7-    

3    0.3-       0.9-    

0.2        0.6-        0.5-     

192.3193.2

192.31539.6220.5

193.2 220.5  498.8 1

484.9
D* =  

- For the axial strain range: 0.0177 – 0.0192 

with: E1= 163.67 MPa, ν1= 0.33, λ1= 119.44 MPa, µ1= 61.53 MPa 

 

MPa

1972.8 0.7-      0.2       

0.7-     2516.1 0.2 -      

0.2        0.2-      2518.5 

0.2    1.5      0.1   

0.1-  0.1-     0.3-  

0.4-   0.5-     0.3-   

0.4      0.1-      0.8-    

2.9      0.3-       1.0-    

0.2        0.6-        0.6-     

225.5226.6

225.51715.8254.5

226.6 254.5  1678.7

615.7
D* =  

 

- For  the axial strain range:  0.0230- 0.0246 

with: E1= 174.99 MPa, ν1= 0.33, λ1= 128 MPa, µ1= 65.8 MPa 

 

MPa

1950.0 0.8-      0.3      

0.8-     2491.4 0.2-     

0.3        0.2-      2493.9 

0.2    1.5      0.1   

0.1-  0.2-     0.3-  

0.4-   0.5-     0.3-   

0.4      0.4-      0.8-    

2.9      1.1-       1.0-    

0.2        0.8-        0.6-     

240.6241.7

240.61769.8269.4

241.7 269.4  733.9 1

656.9
D* =  
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