
HAL Id: hal-00826188
https://hal.science/hal-00826188

Submitted on 13 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explicit approximate controllability of the Schrödinger
equation with a polarizability term

Morgan Morancey

To cite this version:
Morgan Morancey. Explicit approximate controllability of the Schrödinger equation with a polarizabil-
ity term. Mathematics of Control, Signals, and Systems, 2013, 25 (3), pp.407-432. �10.1007/s00498-
012-0102-2�. �hal-00826188�

https://hal.science/hal-00826188
https://hal.archives-ouvertes.fr


ar
X

iv
:s

ub
m

it/
05

17
99

5 
 [

m
at

h.
O

C
] 

 2
0 

Ju
l 2

01
2

Explicit approximate controllability of the

Schrödinger equation with a polarizability term
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Abstract

We consider a controlled Schrödinger equation with a dipolar and a

polarizability term, used when the dipolar approximation is not valid.

The control is the amplitude of the external electric field, it acts non

linearly on the state. We extend in this infinite dimensional framework

previous techniques used by Coron, Grigoriu, Lefter and Turinici for

stabilization in finite dimension. We consider a highly oscillating con-

trol and prove the semi-global weak H2 stabilization of the averaged

system using a Lyapunov function introduced by Nersesyan. Then it

is proved that the solutions of the Schrödinger equation and of the av-

eraged equation stay close on every finite time horizon provided that

the control is oscillating enough. Combining these two results, we get

approximate controllability to the ground state for the polarizability

system with explicit controls. Numerical simulations are presented to

illustrate those theoretical results.

Key words : Approximate controllability, Schrödinger equation, polariz-
ability, oscillating controls, averaging, feedback stabilization, LaSalle invari-
ance principle.

1 Introduction

1.1 Main result

Following [R] we consider a quantum particle in a potential V (x) and an
electric field of amplitude u(t). We assume that the dipolar approximation
is not valid (see [DBA+, DKAB]). Then, the particle is represented by its
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wave function ψ(t, x) solution of the following Schrödinger equation

{

i∂tψ = (−∆+ V (x))ψ + u(t)Q1(x)ψ + u(t)2Q2(x)ψ, x ∈ D,

ψ|∂D = 0,
(1.1)

with initial condition

ψ(0, x) = ψ0(x), x ∈ D, (1.2)

where D ⊂ R
m is a bounded domain with smooth boundary. The functions

V,Q1, Q2 ∈ C∞(D,R) are given, Q1 is the dipolar moment and Q2 the po-
larizability moment. For the sake of simplicity, we denote by L2, H1

0 and
H2 respectively the usual Lebesgue and Sobolev spaces L2(D,C), H1

0 (D,C)
and H2(D,C). The following well-posedness result holds (see [Ca]) by ap-
plication of the Banach fixed point theorem.

Proposition 1.1. For any ψ0 ∈ H1
0 ∩H2 and u ∈ L2

loc([0,+∞),R), the sys-
tem (1.1)-(1.2) has a unique weak solution ψ ∈ C0([0,+∞),H1

0∩H2). More-
over, for all t > 0, ||ψ(t, .)||L2 = ||ψ0||L2 and there exists C = C(Q1, Q2) > 0
such that for any t > 0,

||ψ(t, ·)||H2 ≤ ||ψ0||H2eC
∫ t
0
|u(τ)|+|u(τ)|2dτ .

Let S :=
{

ψ ∈ L2(D,C); ||ψ||L2 = 1
}

and 〈·, ·〉 be the usual scalar
product on L2(D,C)

〈f, g〉 =
∫

D
f(x)g(x)dx, for f, g ∈ L2(D,C).

We consider the operator (−∆ + V ) with domain H1
0 ∩ H2 and denote by

(λk)k∈N∗ the non decreasing sequence of its eigenvalues and by (φk)k∈N∗ the
associated eigenvectors in S. The family (φk)k∈N∗ is a Hilbert basis of L2.
Our goal is to stabilize the ground state. As the global phase of the wave
function is physically meaningless, our target set is

C := {cφ ; c ∈ C and |c| = 1} , (1.3)

where φ := φ1.

Let J6=0 :=
{

k ≥ 2; 〈Q1φ, φk〉 6= 0
}

and J0 :=
{

k ≥ 2; 〈Q1φ, φk〉 = 0
}

.

We assume that the following hypotheses hold.

Hypotheses 1.1.

i) ∀k ∈ J0, 〈Q2φ, φk〉 6= 0 i.e. all coupling are realized either by Q1 or Q2,

ii) Card(J0) <∞ i.e. only a finite number of coupling is missed by Q1,



1 INTRODUCTION 3

iii) λ1 − λk 6= λp − λq for k, p, q ≥ 1 such that {1, k} 6= {p, q} and k 6= 1,

Remark 1.1. The hypothesis i) is weaker than the one in [BN] (i.e. J0 = ∅).
As proved in [N1, Section 3.4], we get that generically with respect to Q1

and Q2 in C∞(D,R), the scalar products 〈Q1φ, φk〉 and 〈Q2φ, φk〉 are all non
zero. The spectral assumption iii) does not hold in every physical situation.
For example, it is not satisfied in 1D if V = 0. However, it is proved in [N1,
Lemma 3.12] that if D is the rectangle [0, 1]n, Hypothesis 1.1 iii) hold gener-
ically with respect to V in the set G :=

{

V ∈ C∞(D,R) ; V (x1, . . . , xn) =
V1(x1) + · · ·+ Vn(xn), with Vk ∈ C∞([0, 1],R)

}

.

As in [CGLT], we use a time-periodic oscillating control of the form

u(t, ψ) := α(ψ) + β(ψ) sin

(

t

ε

)

. (1.4)

Following classical techniques (see e.g. [SVM]) of dynamical systems in finite
dimension let us introduce the averaged system



















i∂tψav =
(

−∆+ V (x)
)

ψav + α(ψav)Q1(x)ψav

+

(

α(ψav)
2 +

1

2
β(ψav)

2

)

Q2(x)ψav ,

ψav|∂D = 0,

(1.5)

with initial condition
ψav(0, ·) = ψ0. (1.6)

Let P be the orthogonal projection in L2 onto the closure of Span {φk; k ≥ 2}
and γ be a positive constant (to be determined later).
Our stabilization strategy relies on the following Lyapunov function (used in
[BN]) defined on S ∩H1

0 ∩H2 by

L(ψ) := γ||(−∆+ V )Pψ||2L2 + 1− |〈ψ, φ〉|2. (1.7)

This leads to feedback laws given by

α(ψav(t, ·)) := −kI1(ψav(t, ·)), β(ψav(t, ·)) := g(I2(ψav(t, ·)), (1.8)

with k > 0 small enough and

g ∈ C2(R,R+) satisfying g(x) = 0 if and only if x ≥ 0, g′ bounded, (1.9)

and for j ∈ {1, 2}, for z ∈ H2,

Ij(z) = Im
[

γ〈(−∆+ V )P Qjz, (−∆+ V )Pz〉 − 〈Qjz, φ〉〈φ, z〉
]

. (1.10)

We can now state the well-posedness of the averaged closed loop system
(1.5).
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Proposition 1.2. Let R > 0. There exists k0 = k0 (V,Q2, R) > 0 such that
for any ψ0 ∈ H2 ∩H1

0 ∩ S with L(ψ0) < R and k ∈ (0, k0), the closed-loop
system (1.5)-(1.6)-(1.8) has a unique solution ψav ∈ C0([0,+∞),H2 ∩H1

0 ).
There exists M > 0 such that

||ψav(t)||H2 ≤M, ∀t ≥ 0. (1.11)

Moreover, if ∆ψ0 ∈ H1
0 ∩H2, then ∆ψav ∈ C0([0,+∞),H1

0 ∩H2).

We define X0 :=
{

ψ0 ∈ S ∩H1
0 ∩H2;∆ψ0 ∈ H1

0 ∩H2
}

the set of admissible
initial conditions. For an initial condition ψ0 ∈ X0, we define the control

uε(t) := α(ψav(t)) + β(ψav(t)) sin

(

t

ε

)

, (1.12)

where ψav is the solution of (1.5)-(1.6)-(1.8).
The main result of this article is the following one.

Theorem 1.1. Assume that Hypotheses 1.1 hold. Let C, the target set, be
defined by (1.3). There exists k0 = k0(V,Q2) > 0 such that for any k ∈ k0,
for any s < 2 and for any ψ0 ∈ X0 with 0 < L(ψ0) < 1, there exist an
increasing time sequence (Tn)n∈N in R

∗
+ tending to +∞ and a decreasing se-

quence (εn)n∈N in R
∗
+ such that if ψε is the solution of (1.1)-(1.2) associated

to the control uε defined by (1.12) then for all n ∈ N, if ε ∈ (0, εn),

distHs (ψε(t, ·), C) ≤
1

2n
, ∀t ∈ [Tn, Tn+1].

Remark 1.2. Theorem 1.1 gives the semi-global approximate controllability
with explicit controls of system (1.1). Hypotheses 1.1 are needed to ensure
that the invariant set coincides with the target set. The semi-global as-
pect comes from the hypothesis 0 < L(ψ0) < 1 : by reducing γ (in a way
dependant of ψ0), this condition can be fulfilled as soon as ψ0 /∈ C.

In Theorem 1.1, there is a gap between the H4 regularity of the initial
condition and the approximate controllability in Hs with s < 2. The extra-
regularity is used in this article to prove an approximation property in H2

between the oscillating system and the averaged one (see Section 3). Weak-
ening this regularity assumption is an open problem for which an alternative
strategy is required. The last lost of regularity comes from the application of
a weak LaSalle principle instead of a strong one due to lack of compactness
in infinite dimension.

1.2 A review of previous results

In this section, we recall previous results about quantum systems with bi-
linear controls. The model (1.1) of an infinite potential well was proposed by
Rouchon in [R] in the dipolar approximation (Q2 = 0). A classical negative
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result was obtained in [BMS] by Ball, Marsden and Slemrod for infinite di-
mensional bilinear control systems. This result implies, for system (1.1) with
Q2 = 0, that the set of reachable states from any initial data in H2∩H1

0 ∩S
with control in L2(0, T ) has a dense complement in H2 ∩H1

0 ∩ S. However,
exact controllability was proved in 1D by Beauchard in [B] for V = 0 and
Q1(x) = x in more regular spaces (H7). This result was then refined in [BL]
by Beauchard and Laurent for more general Q1 and a regularity H3.

The question of stabilization is addressed in [BN] where Beauchard and
Nersesyan extended previous results from Nersesyan [N1]. They proved,
under appropriate assumptions on Q1, the semi-global weak H2 stabilization
of the wave function towards the ground state using explicit feedback control
and Lyapunov techniques in infinite dimension.

However sometimes, for example in the case of higher laser intensities,
this model is not efficient (see e.g. [DBA+, DKAB]) and we need to add a
polarizability term u(t)2Q2(x)ψ in the model. This term, if not neglected,
can also be helpful in mathematical proofs. Indeed the result of [BN] only
holds if Q1 couples the ground state to any other eigenstate and then the
use of the polarizability enables us to weaken this assumption. Mathematical
use of the expansion of the Hamiltonian beyond the dipolar approximation
was used by Grigoriu, Lefter and Turinici in [GLT, T]. A finite dimension
approximation of this model was studied in [CGLT] by Coron, Grigoriu,
Lefter and Turinici. The authors proposed discontinuous feedback laws and
periodic highly oscillating feedback laws to stabilize the ground state. In this
article, we extend in our infinite dimensional framework their idea of using
(time-dependent) periodic feedback laws. We also refer to the book [Cor] by
Coron for a comprehensive presentation of the feedback strategy and the use
of time-varying feedback laws.

How to adapt the Lyapunov or LaSalle strategy in an infinite dimensional
framework is not clear because closed bounded sets are not compact so the
trajectories may lack compactness in the considered topology. In this direc-
tion we should cite some related works of Mirrahimi and Beauchard [BM, M]
where the idea was to prove approximate convergence results. In this article,
we will use an adaptation of the LaSalle invariance principle for weak con-
vergence which was used for example in [BN] by Beauchard and Nersesyan.
There are other strategies to show a strong stabilization property. Coron
and d’Andréa-Novel proved in [CdAN] the compactness of the trajectories
by a direct method for a beam equation and thus the strong stabilization.
In [Cou1, Cou2] Couchouron gave sufficient conditions to obtain the com-
pactness in favorable cases where the control acts diagonally on the state.
Another strategy to obtain strong results is to look for a strict Lyapunov
function, which is an even trickier question, and was done for example in
[CdANB] by Coron, d’Andréa-Novel and Bastin for a system of conservation
laws.

The question of approximate controllability has been addressed by var-
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ious authors using various techniques. In [N2], Nersesyan uses a Lyapunov
strategy to obtain approximate controllability in large time in regular spaces.
In [CMSB], Chambrion, Mason, Sigalotti and Boscain proved approximate
controllability in L2 for a wider class of systems using geometric control tools
for the Galerkin approximations. The hypotheses needed were weakened in
[BCCS] and the approximate controllability was extended to some Hs spaces
in [BCC].

Explicit approximate controllability in large time has also been obtained
by Ervedoza and Puel in [EP] on a model of trapped ion, using different
tools.

1.3 Structure of this article

As announced in Section 1.1, we study the system (1.1) by introducing
a highly oscillating time-periodic control and the corresponding averaged
system. Section 2 is devoted to the introduction of this averaged system and
its weak stabilization using Lyapunov techniques and an adaptation of the
LaSalle invariance principle in infinite dimension.

In Section 3 we study the approximation property between the solution
of the averaged system and the solution of (1.1) with the same initial condi-
tion. We prove that on every finite time interval these two solutions remain
arbitrarily close provided that the control is oscillating enough. This is an
extension of classical averaging results for finite dimension dynamical sys-
tems.

Finally gathering the stabilization result of Section 2 and the approxi-
mation property of Section 3, we prove Theorem 1.1 in Section 4.

Section 5 is devoted to numerical simulations illustrating several aspects
of Theorem 1.1 and of the averaging strategy.

2 Stabilization of the averaged system

2.1 Definition of the averaged system

System (1.1) with feedback law u defined by (1.4) can be rewritten as











∂tψ(t) = Aψ(t) + F

(

t

ε
, ψ(t)

)

,

ψ|∂D = 0,

(2.1)

where the operator A is defined by D(A) := H2 ∩ H1
0 , Aψ := (i∆ − iV )ψ

and

F (s, z) := −i (α(z) + β(z) sin(s))Q1z − i (α(z) + β(z) sin(s))2Q2z. (2.2)
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For any z, F (., z) is T -periodic (with here T = 2π). Following classical

techniques of averaging, we introduce F 0(z) := 1
T

∫ T
0 F (t, z)dt. We can

define the averaged system associated to (2.1) by
{

∂tψav = Aψav + F 0(ψav),

ψav|∂D = 0.
(2.3)

Straightforward computations of F 0 show that the system (2.3) can be
rewritten as (1.5).

We show by Lyapunov techniques that we can choose α and β such that
the solution of the averaged system (2.3) is weakly convergent in H2 towards
our target set C.

2.2 Control Lyapunov function and damping feedback laws

Our candidate for the Lyapunov function, L, is defined in (1.7). It is
clear that L(ψ) ≥ 0 whenever ψ ∈ S ∩ H1

0 ∩H2 and that L(ψ) = 0 if and
only if ψ ∈ C.

The main advantage of this Lyapunov function is that it can be used to
bound the H2 norm. In fact, for any ψ ∈ S ∩H1

0 ∩H2,

L(ψ) ≥ γ||(−∆+ V )Pψ||2L2 ≥ γ

2
||∆(Pψ)||2L2 − C ≥ γ

4
||∆ψ||2L2 − C,

where here, as in all this article, C is a positive constant possibly different
each time it appears. This leads to the existence of C̃ > 0 satisfying

||ψ||2H2 ≤ C̃(1 + L(ψ)), ∀ψ ∈ S ∩H1
0 ∩H2. (2.4)

Remark 2.1. Although the idea of using a feedback of the form (1.4) is
inspired by [CGLT], the construction of the Lyapunov function and of the
controls is here different because we are dealing with an infinite dimensional
framework. We follow the strategy used in [N1, BN].

Choice of the feedbacks. We would like to choose the feedbacks α and

β such that for all t ≥ 0,
d

dt
L(ψav(t)) ≤ 0 where ψav is the solution of

(1.5),(1.6).
If ∆ψav(t) ∈ H1

0 ∩H2 for all t ≥ 0 then

d

dt
L(ψav(t)) = 2γRe

[

〈(−∆+ V )P∂tψav , (−∆+ V )Pψav〉
]

− 2Re
[

〈∂tψav , φ〉〈φ,ψav〉
]

= 2γRe
[

〈(−∆+ V )P
(

i∆ψav − iV ψav − iαQ1ψav

− i(α2 +
1

2
β2)Q2ψav

)

, (−∆+ V )Pψav〉
]

− 2Re
[

〈i∆ψav − iV ψav − iαQ1ψav − i(α2 +
1

2
β2)Q2ψav, φ〉〈φ,ψav〉

]

.
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Then we perform integration by parts. As P commutes with (−∆ + V ), V
is real and thanks to the following boundary conditions

(−∆+ V )Pψav|∂D = ψav|∂D = φ|∂D = 0,

we have

2γRe
[

〈−i(−∆+ V )2Pψav, (−∆+ V )Pψav〉
]

− 2Re
[

〈(i∆ − iV )ψav , φ〉〈φ,ψav〉
]

= 2γRe
[

〈−i∇(−∆+ V )Pψav ,∇(−∆+ V )Pψav〉
]

+ 2γRe
[

〈−iV (−∆+ V )Pψav , (−∆+ V )Pψav〉
]

+ 2λ1Re
[

〈iψav , φ〉〈φ,ψav〉
]

= 0.

This leads to

d

dt
L(ψav(t)) = 2αI1(ψav(t)) + 2

(

α2 +
1

2
β2

)

I2(ψav(t)), (2.5)

where Ij is defined in (1.10).
In order to have a decreasing Lyapunov function we define the feedback laws
α and β as in (1.8). Thus (2.5) becomes

d

dt
L(ψav(t)) = −2

(

kI21 (1− kI2)−
1

2
I2g

2(I2)

)

. (2.6)

If we assume that we can choose the constant k such that (1 − kI2) > 0
for all t ≥ 0 and if ∆ψav(t) ∈ H1

0 ∩ H2 then the feedbacks (1.8) in system
(1.5) lead to

d

dt
L(ψav(t)) ≤ 0, ∀t ≥ 0. (2.7)

Well-posedness and boundedness proofs. Using the previous heuristic
on the Lyapunov function, we can state and prove the well-posedness of the
closed loop system (1.5)-(1.8) globally in time and derive a uniform bound
on the H2 norm of the solution. Namely, we prove Proposition 1.2.

Proof of Proposition 1.2. By the explicit expression (1.10) of I2, we get for
any z ∈ H2, |I2(z)| ≤ f

(

||z||H2

)

where

f(x) := ||Q2||L∞+γ(x+||V ||L∞+λ1)(||Q2||C2x+||V ||L∞ ||Q2||L∞+λ1||Q2||L∞).
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Notice that f is increasing on R
+. Let K := 2f

(

√

C̃(1 +R)
)

where C̃ is

defined by (2.4), k0 :=
1
K and k ∈ (0, k0).

The local existence and regularity is obtained by a classical fixed point
argument : there exists T ∗ > 0 such that the closed loop system (1.5)
with initial condition (1.6) and feedback laws (1.8) admits a unique solution
defined on (0, T ∗) and satisfying either T ∗ = +∞ or T ∗ < +∞ and

lim sup
t→T ∗

||ψav(t)||H2 = +∞.

We have

|I2(ψav(0))| ≤ f(||ψ0||H2) ≤ f

(

√

C̃(1 + L(ψ0))

)

≤ K

2
,

thus, by continuity, |I2(ψav(t))| ≤ K for t small enough.
Let

Tmax := sup {t ∈ (0, T ∗); |I2(ψav(τ))| ≤ K,∀τ ∈ (0, t)} .
We want to prove that Tmax = T ∗ = +∞.
For all t ∈ [0, Tmax), we have

(

1−kI2(ψav(t))
)

> 0, which implies (by (2.6)),
L(ψav(·)) is decreasing on [0, Tmax). Estimate (2.4) leads to

||ψav(t)||H2 ≤
√

C̃(1 + L(ψav(t)) ≤
√

C̃(1 + L(ψ0)), ∀t ∈ [0, Tmax).
(2.8)

Let us proceed by contradiction and assume that Tmax < T ∗. This implies
|I2(ψav(Tmax))| = K. By definition of K,

|I2(ψav(t))| ≤ f

(

√

C̃(1 + L(ψ0)

)

≤ K

2
∀t ∈ [0, Tmax).

This is inconsistent with |I2(ψav(Tmax))| = K so Tmax = T ∗ and the solution
is bounded in H2 when it is defined. As no blow-up is possible thanks to
(2.8) we obtain that Tmax = T ∗ = +∞ and thus the solution is global in
time and bounded.
Finally, taking the time derivative of the equation we obtain the announced
regularity.

2.3 Convergence Analysis

In all this section we assume that k ∈ (0, k0) where k0 is defined in Propo-
sition 1.2 with R = 1. The closed-loop stabilization for the averaged system
(1.5) is given by the next statement.

Theorem 2.1. Assume that Hypotheses 1.1 hold. If ψ0 ∈ X0 with 0 <
L(ψ0) < 1, then the solution ψav of the closed-loop system (1.5)-(1.8) with
initial condition (1.6) satisfies

ψav(t) ⇀
t→∞

C in H2.
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We prove this theorem by adapting the LaSalle invariance principle to
infinite dimension in the same spirit as in [BN]. This is done in two steps.
First we prove that the invariant set, relatively to the closed-loop system
(1.5)-(1.8) and the Lyapunov function L, is C. Here, Hypothesis 1.1 is cru-
cial. Then we prove that every adherent point for the weak H2 topology
of the solution of this closed-loop system is contained in C. This is due to
the continuity of the propagator of the closed-loop system for the weak H2

topology.

2.3.1 Invariant set

Proposition 2.1. Assume that Hypotheses 1.1 hold. Assume that ψ0 belongs
to S ∩H1

0 ∩H2 and satisfies 〈ψ0, φ〉 6= 0. If the function t 7→ L(ψav(t)) is
constant, then ψ0 ∈ C.

Proof. Thanks to (2.6), the fact that
(

1− kI2(ψav(t))
)

> 0 for all t ≥ 0 and
(1.9) we get

I1[ψav(·)] ≡ 0, I2(ψav(·))g2 (I2(ψav(·))) ≡ 0 i.e. I2(ψav(t)) ≥ 0, ∀t ≥ 0.

By (1.8) this implies that α(ψav(·)) ≡ β(ψav(·)) ≡ 0 and then ψav is solution
of the uncontrolled Schrödinger equation. So,

ψav(t) =
∞
∑

j=1

e−iλjt〈ψ0, φj〉φj .

Recall that φ := φ1 is the ground state. Following the idea of [N1], we obtain
after computations and gathering the terms with different exponential term

I1(ψav(t)) =
∑

j,k≥2

P̃ (ψ0, j, k,Q1)e
−i(λj−λk)t +

∑

j∈J 6=0

˜̃P (ψ0, j,Q1)e
i(λj−λ1)t

+
∑

j∈J 6=0

〈ψ0, φj〉〈φ,ψ0〉〈Q1φj , φ〉(1 + γλ2j )e
−i(λj−λ1)t,

where P̃ (ψ0, j, k,Q1) and ˜̃P (ψ0, j,Q1) are constants. Then, by [N1, Lemma
3.10],

〈ψ0, φj〉〈φ,ψ0〉〈Q1φj , φ〉(1 + γλ2j) = 0, ∀j ∈ J6=0.

Using the assumption 〈φ,ψ0〉 6= 0 and Hypotheses 1.1 it comes that for all
j ∈ J6=0, 〈ψ0, φj〉 = 0. This leads to

ψav(t) = e−iλ1t〈ψ0, φ〉φ+
∑

j∈J0
e−iλjt〈ψ0, φj〉φj ,
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where by Hypotheses 1.1, J0 is a finite set. By simple computations we
obtain,

I2(ψav(t)) = Im
(

∑

k,j∈J0
γλj〈φj , ψ0〉〈ψ0, φk〉〈(−∆+ V )P (Q2φk), φj〉ei(λj−λk)t

+
∑

j∈J0
γλj〈φj , ψ0〉〈ψ0, φ〉〈(−∆+ V )P (Q2φ), φj〉ei(λj−λ1)t

−
∑

j∈J0
〈ψ0, φj〉〈φ,ψ0〉〈Q2φj , φ〉e−i(λj−λ1)t

− |〈ψ0, φ〉|2〈Q2φ, φ〉
)

≥ 0. (2.9)

There exists N0 ∈ N
∗ and (µn)n∈{0,...,N0} such that

{µn ; n ∈ {0, . . . , N0}} = {±(λk − λj) ; (k, j) ∈ J0 × (J0 ∪ {1})} ,

with µ0 = 0 and µj 6= µk if j 6= k. Thus, (2.9) implies that for any n ∈
{0, . . . , N0}, there exists Λn = Λn(ψ

0, Q2) ∈ C such that

Im
(

N0
∑

j=0

Λje
iµjt

)

≥ 0, ∀t ≥ 0. (2.10)

Straightforward computations give

Λ0 =
∑

j∈J0

(

γλ2j |〈φj , ψ0〉|2〈Q2φj, φj〉
)

− |〈ψ0, φ〉|2〈Q2φ, φ〉.

Thus, Im
(

Λ0

)

= 0 and our inequality (2.10) can be rewritten as

Im
(

N0
∑

j=1

Λje
iµjt

)

≥ 0, ∀t ≥ 0,

with the µj being all different and non-zero. Then using the same argument
as in [CGLT, Proof of Theorem 3.1], we get that Λj = 0 for j ≥ 1 and then
using (2.9) in particular that the coefficient of e−i(λj−λ1)t vanishes. It implies
〈ψ0, φj〉 = 0 for all j ∈ J0. Consequently, ψ0 = 〈ψ0, φ〉φ. As ψ0, φ ∈ S, we
obtain ψ0 ∈ C.

2.3.2 Weak H2 continuity of the propagator

We denote by Ut(ψ
0) the propagator of the closed-loop system (1.5)-

(1.8). We detail here the continuity property of this propagator and of the
feedback laws we need to apply the LaSalle invariance principle.
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Proposition 2.2. Let zn ∈ S ∩H1
0 ∩H2 be a sequence such that zn ⇀ z∞

in H2. For every T > 0, there exists N ⊂ (0, T ) of zero Lebesgue measure
verifying for all t ∈ (0, T )\N ,

i) Ut(zn) ⇀
n→∞

Ut(z∞) in H2,

ii) α
(

Ut(zn)
)

→
n→∞

α
(

Ut(z∞)
)

and β
(

Ut(zn)
)

→
n→∞

β
(

Ut(z∞)
)

.

Proof. Proof of ii). We start by proving that if (zn)n∈N ∈ H1
0 ∩H2 satisfy

zn ⇀
n→∞

z∞ in H2 then α(zn) →
n→∞

α(z∞) and β(zn) →
n→∞

β(z∞). Thus ii)

will be a simple consequence of i). As proved in [BN, Proposition 2.2], using
the fact that the regularity H3/2 is sufficient to define the feedback, we get

Ij(zn) −→
n→+∞

Ij(z∞), for j = 1, 2.

So by the design of our feedback,

α(zn) −→
n→+∞

α(z∞), β(zn) −→
n→+∞

β(z∞).

Proof of i). The exact same proof as in [BN, Proposition 2.2] based on
extraction in less regular spaces, uniqueness property of the closed loop sys-
tem and taking into account the polarizability term leads to the announced
result.

2.3.3 LaSalle invariance principle

We now have all the needed tools to prove Theorem 2.1.

Proof of Theorem 2.1. Consider ψ0 ∈ X0 with 0 < L(ψ0) < 1. Thanks to
the bound (2.4), Ut(ψ

0) is bounded in H2. Let (tn)n∈N be a sequence of
times tending to +∞ and ψ∞ ∈ H2 be such that Utn(ψ

0) ⇀
n→∞

ψ∞ in H2.

We want to show that ψ∞ ∈ C.
We prove that α(Ut(ψ∞)) = 0 and β(Ut(ψ∞)) = 0. Indeed, the func-

tion t 7→ α
(

Ut(ψ
0)
)

belongs to L2(0,+∞) (because of (2.6) and (1.8)) so
the sequence of functions (t ∈ (0,+∞) 7→ α

(

Utn+t(ψ
0)
)

n
tends to zero in

L2(0,+∞). Then by the Lebesgue reciprocal theorem there exists a subse-
quence (tnk

)k∈N and N1 ⊂ (0,+∞) of zero Lebesgue measure such that

α
(

Ut+tnk
(ψ0)

)

→
k→∞

0, ∀t ∈ (0,+∞)\N1.

Let T ∈ (0,+∞). Using Proposition 2.2, there exists N ⊂ (0, T ) of zero
Lebesgue measure such that

α
(

Ut+tnk
(ψ0)

)

→
k→∞

α
(

Ut(ψ∞)
)

, ∀t ∈ (0, T )\N.
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Hence, α
(

Ut(ψ∞)
)

= 0 for all t ∈ (0, T )\(N1 ∪ N). The function t 7→
α
(

Ut(ψ∞)
)

being continuous we get α
(

Ut(ψ∞)
)

= 0 for all t ∈ [0, T ], and
this for all T > 0. Finally α

(

Ut(ψ∞)
)

= 0 for all t ≥ 0.
The same argument holds for β as g̃ : t 7→ I2

(

Ut(ψ
0)
)

g2
(

I2
(

Ut(ψ
0)
))

belongs to L1(0,+∞). Then by the proof of Proposition 2.2,

g̃
(

Ut+tnk
(ψ0)

)

→
k→∞

g̃
(

Ut(ψ∞)
)

, ∀t ∈ (0, T )\N,

and g̃
(

Ut(ψ∞)
)

= 0 implies β
(

Ut(ψ∞)
)

≡ 0.
These two results lead to the fact that L

(

Ut(ψ∞)
)

is constant.
By (2.7), L(ψ∞) ≤ L(ψ0) < 1 so 〈ψ∞, φ〉 6= 0. All assumptions of Proposi-
tion 2.1 are satisfied then ψ∞ ∈ C.
This concludes the proof of Theorem 2.1 and the convergence analysis of
(1.5).

3 Approximation by averaging

The method of averaging was mostly used for finite-dimensional dynam-
ical systems (see e.g. [SVM]). The concept of averaging in quantum control
theory has already produced interesting results. For example, in [MSR] the
authors make important use of these averaging properties in finite dimension
through what is called in quantum physics the rotating wave approximation.
The main idea of using a highly oscillating control is that if it is oscillating
enough the initial system behaves like the averaged system. We extend this
concept in our infinite dimensional framework : we prove an approximation
result on every finite time interval. More precisely we have the following
result.

Proposition 3.1. Let [s, L] be a fixed interval and ψ0 ∈ X0 with 0 <
L(ψ0) < 1. Let ψav be the solution of the closed loop system (1.5),(1.8)
with initial condition ψav(s, ·) = ψ0. For any δ > 0, there exists ε0 > 0 such
that, if ψε is the solution of (1.1) associated to the same initial condition
ψε(s, ·) = ψ0 and control uε(t) defined by (1.12) with ε ∈ (0, ε0) then

||ψε(t, ·)− ψav(t, ·)||H2 ≤ δ, ∀t ∈ [s, L].

Remark 3.1. Notice that the controls α and β were defined using the averaged
system in a feedback form but the control uε used for the system (1.1) is
explicit and is not defined as a feedback control.

Remark 3.2. Due to the infinite dimensional framework, we are facing regu-
larity issues and cannot adapt directly the strategy of [SVM].

Proof. We define for (t, z, z̃) ∈ R×H2 ×H2,

F̃ (t, z, z̃) := −i (α(z̃) + β(z̃) sin(t))Q1z − i (α(z̃) + β(z̃) sin(t))2Q2z. (3.1)
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Notice that thanks to (2.2) for any (t, z) ∈ R×H2,

F̃ (t, z, z) = F (t, z). (3.2)

With these notations the considered system (1.1) with control (1.12) and
initial condition ψε(s, ·) = ψ0 can be rewritten as











∂tψε(t) = Aψε(t) + F̃

(

t

ε
, ψε(t), ψav(t)

)

,

ψε|∂D = 0,

where ψav is the solution of the closed-loop system (1.5) with initial condition
ψav(s, ·) = ψ0.
Denoting by TA the semigroup generated by A, we have for any t ≥ s,

ψε(t) = TA(t− s)ψ0 +

∫ t

s
TA(t− τ)F̃

(τ

ε
, ψε(τ), ψav(τ)

)

dτ,

ψav(t) = TA(t− s)ψ0 +

∫ t

s
TA(t− τ)F 0

(

ψav(τ)
)

dτ.

This implies for any t ≥ s,

||ψε(t)− ψav(t)||H2 ≤
∣

∣

∣

∣

∣

∣

∫ t

s
TA(t− τ)

[

F
(τ

ε
, ψav(τ)

)

− F 0 (ψav(τ))
]

dτ
∣

∣

∣

∣

∣

∣

H2

+
∣

∣

∣

∣

∣

∣

∫ t

s
TA(t− τ)

[

F̃
(τ

ε
, ψε(τ), ψav(τ)

)

− F
(τ

ε
, ψav(τ)

) ]

dτ
∣

∣

∣

∣

∣

∣

H2

.

(3.3)

We study separately the two terms of the right-hand side of (3.3).
First step : We show the existence of C > 0 such that for any t ≥ s, for

any ε > 0,

∣

∣

∣

∣

∣

∣

∫ t

s
TA(t− τ)

[

F̃
(τ

ε
, ψε(τ), ψav(τ)

)

− F
(τ

ε
, ψav(τ)

)]

dτ
∣

∣

∣

∣

∣

∣

H2

≤ C

∫ t

s

∣

∣

∣

∣ψε(τ)− ψav(τ)
∣

∣

∣

∣

H2dτ.

(3.4)

By (2.2),(3.1), it comes that for any τ ≥ s, for any ε > 0,

F̃
(τ

ε
, ψε(τ), ψav(τ)

)

− F
(τ

ε
, ψav(τ)

)

= −i
(

α(ψav(τ)) + β(ψav(τ)) sin
(τ

ε

))

Q1 [ψε(τ)− ψav(τ)]

− i
(

α(ψav(τ)) + β(ψav(τ)) sin
(τ

ε

))2
Q2 [ψε(τ)− ψav(τ)] .
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As ψav is bounded in H2, using (1.8) and (1.10) we get the existence of
M1 > 0 such that for all τ ≥ s,

|α(ψav(τ))| + |β(ψav(τ))| ≤M1. (3.5)

As | sin
(

τ
ε

)

| ≤ 1, we get the existence of C > 0 independent of ε such that
for any τ ≥ s, for any ε > 0,
∣

∣

∣

∣

∣

∣
F̃
(τ

ε
, ψε(τ), ψav(τ)

)

−F
(τ

ε
, ψav(τ)

)
∣

∣

∣

∣

∣

∣

H2

≤ C
∣

∣

∣

∣ψε(τ)−ψav(τ)
∣

∣

∣

∣

H2 . (3.6)

Then the contraction property of TA implies (3.4).
Second step : We show that there exists C > 0 satisfying for all t ∈ [s, L],

for any ε > 0,

∣

∣

∣

∣

∣

∣

∫ t

s
TA(t− τ)

[

F
(τ

ε
, ψav(τ)

)

− F 0(ψav(τ))
]

dτ
∣

∣

∣

∣

∣

∣

H2

≤ Cε. (3.7)

We follow computations on the semigroup TA done in [HL]. For (t, v) ∈
R
+ × C1([s, L],H2), we define U and H by

U(t, v(·)) : =
∫ t

0

(

F (τ, v(·)) − F 0(v(·))
)

dτ,

H(t, v) : = dvU(t, v)v̇,

where v̇ is the time derivative of v.
Notice that the T -periodicity of F (·, v) and the definition of F 0 imply that
U(·, v) is also T -periodic.

Lemma 3.1. As ψav ∈ C1([s, L],H1
0 ∩H2), we have for any t ∈ [s, L], for

any ε > 0,

∫ t

s
TA(t− τ)

[

F
(τ

ε
, ψav(τ)

)

− F 0(ψav(τ))
]

dτ =

εU

(

t

ε
, ψav(t)

)

− εTA(t− s)U
(s

ε
, ψav(s)

)

+εA

∫ t

s
TA(t− τ)U

(τ

ε
, ψav(τ)

)

dτ − ε

∫ t

s
TA(t− τ)H

(τ

ε
, ψav(τ)

)

dτ.

Proof. The proof is done in [HL, Lemma 2.2] .

We study separately each term of the previous right-hand side.
• With κ = ⌊ t

εT ⌋, we have t
ε − κT ∈ [0, T ] and by periodicity

U

(

t

ε
, ψav(t)

)

=

∫ t/ε

0

(

F (τ, ψav(t))− F 0(ψav(t))
)

dτ

=

∫ t/ε−κT

0

(

F (τ, ψav(t)) − F 0(ψav(t))
)

dτ.
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As ψav is bounded inH2 and α(ψav), β(ψav) are bounded there existsM2 > 0
such that

||F (τ, ψav(t))||H2 ≤M2, ||F 0(ψav(t))||H2 ≤M2, ∀τ ≥ 0,∀t ≥ s.

This leads to

∣

∣

∣

∣

∣

∣
U

(

t

ε
, ψav(t)

)

∣

∣

∣

∣

∣

∣

H2

≤
∫ t/ε−κT

0
2M2dτ ≤ 2M2T, ∀t ≥ s,∀ε > 0.

The same computations lead to
∣

∣

∣

∣

∣

∣
TA(t− s)U

(s

ε
, ψav(s)

)
∣

∣

∣

∣

∣

∣

H2

≤ 2M2T, ∀t ≥ s,∀ε > 0.

Then,

∣

∣

∣

∣

∣

∣
εU

(

t

ε
, ψav(t)

)

+ εTA(t− s)U
(s

ε
, ψav(s)

) ∣

∣

∣

∣

∣

∣

H2

≤ Cε, ∀t ≥ s,∀ε > 0.

(3.8)
• By switching property,

A

∫ t

s
TA(t− τ)U

(τ

ε
, ψav(τ)

)

dτ =

∫ t

s
TA(t− τ)AU

(τ

ε
, ψav(τ)

)

dτ,

and for any t ∈ [s, L], for any ε > 0

AU

(

t

ε
, ψav(t)

)

= A

∫ t/ε−κT

0

[

F (τ, ψav(t))− F 0(ψav(t))
]

dτ

=

∫ t/ε−κT

0

[

AF (τ, ψav(t))−AF 0(ψav(t))
]

dτ.

By definition of F and F 0 we have

AF (t, z) = −i(α(z) + β(z) sin(t))A(Q1z)− i(α(z) + β(z) sin(t))2A(Q2z),

AF 0(z) = −iα(z)A(Q1z)− i

(

α(z)2 +
1

2
β(z)2

)

A(Q2z).

By regularity hypothesis on Q1, Q2 and V there exists C > 0 such that

||A(Q1z)||H2 ≤ C||∆z||H2 , ||A(Q2z)||H2 ≤ C||∆z||H2 .

Thus thanks to Proposition 1.2 and the bound (3.5) on α(ψav) and β(ψav),
we get the existence of M3 > 0 satisfying

||AF (τ, ψav(t))||H2 ≤M3, ||AF 0(ψav(t))||H2 ≤M3, ∀τ ≥ 0,∀t ∈ [s, L].
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So, for any t ∈ [s, L], for any ε > 0,
∣

∣

∣

∣

∣

∣
AU

(

t
ε , ψav(t)

)

∣

∣

∣

∣

∣

∣

H2

≤ 2M3T . Conse-

quently , there exists C > 0 such that

∣

∣

∣

∣

∣

∣
εA

∫ t

s
TA(t− τ)U

(τ

ε
, ψav(τ)

)

dτ
∣

∣

∣

∣

∣

∣

H2

≤ Cε, ∀t ∈ [s, L],∀ε > 0. (3.9)

• For the last term we need to estimate H
(

t
ε , ψav(t)

)

. We have

H

(

t

ε
, ψav(t)

)

= dvU

(

t

ε
, ψav(t)

)

.∂tψav(t)

=

∫ t/ε−κT

0

(

dvF (τ, ψav).∂tψav − dF 0(ψav).∂tψav

)

dτ.

Using (1.8) and (1.10), we have for any v,w ∈ C0([s, L],H1
0 ∩H2),

dα(v).w = −kdI1(v).w, dβ(v).w = g′
(

I2(v)
)

dI2(v).w, (3.10)

where,

dIj(v).w = Im
[

γ〈(−∆+ V )P (Qjw), (−∆+ V )Pv〉
+ γ〈(−∆+ V )P (Qjv), (−∆+ V )Pw〉
− 〈Qjw,φ〉〈φ, v〉 − 〈Qjv, φ〉〈φ,w〉

]

.

Finally, we have

dvF (t, v).w = −i(α(v) + β(v) sin t)Q1w − i(dα(v).w + dβ(v).w sin t)Q1v

−i(α(v) + β(v) sin t)2Q2w − 2i(α(v) + β(v) sin t)(dα(v).w + dβ(v).w sin t)Q2v,
(3.11)

and

dF 0(v).w = −iα(v)Q1w − idα(v).wQ1v − i

(

α(v)2 +
1

2
β(v)2

)

Q2w

−i(2α(v)dα(v).w + β(v)dβ(v).w sin t)Q2v. (3.12)

By Proposition 1.2, ∂tψav ∈ C0([0,+∞),H1
0 ∩H2) so there exists M4 > 0

such that
||∂tψav(t)||H2 ≤M4, ∀t ∈ [s, L].

Hence the same computations as previously lead to the existence of C > 0
satisfying

|dα(ψav(t)).∂tψav(t)|+ |dβ(ψav(t)).∂tψav(t)| ≤ C, ∀t ∈ [s, L],

and thus by (3.11),(3.12), for any t ∈ [s, L], for any τ ≥ 0,

||dvF (τ, ψav(t)).∂tψav(t)||H2 + ||dF 0(ψav(t)).∂tψav(t)||H2 ≤ C.
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As a consequence,
∣

∣

∣

∣

∣

∣
H

(τ

ε
, ψav(τ)

)
∣

∣

∣

∣

∣

∣

H2

≤ CT, ∀τ ∈ [s, L],∀ε > 0,

and then,

∣

∣

∣

∣

∣

∣
ε

∫ t

s
TA(t− τ)H

(τ

ε
, ψav(τ)

) ∣

∣

∣

∣

∣

∣

H2

dτ ≤ (CLT )ε. (3.13)

We are now able to deal with the remaining term of the right-hand side of
(3.3). Gathering inequalities (3.8), (3.9) and (3.13) in Lemma 3.1 we obtain
that there exists C > 0 such that inequality (3.7) holds.

Third step : Putting together (3.3), (3.4) and (3.7) we obtain that there
exists C > 0 such that for any t ∈ [s, L], for any ε > 0,

||ψε(t)− ψav(t)||H2 ≤ Cε+ C

∫ t

s
||ψε(τ)− ψav(τ)||H2dτ.

Hence Grönwall’s lemma implies

||ψε(t)− ψav(t)||H2 ≤ CεeC(t−s) ≤ (CeC(L−s))ε, ∀t ∈ [s, L],

and Proposition 3.1 is proved with ε0 =
δ

CeC(L−s)
.

Remark 3.3. The proof we used is fundamentally based on the boundedness
of ∆ψav(t) on [s, L] and on Grönwall’s lemma so it cannot be extended
directly to an infinite time interval [s,+∞).

4 Explicit approximate controllability

The solution ψav of the averaged system (1.5),(1.8), can be driven in the
H2 weak topology to the target set C. The solution ψε of the system (1.1)
associated to the same initial condition, with control uε, stays close to ψav

on every finite time interval provided that the control is oscillating enough.
Gathering these two results we prove Theorem 1.1.

Proof of Theorem 1.1. We consider s < 2 fixed.
By Theorem 2.1, we can construct an increasing time sequence (Tn)n∈N

tending to +∞ such that for any n ∈ N,

distHs(ψav(t), C) ≤
1

2n+1
, ∀t ≥ Tn. (4.1)

Using Proposition 3.1 on the time interval [0, Tn+1] we then construct a
decreasing sequence (εn)n∈N such that for any n ∈ N,

||ψε(t)− ψav(t)||Hs ≤ 1

2n+1
, ∀t ∈ [0, Tn+1],∀ε ∈ (0, εn). (4.2)
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Then (4.1),(4.2) imply that

∀n ∈ N, distHs(ψε(t), C) ≤
1

2n
, ∀t ∈ [Tn, Tn+1],∀ε ∈ (0, εn),

which is the statement of Theorem 1.1.

5 Numerical simulations

This section is dedicated to numerical simulations of system (1.1). First, we
detail how we approximate the solutions of (1.1) and (1.5). Then, we check
the validity of the implemented code. Finally, we illustrate different aspects
of Theorem 1.1 and of the averaging property, Proposition 3.1.

5.1 Settings

In all what follows, we set D = [0, 1]. As the potential V will vary in
this section, the eigenelements of −∆+ V are denoted ϕk,V and λk,V . Any
function ψ ∈ L2((0, 1),C) is approximated by its first M modes

ψ(t) ≈
M
∑

k=1

xk(t)ϕk,V.

The unknown eigenvectors ϕk,V are approximated in the following way

ϕk,V ≈
N
∑

j=1

akjϕk,0.

The equality (−∆+ V )ϕk,V = λk,V ϕk,V leads to Bak = λk,V a
k with

ak = (ak1 , . . . , a
k
N )t, B = diag(λ1,0, . . . , λN,0) +

(

〈V ϕi,0, ϕj,0〉
)

1≤i,j≤N
.

Notice that λk,0 = (kπ)2 and ϕk,0 =
√
2 sin(kπ·) are explicit. The scalar

products are approximated by the Matlab function quadl. The eigenele-
ments ak and λk,V are then approximated by the Matlab function eig.

5.2 Approximation of ψε and ψav

Let

H0 := diag(λ1,V , . . . , λM,V ), Hn :=
(

〈Qnϕi,V , ϕj,V 〉
)

1≤i,j≤M
, n ∈ {1, 2}.

It follows that the feedback laws (1.10) are approximated, for X ∈ R
M and

j ∈ {1, 2}, by

Ij(X) : = Im
(

γ
(

H0(0, (HjX)2, . . . , (HjX)M )t
)t (

H0(0, x2, . . . , xM )
)

− (HjX)1x1

)

,
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leading to

α(X) := −kI1(X), β(X) := −min(I2(X), 0).

Thus, if we define Xav , Xε ∈ R
M , systems (1.1) and (1.5) are approximated

by

i
d

dt
Xε =

(

H0 + uε(t)H1 + uε(t)
2H2

)

Xε, (5.1)

and

i
d

dt
Xav =

(

H0 + α(Xav)H1 + (α2(Xav) +
1

2
β(Xav)

2)H2

)

Xav , (5.2)

where uε(t) = α(Xav(t)) + β(Xav(t)) sin(t/ε). Equations (5.1) and (5.2) are
solved numerically (simultaneously) using Euler method with a time step dt
and a Strang splitting method.

5.3 Validation

We now prove the validity of the implemented code. The eigenvectors ϕk,V

are approximated by N = 50 modes. We take, as a test case, V (x) :=
(x− 1/2)2, Q1(x) := x2 and Q2(x) := x. The considered initial condition is
ψ0 = 1√

2
ϕ1,V + i√

2
ϕ2,V . The value of the oscillating parameter is ε = 10−3.

The parameter γ is chosen such that L(ψ0) = 3/4. We compute the discrete
Lyapunov function for the averaged system and the Hs norm (with s = 1.8)
to the ground state for both the oscillating and the averaged system. The
time scale is [0, T ] with T = 1000 and a time step dt = 10−3. For M = 5,
we get the results presented in Figure 1.
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Figure 1: Lyapunov function of the averaged system (left). Hs norm to
the ground state (right) for the averaged system (continuous line) and the
oscillating system (dashed line).

As expected, we observe the convergence of the Lyapunov function to 0. The
solutions of (5.1) and (5.2) are driven to the ground state (up to a global
phase). To validate the simulations, we have also tested the code for M = 10



5 NUMERICAL SIMULATIONS 21

and M = 20. We obtained the same asymptotic behaviour and the same
values for the Lyapunov function and the Hs distance to the target.
As the approximate controllability uses the fact that the controls are oscil-
lating, the time step dt cannot be taken large with respect to the oscillating
parameter ε. For ε = 10−3, we obtain the same results with dt = 10−3

and dt = 10−4. However, instabilities appear on the oscillating system for
dt = 10−2. Thus, in all what follows the time step will be chosen smaller
than ε. We now present several simulations to illustrate various aspects of
Theorem 1.1.

5.4 Influence of the initial condition

For every other initial condition tested, the asymptotic behaviour is the
same. We present here the results for the same parameters as in Figure 1
but with the initial condition ψ0 = 1√

3
ϕ1,V + 1√

3
ϕ2,V + i√

3
ϕ3,V . In this case,

the stabilization of the averaged system is slower and we computed it for
T = 5000.
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Figure 2: Lyapunov function of the averaged system (left). Hs norm to
the ground state (right) for the averaged system (continuous line) and the
oscillating system (dashed line).

We observe the same asymptotic behaviour as in Figure 1.

5.5 Averaging strategy

We present numerically the influence of the oscillating parameter ε. First,
we consider the same potential, dipolar and polarizability moments as in
Figure 1. We compute the discrete Hs norm (for s = 1.8) to the ground
state (up to a global phase) and the discrete H2 norm of Xav −Xε. Figure
3 is obtained with ε = 10−3 while Figure 4 is obtained with ε = 10−4. Both
are computed with a time step dt = ε and final time T = 500.
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Figure 3: Hs norm to the ground state (left) for the averaged system (contin-
uous line) and the oscillating system (dashed line). H2 gap from the average
(right).
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Figure 4: Hs norm to the ground state (left) for the averaged system (contin-
uous line) and the oscillating system (dashed line). H2 gap from the average
(right).

For a fixed parameter ε, we observe that the H2 distance between the
solution of (1.1) and the solution of (1.5) with the same initial condition does
not increase as the time goes to infinity but rather tends to a limit value.
This limit value is of the same order of magnitude as ε. We observe that

||Xav(T )−X10−3(T )||H2

||Xav(T )−X10−4(T )||H2

≈ 30.

This validates numerically the results of Proposition 3.1 and indicates that
this averaging property should be valid on an infinite time horizon.

The same behaviour has been obtained with other parameters. We
present here the simulations with Q1(x) := cos(x) and Q2(x) := cos(2x),
inspired by the physical situation of alignment dynamic of a HCN molecule
as in [DKAB]. Figure 5 is obtained with ε = 10−3 while Figure 6 is obtained
with ε = 10−4. Both are computed with a time step dt = ε and final time
T = 1000 (as the stabilization process seems slower in this case).
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Figure 5: Hs norm to the ground state (left) for the averaged system (contin-
uous line) and the oscillating system (dashed line). H2 gap from the average
(right).
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Figure 6: Hs norm to the ground state (left) for the averaged system (contin-
uous line) and the oscillating system (dashed line). H2 gap from the average
(right).

Remark 5.1. Although the time scales at stake in these simulations can seem
very large, one has to remember that the Schrödinger equation is considered
in atomic unity.

6 Conclusion, open problems and perspectives

In this article we have defined explicit oscillating controls that drive the
solution of our system arbitrarily close to the ground state provided that the
control is oscillating enough and the time is large enough. To achieve this
we have used and developed tools from the theory of finite dimension dy-
namical systems and applied them to the considered Schrödinger equation.
We managed by adding a mathematically and physically meaningful term
to weaken the previous assumptions on the coupling realized by this model.
The assumptions that were made are proved to be generic with respect to the
functions determining the system (potential, dipolar and polarizability mo-
ments). The results presented should be generalizable to a compact manifold
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with the Laplace-Beltrami operator. We performed numerical simulations to
illustrate the approximate controllability. This gives numerical bounds on
the time scale and on the values of the oscillating parameter needed to drive
any initial condition arbitrarily close to the ground state.

A challenging question would be to prove an approximation property of
the averaged system on an infinite time interval [s,+∞). This would lead
to approximate stabilization to the ground state. Based on the numerical
simulations, this result seems to hold. Unfortunately the tools developed here
are really based on the finite time interval and cannot be extended directly.
In [BL], Beauchard and Laurent proved the local exact controllability in H3

around the ground state for the system (1.1) in the dipolar approximation
(i.e. Q2 ≡ 0) under some coupling assumptions in one dimension. If one
manages to extend their result to the system (1.1) with suitable assumptions
onQ2, this may lead to a global exact controllability result around the ground
state, at least for the one dimensional case. The main difficulty would be
to obtain the approximate convergence in the same functional setting as
their local exact controllability result and with coherent assumptions on the
polarizability moment.

Acknowledgements : The author would like to thank K. Beauchard for
having interested him in this problem and for fruitful discussions.
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