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Abstract. It is common knowledge that the genetic variability of plants, even of the
same variety, can be very important and, if we add locally varying climatic effects,
the development of two neighboring similar plants could be highly different. This
is one of the reasons why population-based methods for modeling plant growth are
of great interest. A highly promising individual-based plant growth model is the
GreenLab model [4] which was recently shown to have a good predictive capacity
among competing models [1]. In this study, we extend the GreenLab formulation to
the population level. In order to model the deviations from some fixed but unknown
important biophysical and genetic parameters we introduce into the GreenLab model
appropriate random effects. Under some assumptions, the resulting model can be
cast into the framework of nonlinear mixed effects models. A stochastic variant of an
EM-type algorithm (Expectation-Maximization) is generally needed to perform MLE
for this type of incomplete data models and the interest is focused on the design
of an efficient algorithm. In this direction, we propose a suitable Monte-Carlo EM
(MCEM) algorithm for our model, where at each EM-iteration, MCMC is used to
draw from the hidden states given the observed data. Data consist in organ mass
measurements and are treated sequentially as first proposed in [11]. The performance
of the algorithm is illustrated on simulated data from the sugar beet plant. Some
possible extensions and improvements are also discussed.
Keywords: plant growth model, nonlinear mixed effects model, stochastic EM algo-
rithm, MCMC methods, sugar-beet plant.

1 Introduction

Plants, as any other living organisms, are in constant interaction with each
other. Genetic variability, even for plants of the same variety, as well as locally
varying environmental conditions in a given field, can lead to the development
of two different neighboring plants. This inter-individual variability can have
a major impact at the agrosystem level, as shown for example by [3], who
demonstrated that soil and crop micro-variability can have an impact on final
yield, as some parts of the field can be more adapted to dryness, and can thus
compensate less good performances of other parts of the field.

Individual-based plant growth models such as functional-structural plant
models (FSPM) have gained a lot of success over the past years. These models
describe the evolution of the 3D architecture of the plant over time, driven
by the underlying ecophysiological processes (e.g., [13]), at the organ level.
However, extrapolation to the field scale is still at its early stages. It mostly



concerns competition for light (e.g., [5]), and the calibration process is made
from an average individual plant. If the level of description available in FSPMs
made these approaches very appealing, their calibration on averaged individuals
is not fully satisfactory as it only gives a partial representation of the field
production.

In this study, we propose an extension of the individual-based Greenlab
model, based on a bottom-up approach: the growth of each individual plant in
a given field can be characterized by the same set of equations from the Green-
lab model, but some of the model parameters are specific to this individual, and
can therefore be considered as random effects. The resulting model can thus be
cast into the framework of nonlinear mixed-effects models [7]. In this context,
maximum likelihood estimators of the parameters can be obtained using an ap-
propriate stochastic variant of an EM-algorithm (Expectation-Maximization)
[10]. Due to the nonlinearity of the model, the E-step is in general analytically
intractable, and an approximation of the Q-function should be done, but on the
other hand, under suitable assumptions, the M-step can be resolved explicitly.

The methodology was developed here in the specific case of sugar beet crops,
which have a very simple structure, as only three types of organs need to be
considered (blades, petioles and root), but it can of course be applied to more
complex plant structures, like maize or oilseed rape. The Greenlab model is
introduced in Section 2.1, while the methodology is described in Section 2.3.
Results from simulated data are presented in Section 3.

2 Material and Methods

2.1 The Greenlab model

The Greenlab model is a functional-structural model, combining rules for (i)
biomass (mass for living organisms) production and allocation (functional part),
and (ii) architectural development at the organ level (structural part). It was
introduced by [8], and represented as a discrete dynamic system in [4]. Pa-
rameter estimation methods for this model are reviewed in [6]. Some recent
advances for parameter estimation in the presence of modeling errors can be
found in [11] and [12].

The first description of the Greenlab model as a discrete dynamic system
was possible by taking advantage of the modular architectural development
of plants. Indeed, the plant structure can be considered as the result of the
accumulation of elementary botanical entities, called metamers, which usu-
ally correspond to some specific combinations of organs, characteristic for each
plant species. The discretization of time is therefore possible by taking into
account the time instants where metamers appear. The time interval between
the appearance of two successive metamers is known as a growth cycle.

Despite the relative benefits of this inherent discretization, the choice of the
growth cycle as a time step bears some limitations, especially for the functional
part of the model and the handling of environmental data, since the latter are
usually collected on a daily basis, while the growth cycle can vary from several
days to one year in trees. To overcome these difficulties, a daily time step was



chosen to compute biomass production and allocation, but we still rely on the
growth cycle for the creation of new organs.

In this paper we present in some detail the case of sugar beet which consists
of three type of organs, that we denote by O = {b, p, r}, where b stands for
blade, p for petiole and r for root. Each blade and each petiole is defined by
its rank, corresponding to the growth cycle at which it was preformed. The
interest is focused on the functional part since the structural development is
known and corresponds to the creation of one blade and one petiole at each
growth cycle. The inter-individual variability of organogenesis has been studied
by [2], who showed that it can be important in sugar beet populations.

Biomass production. The seed mass corresponds to the first biomass. After the
appearance of the first leaf, biomass production is assumed to be given by :

F (t; p∗) = ut µ s
pr

(
1− exp

(
−kb

sact(t; pal)

spr

))
, (1)

where ut stands for an environmental condition on day t (usually, the photo-
synthetically active radiation), spr an empirical coefficient related to the space
occupied by the plant on the ground, µ an efficiency coefficient, sact(t; pal) the
photosynthetically active foliar surface at the beginning of day t (see [11] for
further details) depending on the allocation parameters pal described in the
next paragraph, and p∗ = (µ, spr, kb, pal).

Biomass allocation. A basic assumption of the Greenlab model is that biomass
allocation to all expanding organs is proportional to organ specific functions,
called sink functions and denoted by so,k(u; poal). At a given time u, these
functions depend on the type of the organ, and its expansion stage, i.e., the
number of growth cycles that have elapsed since its creation. The basic factor
determining the duration of a growth cycle, and consequently, organs demand
for growth, is the temperature. For this reason it is very convenient to introduce
the notion of thermal time, which is defined as follows :

τ(u) =

∫ u

0

max(0, T (s)− Tb) ds, u ≥ 0,

and represents at calendar time u, the accumulated sum of temperatures above
a base temperature Tb until time u. In the sequel, for a leaf of rank k, we
denote by τk its thermal time of initiation, τek its expansion period, and τsk its
lifetime. The thermal time of initiation of root is thus equal to τ1, and we
denote by τer its corresponding expansion period. We assume that root do not
get senescent, and that initiation, expansion and lifetime of blades and petioles
from the same leaf are identical.

After a first phase of initiation where the seed biomass is distributed uni-
formly in time, the produced biomass (due to photosynthesis) given by (1) is
distributed to all expanding organs proportionally to

so,k(u; poal) = c po

(
τ(u)− τk

τek

)ao−1(
1− τ(u)− τk

τek

)bo−1
1τk≤τ(u)≤τk+τe

k
,



where poal = (po, ao, bo) for o ∈ O and c is the normalizing constant of a discrete
beta law B(ao,bo).

The sum of all sink functions on day u defines the total biomass demand
d(u; pal) on day u, and the ratio so,k(u; poal)/d(u; pal) determines the percentage
of the produced biomass F (t; p∗) which is allocated to the organ of type o and
rank k at the end of day u.

2.2 A two-stage formulation of the model

To account for inter-individual variability, random effects are introduced in the
Greenlab model, which can then be seen as a two-stage hierarchical one.

First-stage: intra-individual variation. We denote by z̄ = (z̄i,n)1≤i≤s, 0≤n≤ni

the theoretical biomasses of organs of rank n + 1 for plant i. The theoreti-
cal biomasses z̄i,n can be obtained as a function of the sequence of produced
biomasses:

z̄i,n = Gn(φi) =

 τe
k∧τmax∑

τ(t)=τn+1

so,n(t; pal)

d(t; pal)
F (t;φi)


o ∈O

, (2)

where φi is the vector of parameters specific to plant i, Gn is the vector-valued
function of the theoretical biomasses of organs of rank n + 1, and τmax is the
thermal time at which observations are made.

To account for positivity in mass measurements we define ȳi,n = log(z̄i,n).
If we denote by y = (yi,n)1≤i≤s, 0≤n≤ni the vector of mass measurements in the
log-scale and by Σb,p and σ2

r a two-dimensional covariance matrix and variance
parameter respectively, then we assume that :

yi,n = ȳi,n + εi,n, εi,n ∼ Ndn(0, Σn), 1 ≤ i ≤ s, 0 ≤ n ≤ ni, (3)

where (εi,n)1≤i≤s, 0≤n≤ni are mutually independent random variables and

Σn =

{
diag{Σb,p, σ2

r} if n = 0,
Σb,p if n ≥ 1.

(4)

In this way, the measurement errors from organs of two different plants or of
the same plant but with different ranks are assumed to be independent.

Second-stage: inter-individual variation. In this second stage, the variability
of the subject-specific parameters defined in the previous stage, φi, is assessed.
We assume the following model for the vector φi = (φi,1, . . . , φi,P )t, with P the
number of random parameters:

φi = β + ξi, (5)

ξi ∼ NP (0, Γ ),

where β is the vector of fixed effects and Γ a diagonal covariance matrix.



2.3 Parameter estimation

We denote by θ = (θ1, θ2), where θ1 = (β, σ2
1 , . . . , σ

2
P ) and θ2 = Σb,p, the

vector of unknown parameters. To compute the maximum likelihood estimator
of θ, we need to compute the likelihood of the model, which will be in general
analytically intractable due to the nonlinearity of Gn given by (2). However,
our model can be seen as an incomplete data model, with y = (yi,n, 1 ≤ i ≤
s, 0 ≤ n ≤ ni) the observed data, the random effects φ = (φi, 1 ≤ i ≤ s)
being the unobserved data. The complete data of the model is (y, φ), and
in such cases, an appropriate variant of an EM-algorithm [9] (Expectation-
Maximization) can be implemented to approximate the maximum likelihood
estimator of θ.

Each iteration of this algorithm consists in two steps: the expectation
step (E-step) in which the conditional expectation of the complete data log-
likelihood given the observed data is computed under the current parameter
value, and the maximization step (M-step) in which the parameters are up-
dated by maximizing the Q-function obtained in the E-step. The two steps of
the EM-algorithm are described below:

E-step. At iteration k, the E-step of the algorithm consists in the computation
of the Q-function given the current value of the parameter θk. Due to the
independence between plants and between organs of different ranks within the
same plant, the Q-function can be decomposed as follows:

Q(θ; θk) =

s∑
i=1

Eθk(log f(φi; θ1) | y) +

s∑
i=1

ni∑
n=0

Eθk(log f(yi,n | φi; θ2) | y)

= Q1(θ1; θk) +Q2(θ2; θk). (6)

M-step. In the M-step of the algorithm, we maximize the Q-function with
respect to θ. Thanks to the decomposition of the Q-function given by (6),
maximizing Q(θ; θk) with respect to θ is equivalent to maximizing Q1(θ1; θk)
with respect to θ1 and Q2(θ2; θk) with respect to θ2. The update equations can
be obtained easily and are given by:

β̂j =
1

s

s∑
i=1

Eθk(φi,j | yi), (7)

σ̂2
j =

1

s

s∑
i=1

Eθk(φ2i,j | yi)− β̂2
j , (8)

Σ̂b,p =
1

s+
∑s
i=1 ni

s∑
i=1

ni∑
n=0

Eθk
[
(yi,n − logGn(φi)) (yi,n − logGn(φi))

t | yi
]
,

(9)
where yi,0 is restricted to blade and petiole only.

From these equations, we can see that at each iteration of the EM-algorithm,
the problem of maximization is reduced to the problem of computing condi-
tional expectations given yi, under the current parameter value θk.



Approximation of the E-step Due to the nonlinearity of the model the
E-step given by (6) cannot be performed explicitly. However, many stochastic
variants of the EM algorithm are available to approximate a non-explicit E-
step. In this paper, as a first implementation we tried a Monte Carlo EM
(MCEM, [14]) algorithm, where the Q-function is approximated via Monte
Carlo simulations. In particular, hidden data are drawn via an MCMC (Markov
Chain Monte Carlo) algorithm like Metropolis-Hastings or Gibbs Sampling. At
iteration k of the algorithm, we simulated for each individual plant a Markov
Chain of size M , with stationary distribution our target distribution f(φi |
yi; θ

k).

3 Results

The methodology was first applied to a set of 50 simulated plants. Thanks
to a preliminary sensitivity analysis, the two most influential parameters were
shown to be µ and spr. Consequently, as a first approach, random effects
were only used for these parameters. The other parameters were assumed
to be known. Concerning spr, we assumed that log spr ∼ N (β2, σ

2
2). Finally,

θ1 = (β1, β2, σ1, σ2) and θ2 = (σ2
b , σ

2
p, ρ), where the latter vector corresponds to

the variance parameters and the correlation coefficient of the covariance matrix
Σb,p (see, (4)). In the tests that we present, the parameter σ2

r was fixed.
In Table 1 we present the parameter estimation results that we obtained.

We used two different initializations and three independent runs for each one
of them. At each iteration, a Markov chain of size 1000 was generated for each
plant. The proposal distribution was set equal to the prior distribution of the
hidden data under the current parameter value. For these tests, the algorithm
stopped manually after 60 iterations. Table 1 gives as well the values that we
used to generate the data, and the MLE if the data were fully observed. Two
different sets of initial values were tested: for the first three runs (columns 4 to
6), the initial values were 4.5 for µ and -4 for spr, and for the last three runs
(columns 7 to 9) the initial values were 5.5 for µ and -2 for spr.

Parameter True value Fully-observed Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

β1 5.5 5.514 5.512 5.508 5.507 5.510 5.509 5.510
β2 -3 -2.979 -2.980 -2.980 -2.980 -2.980 -2.980 -2.980
σ1 0.1 0.101 0.068 0.070 0.074 0.067 0.070 0.066
σ2 0.1 0.089 0.083 0.084 0.085 0.084 0.083 0.085
σ2
b 0.1 0.100 0.1135 0.114 0.114 0.114 0.113 0.113

σ2
p 0.1 0.100 0.115 0.115 0.115 0.115 0.115 0.115
ρ 0 -0.004 0.009 0.010 0.010 0.010 0.009 0.009

Table 1. Parameter estimation results.

Figure 1 shows that the convergence was reached quickly for β1 and β2, but
more iterations are needed for the variance of the random effects, especially for
σ1. The results from different initializations and independent runs were also
very encouraging (Table 1), even for the estimations of observation noises.
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Fig. 1. Parameter estimation for 60 iterations of the Metropolis-Hastings algorithm:
(top) estimation of β1 and β2, (bottom) estimation of σ1 and σ2. The solid lines
represent the values used to generate the data and the dotted line correspond to the
maximum likelihood estimators if the data were fully observed.

4 Discussion

The methodology that we presented in this paper to account for inter-individual
variability in plant populations is suitable for a large number of crop plants.
Results from simulated data were encouraging, and we are currently working
with real data and with more random parameters. Different MCMC versions of
the current MCEM algorithm will be compared in the sequel and the latter will
be compared with a Stochastic Approximation EM (SAEM, see [10]) algorithm.
An automated MCEM algorithm can easily be implemented (see, [12]). The
latter paper presents a parameter estimation method by including modeling
errors in biomass production for a single plant. As a future step, we will
extend our population based approach to account for modeling errors as well.



Finally, it is noteworthy that with the proposed methodology, approximated
confidence intervals can be easily obtained as a by-product of the algorithm.
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11.S. Trevezas, and P.-H. Cournède. A sequential Monte Carlo approach for MLE
in a plant growth model. Journal of Agricultural, Biological, and Environmental
Statistics, (to appear), 2013.

12.S. Trevezas, S. Malefaki and P.-H. Cournède. Simulation techniques for parameter
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