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ABSTRACT The aim of this paper is to study the elasticav@ur of a periodic composite
geomaterial by applying a micromechanical approathe macroscopic anisotropic rigidity
tensor is computed using the asymptotic expansionolgenization method. The results are
partially validated through the triaxial testing af composite in which the spheres made of
sintered clay are periodically embedded in a mafkostun sand HN38). Good agreement
was observed between calculated and measured efastineters.

RESUME L’objectif de cet article est d’étudier le compament élastique d’'un géomatériau
composite périodiqgue en appliquant I'approche migézanique. Le tenseur de rigidité
macroscopique anisotrope a été calculé en utilistmtméthode des développements
asymptotiques. Les résultats ont été partiellemetidés par les essais triaxiaux sur un
composite constitué des sphéres d’argile solidiféggarties périodiquement dans la matrice
(sable d'Hostun HN38). La comparaison montre un lamtord entre les parameétres
élastiques calculés et mesurés.

KEYWORDS:Homogenization — Rigidity tensor — Triaxial test§&seomaterials — Numerical
computations - Anisotropy
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1. Introduction

The elastic behaviour of composite geomaterialofisinterest because of
potential applications of such materials in envinemtal geomechanics. In
particular, many ideas have been recently develgpederning the so called “green
geotechnics”, that focuses on the re-utilisatioowabte materials like for example
the coal combustion products in civil engineerimgl #oad making. The use of tire
shreds in construction projects, such as highwayamkments, is also becoming one
of the commonly accepted ways of beneficially réiogcscrap tires. Although the
general idea of recycling the industrial wastesds new, there is a new context for
such activity due to recent regulatory initiatives the European level (see for
example REACH available on the web).

The literature concerning the effective elastic pemies of heterogeneous
materials is very rich. There exist many differamdthods, using classical to modern
approaches based on micromechanical consideratioims. very comprehensive
review of the state of the art can be found fomepde in the books by Bornert et al.
(2001), Torquato (2005), Francois et al. (2009) &djuet (1997). The most
classical approach consisted in the predictioninoftd (upper and lower) for the
effective parameters such as effective bulk andarsimeodulus. The commonly
known limits based on the volumetric fractions ahd elastic parameters of the
components were proposed by Voigt (1887) - Reud29)land Hashin - Shtrikman
(1962, 1963). Although they can be useful in sorases, the general practical
applicability of the method of bounds is very liet

It is evident that more precise prediction requinesre information about the
internal structure of the material, which is nowcessible thanks to the recent
development of X-ray microtomography and the imammrelation techniques
(computed tomography) (Hall et al., 2010), (Lerstial., 2007).

The microstructural information can be providedairstatistical sense or in a
deterministic (explicit) manner. Some of the moderethods use the approach of
estimations to construct a big number of solutifamssome morphological classes of
materials (see for example in Francois et al. (2000this case the morphological
information is given through the assumption abdut form and the spatial
distribution of inclusions. In Torquato (2005) astmatic theory of random
heterogeneous materials is proposed. “The detéikheo microstructure” like the
phase volume fractions, surface area of interfaogentations, sizes, shapes and
spatial distribution the phase domains or connitgtof the phases are approached
statistically by n-point correlation functions. Argle number of solutions for
particular cases were developed.

Another approach concerns the media with periodaastructure. In this case
the microstructure of the medium is given exphgitivhich is very important when
modelling the coupled transient phenomena takirageplin heterogeneous porous
materials. For example, the knowledge of conndgtiof phases is essential in



modelling of chemo-mechanical couplings. Qualitljv different macroscopic
models (with different effective parameters) shobld applied to model mass
transfer, in case of fractured material when thsvoek of fractures is connected or
not.

The asymptotic expansion homogenization method lefgalalso periodic
homogenization), dealing with periodic structuresas firstly introduced by
(Sanchez-Palencia, 1980) and (Bensousdaal., 1978). Since then, it has been
widely used for modelling of different periodic cposite materials (see for example
the numerical computations in Bornert at al. (2000 homogenization of a special
case recently presented in Chatzigeorgietu al, 2011, among others). The
homogenization makes it possible to link the mittadure and the elastic
parameters of the components with the macroscopi@wour of the composite
system when the size of the heterogeneity witheesf the macroscopic length is
small. Thus, it is possible to construct materizflddesired properties for specific
engineering applications.

The aim of the paper is to present the applicatibthe upscaling method by
using the asymptotic expansions (Sanchez-Paleh8B0) and (Bensoussa al.,
1978) for the prediction of the macroscopic eldstiparameters of the three
dimensional anisotropic composite. It is shown hthe asymptotic expansion
homogenization method can be used in a particutese cof periodic porous
composite made of sand and solidified clay sphétesble porosity medium). In
addition, the results obtained by numerical cakiote of the macroscopic rigidity
tensor were verified experimentally by performingseries of triaxial tests in
consolidated drained conditions (CD triaxial conggien tests).

The paper is structured as follows. In Section 2 describe the composite
material and the experimental investigations of thaterial in the triaxial apparatus.
The homogenization analysis of the elasticity peablfor the double porosity
composite is discussed in section 3. Section 4epteghe numerical calculations of
the rigidity tensor, and the interpretation and panison with the experimental data.
In the last section 5 the final conclusions arenigdated.

2. Double porosity composite material and triaxiatesting

The double porosity composite material investigateithis paper was build from
two components: Hostun fine sand and small spharade of solidified clay
embedded periodically in the sand. This materiak wanceived for modelling
purposes, in particular for experimental verifioatiof theoretical and numerical
modelling of macroscopic multiphysical behaviour mging the multi-scale
homogenization approach (Lewandowskaal. 2005, 2008 (Szymkiewiczet al,
2008), (Tran Ngoat al., 2011).
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Several mechanical tests were performed in theiafisapparatus in order to
determine the elastic parameters of the compositengterial (Grinke, 2007). The
same tests were also carried out in pure sandtainothe characteristics of matrix
component of the composite, that is a necessarytirgata for numerical
computations. Moreover, the inter-comparison of tifiexial curves enabled us to
experimentally observe the influence of the secomehponent (solidified clay) on
the behaviour of the whole system.

2.1.Double porosity composite material

The two components i.e. the homogenous hosand HN38 and the
solidified clayey spheres were used to build a amsiip in a triaxial cylinder of the
diameter of 10 cm and the height of 10 cm. Thendgr was filled up alternatively
with sand and spheres (layer by layer) by contiglihe mass and the mechanical
energy of compaction. We proceeded in the followivay: i) a layer of a given
quantity of spheres was carefully put into the rayéir, so that the spheres touched
each other in the horizontal plane, ii) a layeadafiven mass of sand was put on the
top of the spheres in order to cover the spheiieghén both layers were compacted
by using a small hammer. This procedure was coatinuntil the cylinder was filled.
The volumetric fractions of each component matevigre 50 % and 50 %,
respectively. The established and rigorously respecexperimental protocol
(Grinke, 2007) enabled us to obtain the composaterral of periodic structure of
the cubic-centered type (but not exactly the cuigiatered), Figure 1. More details
about the microstructure can be found in secti@n 3.

The laser granulometry of the sand HN38 showed Homam grain size
distribution with the mean grain size of 1. The mean diameter of the clay
spheres was 6.4 mm. The mercury porosity test gfaeeporosity of spherep=
0.376 and the mean pore size around |0/ The skeleton specific density of the
spheres material wgs = 3.01 g/cmand the dry bulk densitgs = 1.88 g/cm. The
porosity of the homogeneous sand samples and thasipoof sand used in the
composite material samples were controlled and kepstant in both cases, n =
0.40. Prior to mechanical testing both materialsewsubjected to different kind of
tests for other modelling purposes, so their plsproperties are well known
(Lewandowskaet al. 2005, 2008 (Szymkiewiczet al, 2008), (Tran Ngoat al.,
2011).

The triaxial tests were perfomed at the LaboraB83yR in Grenoble, France. The
apparatus was manufactured by Wykeham Farrane&sliequipped with a load cell
of the capacity 100kN. The variations of volumettod sample were measured by a
manometric volume gauge. We followed the procedfr€€D triaxial testing of
granular materials established at the LaboratoR3®esrues and Orestis, 2006).
The precision of measurements were: 26 N for farmd 0.08% for volume change.
The details concerning the tests presented ingher can be found in (Grinke,
2007) and (Pilawski, 2011).



Figure 1. Periodic structure of the composite (Grinke, 2007)

2.2.Experimental program

In order to determine the elastic parameters &sef classical triaxial tests in
the composite and in the pure sand, was perfor’Aidsamples were initially
saturated by water using the back pressure techn(@00 kPa). The values of
Bishop coefficient were relatively high and varieetween B = 82% and B= 90%.
The speed of the axial loading displacement dewicstrain controlled conditions
was 0.12 mm/min.

Two kinds of triaxial tests were performed:

- the CD shearing test under constant confining pressf 100 kPa
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- the isotropic compression test in drained cond#iche range of pressure
was 50 kPa - 400 kPa. The pressure was increasste iy of 50 kPa

During all tests the volume changes were registesetheasuring the volume of
water drained out of the sample. The shearing Esttinued until 10% of axial
deformation was reached. During each shearing arpat three unloadings were
done, after 7, 14 and 21 minutes from the beginoifithe test respectively. Thus,
we restricted the deformation zone to max 2%. Budterials were tested in the
same conditions. Note that this composite materfigberiodic microstructure was
studied under conditions of scale separation. Thésseparation means the ratio of
the dimension of the period over the dimensiorhefrhacroscopic domain (here the
size of the sample).

2.3.Results

2.3.1.Comparison of the triaxial curves

In Fig. 2 and Fig. 3 the results of shearing testsand and in the composite, are
presented. In Fig 2 the curve of axial stres< Bmgtion of axial strain, whereas in
Fig 3 the curve of relative volume chanAV /Vo whereVp is the initial volume)
as a function of axial strain, are plotted. By campg the curves for the two
materials we can observe the qualitative differeincthe mechanical behaviour of
both materials, from rather ductile (for sand)ather fragile (for composite) type of
behaviour.

In Fig. 4 an example of unloading during triaxiaktt in the double porosity
medium (composite) in the strain range: 0.0183.0194, is shown.The
interpretation of these results is presented itige@.3.2. In Fig. 5 we can see the
relative volume changes with time correspondingdch isotropic stress increment
for both materials. It can be seen that the volaimenges in case of composite are
considerably less than in case of sand. Moreowenegsrregularities in the curve for
composite are observed (see section 4.3 for diggusef this effect).
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medium (composite) in the strain range: 0.01830194.
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2.3.2. Interpretation of the results of the triaXi@sts

The obtained results were interpreted in the fraonkwf the theory of elasticity.
From three unloadings parts of the triaxial sheprdurves in sand and in the
composite we calculated the Young modulus in thal gxertical) direction, and the
Poisson ratio in both lateral directions (correspog to the axial loading). On
another hand, a bulk modulus K was calculated fitmnisotropic compression tests
results for each material. Two tests in sand (Tesind Test 2) were used. The
results of all calculations are presented in Tab. 1

It can be noticed that the elastic parameters tf bwaterials depend on the range
of the strains and stresses. For sand a clearageref the Young modulus is seen.
For the composite the increase is less evidenteblar, the presence of solidified
clay inclusions leads to substantial increase a$tel parameters of the composite
with respect to the pure sand: 2.36 times for tbertg modulus, 1.16 times for the
Poisson ratio and the 1.78 times for the bulk masluFinally, the Poisson ratio of
the composite seems to be rather unrealisticadi ftlose to 0.5), especially if we
compare it with the value obtained for pure sahd (hatrix in the composite). It will
be further discussed in section 4.3.
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Table 1 Triaxial tests results
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3. Homogenization analysis of the double porosityomposite material

3.1. Multiscale approach

In order to obtain the effective elastic properties the double porosity
composite the asymptotic expansion homogenizatiethod was used. The method
is well established in the literature (Sanchez4f@ée 1980; Bensoussan et al.
1978). In its classical form the method concerns $aales, the microscopic and the
macroscopic sale. The double porosity compositeengtanalyzed in this paper is
considered as a three scale material, with micresamand macroscopic scales.
Therefore, to carry out the homogenization we Havstart from the smallest scale
(the pore scale) by freezing all larger scales.€ithe homogenization is done at this
scale, the material properties and the correspgngimysical description can be
shifted to the next scale, and the process stgadis alhe required condition for such
a multiscale approach to be possible is the soaparation at each scale level
(Auriault, 1991).

In the paper it is considered that the first honmizggion process has been
already done (Sanchez-Palencia, 1980), (Bensowgsaln 1978), and we focus on
the second step of homogenization. For simplicifytlie presentation in the
following development the notations “micro” and “ona@” will be used for the
second step of homogenization

3.2. Microstructure and microscopic properties

The choice of the three dimensional microstrucmalysed in this paper was
motivated by the interest of dealing with a comfmsmaterial presenting
macroscopic anisotropy. Moreover, the inclusiors iateracting in the horizontal
directions and the material of inclusions is corspitgle. For the composite material
of such microstructure the experimental data pteseim section 2 are available.
Thus, the comparison between computations and merasnats will be possible.

Three layers of spheres embedded in a matrix ragtean be seen in Figure 6.
The spheres touch each other in each horizontadr laand form cubic-like
arrangements in the horizontal and vertical plafeking into account the whole
three dimensional structure, the arrangement cacalied of “centered-cubic” like.
The external dimensions of the period are: 6.4 X 64 mm* 13.404 mm.
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=1 7//

Figure 6Geometry of the periodic cell

The first process of homogenization (not presentexte) concerns the
constituents of the composite i.e. sand and sidtetay, taken individually. We
assume that the after the first step of homogenizaboth components of the
composite are homogeneous isotropic elastic méerbaracterized by two elastic
constants: Young's modulus E and Poisson ratigor the Lamé coefficients:
A andp). We denote: E v; — the elastic constants ofatrix material (sand) and,E
v, —the elastic constants of inclusions (sintered clay)

3.3. Formulation of the homogenization problem
In the process of homogenization three coordingsems are introduced:
X(Xl, X2, X3) - dimensional coordinate system [1]
X(Xq, X2, %X3) = X(X1, X2, X3)/L - macroscopic coordinate system [2]
Y(Y1, Y2, ¥3) = X(X1, X2, X3)/| - microscopic coordinate system  [3]

where | is the characteristic microscopic length (here:atigion of the period)
and L is the characteristic macroscopic length ghelimension of the triaxial



14 Revue. Volume X — n° x/année

sample). The ratil / L = £ defines the scale separation parameter. We ashane t
the scale separation conditions are satis & << 1(Auriault, 1991).

The equilibrium equation at the microscopic scalemvinertia and body forces
can be neglected, is written:

——=0inQ
P n [4]

together with the Hooke's law:

ij = Cijii €1 (U) [5]

where the rigidity tensorCijkI (y) is spatially dependent. The tensor

&k = 1/2(Uk,l U ,k) is the microscopic small deformation tensor.

At the interface I (Figure 6) the continuity conditions of displacenseand
surface loads, are verified:

[U]r:0 and lJiij]r:O

These conditions indicate that there is no jumpdisplacements and surface
loads at the boundail . In the asymptotic expansion homogenization methed
homogenization problem has to be formulated usorgdimensions quantities. Note
that we assumed that the properties of both comesii$ in all directions are of the
same order of magnitude with respect to the scalgarstion paramete€ .
Therefore, we can rewrite the problem [4] —[5]te hon-dimensional form

%% _ging
oy, 6]
with ij = Cijki €k (U) [7]

In [6]-[7] we use the same notations for the namelisional displacements,
stresses and rigidity tensor as for the dimensiqnahtities in [4]-[5].

In the next step, the unknown displacement is ssprted in a series expansion
form:

u(x,y) =u@(x,y) + u®(x,y) + £2u@(x, y) +.. -

where all successive order terms are periodic fonst

Therefore, we have also:
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e(x,y) = £Q(x, y) + £eW (x, y) + £26@ (x, y) + ...

a(x,y)=aQ(x,y) +elaW(x,y) + 26 (x,y) +...

As usual in the two scale homogenization the dévigaperator is defined as

d _a.,.39
. Ao 5o 9
dy, dy,  ox o]

3.4. Homogenization

By applying the classical asymptotic expansion hgemization method to the
problem [6]-[7], we can obtain the following resufbr the displacement function at
successive orders (Sanchez-Palencia, 1980), (Beseaat al.,1978):

u@(x, ) =u® (x) [10]
u? (%, y) = &0 £4n @) + 5P () 11)

where fikh(y)is a particular periodic solution of the elasticigyroblem

corresponding to the unit macroscopic strain tef&br (€& 0€h + €n0 € )/2.

where k, h = 1, 2, 3. The symbidl means the tensorial product between the unit
vectors of the basis. This solution should alsoifywethe zero volume average

condition. The functi0|Ui(1) (X)is arbitrary.

At the next order homogenization of the problem[[@]the macroscopic
description is found as in (Sanchez-Palencia, 198&nsoussaat al.,1978):

0< ai(O) >
v - 0 [12]
an

where the macroscopic stress tensor is definedvalkimetric average:

<a(0)> | ja(o)dQ [13]

The macroscopic constitutive equation is obtaimetthé form:
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< JiJ(O) >= Ci’jckh 3 xkh(u(o)) [14]

where the macroscopic (effective) rigidity tensodéfined as:
o kh
Cijkh =<Cijkh *+Cijim €yim(™) > [15]

The tensors€xin [14] and €yin [15] are the macroscopic and the microscopic
strain tensor, respectively.

As it can be seen from [12]-[15] the homogatian process provides us with the
macroscopic description of the behaviour of the posite in form of the
macroscopic Hooke's law in which the macroscopigdity tensor is a function of
the elastic parameters of the components i.e. thematopic rigidity tensors and the
microstructure of the medium.

4. Numerical computations of the rigidity tensor of the double porosity
composite material

4.1. Local boundary value problem

The rigidity tensor of the double porosity matertain be computed from the
solution of the local boundary value problem olgdinfrom homogenization
(Sanchez-Palencia, 1980), (Bensousstaal., 1978):

0 .
YN (Cijkn (Eykh(u(l)) +eqnu@))=0in Q [16]
j
|.Cijkh (Eykh(U(l)) + Egen(UO)N j Jr =0 [178]
u®) =0 [17b]

)
where the first-order displacement fie U( ) is defined by equation [11].
Therefore, the unknown in the problem [16]-[17the periodic displacement field
. The problem [16]-[17] can also be written in them:

a -
a_yj(cijlm 5y|m(<.’kh) +Cijkn) =0in Q (18]
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|,(Cijlm €y|m(<.'kh) +Cijkn )N | ]r =0 [19a]
[{khjr =0 [19b]

The problem [16]-[17] (or [18]-[191) has to he <alysix times by imposing Six
unit macroscopic strain tensde§'= (€& O €h + €0 & )/2.

Then, the effective rigidity tenscCijkh can be obtained by calculating the
volume integral [15] based on homogenization. BYdhe engineering notations the

fourth order tenso Cijkh can be converted into the second order te Dij " by
applying the usual conversion rule (Bacon and PR@@00, page 107). According

to the above procedure the complete teICijkh (anc Dij ) can be determined, if
the microstructure of the medium is known.

4.2. Numerical results

In this section the full macroscopic rigidity tendor the microstructure of the
composite geomaterial presented in Figure 1, ispeted. The problem [16]-[17]
issue from homogenization was solved taking intcoant the elasticity parameters
of sand determined in the triaxial tests, Tabl&ihce these parameters are strain-
stress dependent, the macroscopic rigidity tenseraglculated three times (for each
unloading). On the contrary, the elastic parametérsintered clay material were
taken from the literature for bricks: E = 14 GPa an= 0.2 ( constant values). In
order to obtain the full tensor X6 components) the problem [16]-[17] has to be
solved (for each couple of the local elastic patansg six times.

Since the microstructure possesses three symmatrgg(Figure 6), the material
can be considered as orthotropic with 9 independeefficients. The general form
of the macroscopic tensor is (Berthelot, 1992):
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D1y D2 Dz O
D12 D22 D23 O
D13 D3 D3z O
0 0 0 Dy
0 0 0 0 Ds
0O 0 0 0 0 Dgg

O O O ©o
o O O o o

In the numerical computations we used the commiefiide elements code
Comsol Multiphysics.

The three macroscopic rigidity tensors compute@pashdently for three ranges
of the axial strain are given in Annex 2. In parltér, the following values of the

componen D33were obtained:
*
- Forthe axial strain range: 0.0128 — 0.0140, we D33 = 4849MPa
- For the axial strain range: 0.0177 — 0.0192 we D33 = 615.7MPa

*
- For the axial strain range: 0.0230- 0.0246 we D33 = 656.9MPa

In Annex 2 we can observe that the rigidity tengossesses the structure of an

* *
orthotropic tensor. The small values of the norezesmponents likeDgq, D51,
*
Dg1 can be considered as numerical errors of apprdiimalt can also be seen
* * *
that the termsDj1and Doyjare approximately equal. Also, the teriDy4and

*
Dsiare very close to each other. This can be an itidicaf the state close to

transversal isotropy with respect to the axis 3 (@pwever, there is no full
transversal isotropy.

As an example, in Figures 7 and 8 the displacemector 4 corresponding to
the case of unit macroscopic traction strain in theection z (or 3) with the
periodicity conditions, is presented. We can obséehe three dimensional solution
of the local boundary value problem (18)-(19). ig.F the z-component, while in

Fig. 8 the x-component, of the vect ¢ corresponding to the case of unit
macroscopic strain in the z direction, are preskniéhe displacement field (the
displacement corrector) is periodic in all direoSowhich means that it takes the
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same values on the opposite external walls of dr®@. We can also see the zones
of the maximum gradients (see the contributiorhandefinition [15]).

z-displacement [m] Max; 3.069e-3

x107
3

.01

[0.005

b x1le-3

Min: -3.10e-3

Figure 7 The z-component of the displacement fldor the case of unit
macroscopic gradient in the z direction

x-displacement [m] Max: 2,1582-4

p.00s

" :3 x1e-3
=15

=2
Min: -2.026e-4

Figure 8 The x-component of the displacement fidldfor the case of unit
macroscopic gradient in the z direction
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4.3. Interpretation and comparison with the experimental results

The results of the numerical calculations of thgidity tensor presented in
section 4.2 can be compared with the results oéex@nts summarized in section
2.3.2. The comparison concerns only two elastip@yameters determined from
triaxial tests: the Young modulus in the direct®r(E;) and the Poisson raV,
Table 1. According to the theory of elasticity fathotropic media the component

*

D330f the rigidity tensor can be expressed as (Besth&B92.)

DY, = 17V1oV21

33 A [20]

where the coefficienfA is expressed as a function of nine elastic pareiseif
orthotropy:
A = 17 V12Va1 ~VadV3p ~V31V13— 2Vp1V3ol13
B EoE3

(21]

Further, as an approximation it will be assumed tha Poisson ratio of the
double porosity medium is isotropic, which mearat the can write:

Es [22]

The relation [22] makes it possible to calculate toung modulus Efor each

*
calculated value ¢ D33 by considering that the Poisson ratio of the deydarosity

composite is known. Then, the value of d&alculated from homogenization can be
directly compared with the experimental value gireirable 1.

The interpretation was carried out in two steps:

i) In the first interpretation the measured valuehef Poisson ratio of the
composite was used in relation [22]

The results are given in Table 2. As we can seendieoscopic Young modulus
shows important discrepancy between the calculated

(2961MPa 18225MPa 10969MPa) and the measured values

(286.11MPa 362.72MPa 32308MPa). It is believed that the origin of this

discrepancy is the Poisson ratio determined froenttiaxial apparatus. It has to be
pointed out the calculations proved to be very isig@asto the value of the Poisson
ratio. This value is based on the measurementeot/dfiume of water drained out of
the medium. As we know, in the case of double ptyrawedia there exists a
memory effect in the water drainage, due to the fmymeability of the second
porosity ((Lewandowskat al. 2003, (Szymkiewiczet al, 2008), (Tran Ngoat al.,
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2011).). Therefore, the standard triaxial measuréncenditions seem to be not
appropriate in this case.

i) In the second interpretation the value of the Rmisgtio of the
composite used in the relation [22] was evaluategsed on
homogenization results and experimental data.

We calculated the average value of the coefficietated to the Poisson ratio
*
namely 0 = (1- V2) /(1- 3v2 - 2V3) ([22]), using the ratic D33/ Eg3 for each
range of the strain-stress state, w E3 is the measured Young modulus. The three

values of the coefficier1/ O are close to each other and equal respectivel$00.5

0.589, 0.492. The average valuel/ 0 = 0.557. The corresponding Poisson ratio is
equal to 0.374. This value seems physically mosadistec and was used in the
comparison presented in Table 2.

Table 2 Comparison between computed and measured valdésuoig modulus

First interpretation Second interpretation
. o _ E, Poi§son ratio E, Measured
angter;nama I:;Jtlis(,)son (computed) obtalnedt_from the (computed) values of
v ratic
MPal MPa
(measured [ ] Dg; (computed) / E [ ] [MPa]
(measured)
0.0128-0.014 0.39 296.11 0.374 270.11  286.11
0.0177-0.0192  0.46 186.25 0.374 342,94  362.72
0.0230-0.0246  0.48 109.69 0.374 365.98 323.08

Now, we obtain the following values for the Youngdulus: 27011MPa,
34294MPa, 36593MPa  to be compared  with 28611MPa,
362.72MPa, 32308MPa. it can be seen that the differences between the
calculated and measured values are of the orde0%fin all cases Therefore, it can
be concluded that good agreement was found.
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5. Conclusions

In this paper we presented the homogenization agprdased on the asymptotic
expansion homogenization method, in order to compht effective elasticity
properties of a composite geomaterial (double pgfosThe homogenization
process was focused on the passage from the dctile porous components to the
scale of the composite.

A part of numerical simulations of the macroscapgidity tensor was validated
through the experimental tests in the triaxial apps using a model periodic
composite of anisotropic microstructure. The corngoer showed good agreement
between the computed and measured values of thegvimodulus of the composite.
To our knowledge very few validations of homogeti@a with experiments have
been performed so far, especially for granular redte

Some limitations of classical triaxial testing oigtily heterogeneous porous
media are discussed. In particular, the technidueeasurement of volume changes
based on the volume of water drained out of froenrttedium seems not appropriate
in this case. Therefore, more experimental studisielg more advanced techniques,
are postulated.

Finally, it can be concluded that asymptotic expamsomogenization is an
excellent method of modelling physical phenomena niedia with periodic
microstructure and a useful technique to study thechanical behaviour of
composite geomaterials.
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Annex 1

The first column of the tens(D is obtained by solving the problem [16]-[17]

with periodic conditions fo ¢ and with unit macroscopic strain in the direction
We have:

D11 =(A + 1) (@+<é11>q,) t (<€ >q, +<€33>q,)+
(A2 + 1) (p+ <&11>q,) +A2(<€22>q, +<€33>q,)

Do1=Mh(A+<enn>q t<€33>q )+ (M +1)<én>q +
A (pt<ée1>q, +<€33>q,) t(A2+ L) <E22>q,)+

*
D31 =M (@At+<ée11>q, +<&22>q,) + (A +14)<E€33>q, +
A (@t <é11>q, +<€20>q,)+(A2 1) <E€33>q,
Da1=244 < €23>q, 24 < E23>q,
D51 =240 < &13>q, H21p <&13>q,
De1=21n <&12>q, t21r <&12>q,
where:

1
2

1

e d

j Qo <§sz
O

[ O
Q,

Q1
A= |Q| is the volumetric fraction of the material 1

Q2]

B = _|Q| is the volumetric fraction of the material 2
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Annex 2
The three macroscopic rigidity tensors for threeges of axial strain are

respectively:
Forthe axial strain range: 0.0128 — 0.0140

with : £=119.94 MPay,= 0.35,A\,= 103.7 MPap;= 44.42 MPa

1498.8 220.5 193.2 -0.5 -0.6 0.2
220.5 1539.6 192.3 -0.9 -0.3 3
Dt = 193.2 192.3 4849 -0.7 -0.1 0.3 MPa
-0.2 -0.4 0.3 2616.9 -0.2 0.2
-0.3 -0.1 -01 -0.2 2614.6 -0.6
0.1 15 15 0.2 -0.6 2065.4

For the axial strain range: 0.0177 — 0.0192
with: E;= 163.67 MPay,= 0.33,\;= 119.44 MPay;= 61.53 MPa

1678.7 2545 226.6 -0.6 -0.6 0.2
2545 1715.8 2255 -1.0 -0.3 2.9

D* = 226.6 2255 6157 -0.8 -0.1 0.4 MPa
-0.3 -0.5 -04 25185 -0.2 0.2
-0.3 -0.1 -01 -0.2 2516.1 -0.7
0.1 15 0.2 0.2 -0.7 1972.8

For the axial strain range: 0.0230- 0.0246
with: E;= 174.99 MPay,= 0.33,A\,= 128 MPay,;= 65.8 MPa

1733.9 269.4 241.7 -0.6 -0.8 0.2

269.4 1769.8 240.6 -1.0 -11 29

241.7 240.6 656.9 -0.8 -0.4 0.4
MPa

D*

-0.3 -0.5 -0.4 24939 -0.2 0.3
-0.3 -0.2 -01 -0.2 24914 -0.8
0.2 0.3 -0.8 1950.0

0.1 15
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