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ABSTRACT

We propose a variational method for decomposing an image
into a geometry and a texture component. Our model involves
the sum of two functions promoting separately properties of
each component, and of a coupling function modeling the in-
teraction between the components. None of these functions
is required to be differentiable, which significantly broadens
the range of decompositions achievable through variational
approaches. The convergence of the proposed proximal algo-
rithm is guaranteed under suitable assumptions. Numerical
examples are provided that show an application of the algo-
rithm to image decomposition and restoration in the presence
of Poisson noise.

Index Terms— Convex optimization, denoising, image
decomposition, image restoration, proximity operator.

1. INTRODUCTION

An important problem in image processing is to decompose
an image in two elementary structures. In the context of de-
noising, this decomposition was achieved in [12] with a to-
tal variation potential. In [10], a different potential wasused
to better penalize strongly oscillating components. The re-
sulting variational problem is not straightforward. Numerical
methods were proposed in [3, 13] and experiments were per-
formed for image denoising and analysis problems based on
a geometry-texture decomposition. Another interesting prob-
lem is to extract meaningful components from a blurred and
noise-corrupted image. In the presence of additive Gaussian
noise, a decomposition into geometry and texture components
is proposed in [2]. The method developed in the present pa-
per, will make it possible to consider general (not necessar-
ily additive and Gaussian) noise models and arbitrary linear
degradation operator. In addition, it lends itself to the incor-
poration of various additional convex constraints and parallel
computing.

In mathematical terms, our problem is to decompose an
imagex ∈ R

N into the sum of a geometry and a texture com-
ponent, say

x = R1(x1) +R2(x2), (1)
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whereR1 : R
N1 7→ R

N andR2 : R
N2 7→ R

N are known op-
erators. The vectorsx1 ∈ R

N1 andx2 ∈ R
N2 to be estimated

parameterize, respectively, the geometry and the texture com-
ponents. They will be obtained via the following variational
formulation, which involves potentialsf1 andf2 promoting
the properties ofx1 andx2 separately, as well as a coupling
termϕ modeling their interaction.

Problem 1.1 Let f1 : R
N1 → ]−∞,+∞], f2 : R

N2 →
]−∞,+∞], andϕ : R

N1 × R
N2 → ]−∞,+∞] be proper

lower semicontinuous convex functions. The problem is to

minimize
x1∈RN1, x2∈RN2

f1(x1) + f2(x2) + ϕ(x1, x2). (2)

Instances of Problem 1.1 have already been studied in
[2, 3, 4, 5, 7, 9, 10, 13]. However, in each case, the coupling
functionϕ was differentiable, which excludes many impor-
tant problems. The objective of the present paper is to remove
this restriction and to propose a proximal splitting methodfor
solving (2).

In the next section, we provide some background on prox-
imity operators. In Section 3, we introduce the Parallel ProXi-
mal Algorithm (PPXA), which will be used to solve a decom-
posed version of Problem 1.1, more amenable to numerical
solution. Finally, in Section 4, we describe an applicationof
the proposed framework to image restoration and decomposi-
tion in the presence of Poisson noise.

2. PROXIMITY OPERATORS

Throughout this paper, we denote byRK the usualK-
dimensional Euclidean space and byI the identity matrix.
Γ0(R

K) denotes the class of lower semicontinuous con-
vex functionsf : R

K → ]−∞,+∞] which are proper in
the sense thatdom f =

{
y ∈ R

K
∣∣ f(y) < +∞

}
6= ∅.

Let f ∈ Γ0(R
K). For everyy ∈ R

K , the functionz 7→
f(z) + ‖y− z‖2/2 has a unique minimizer, which is denoted
by proxf z [11]. Thus, the proximity operator off is

proxf : y 7→ argmin
z∈RK

f(z) +
1

2
‖y − z‖2. (3)

LetC be a nonempty convex subset ofR
K . ThenιC denotes

the indicator function ofC (it takes on the value0 in C and



+∞ in R
K \ C), riC the relative interior ofC, and, ifC is

closed,PC = proxιC its projection operator. For a detailed
account of the theory of proximity operators, see [9] and the
pioneering work in [11]. Closed-form expressions of proxim-
ity operators can be found in [7, 8, 9, 11] and the references
therein.

The following fact will be used subsequently.

Lemma 2.1 Letχ > 0 and set

f : R
2 → R : (η1, η2) 7→ χ

√
|η1|2 + |η2|2. (4)

Then, for every(η1, η2) ∈ R
2,

proxf (η1, η2) =





(
1 −

χ√
|η1|2 + |η2|2

)
(η1, η2), if

√
|η1|2 + |η2|2 > χ;

(0, 0), otherwise.

3. DECOMPOSITION: PRODUCT SPACE PPXA

Problem 1.1 can be rewritten as

minimize
x1∈RN1, x2∈RN2

h(x1, x2) + ϕ(x1, x2), (5)

whereh : (x1, x2) 7→ f1(x1) + f2(x2). Sinceh is separa-
ble, proxh : (x1, x2) 7→ (proxf1 x1, proxf2 x2). Hence, if
the proximity operators off1 andf2 are easily computable,
so isproxh. In addition, if proxϕ were also easy to imple-
ment, then Douglas-Rachford splitting [8] could be used to
solve (5). However, in many cases, the proximity operator of
the coupling termϕ will not be explicit. Our strategy is to
derive an equivalent decomposed variational formulation by
introducing auxiliary variables and functions. This decom-
posed problem assumes the following form.

Problem 3.1 Let (hj)1≤j≤p be proper lower semicontinuous
convex functions fromR

K1 × · · · × R
Km to ]−∞,+∞] sat-

isfying
⋂p
j=1 ri domhj 6= ∅. The problem is to

minimize
y1∈RK1 ,..., ym∈RKm

p∑

j=1

hj(y1, . . . , ym), (6)

under the assumption that a solution exists.

In practice, the objective is to choose functions(hj)1≤j≤p
for which the proximity operators(proxhj

)1≤j≤p are easily
implementable. In turn, this allows us to solve Problem 3.1
by applying [7, Theorem 3.4] in the Euclidean spaceR

K1 ×
· · · × R

Km as follows.

Theorem 3.1 Let (y1,n)n∈N, . . . , (ym,n)n∈N be the se-
quences generated by the following routine.

Initialization


Setγ ∈ ]0,+∞[ and take{ωj}1≤j≤p ⊂ ]0, 1]

such that
p∑

j=1

ωj = 1

For i = 1, . . . ,m

Forj = 1, . . . , p
⌊ si,j,0 ∈ R

Ki

yi,0 =

p∑

j=1

ωj si,j,0

Forn = 0, 1, . . .


Forj = 1, . . . , p
⌊ (qi,j,n)1≤i≤m = proxγhj/ωj

(si,j,n)1≤i≤m
For i = 1, . . . ,m

yi,n+1 =

p∑

j=1

ωj qi,j,n

Forj = 1, . . . , p
⌊ si,j,n+1 = si,j,n + 2yi,n+1 − yi,n − qi,j,n.

(7)

Then, for everyi ∈ {1, . . . ,m}, the sequence(yi,n)n∈N con-
verges to a pointyi ∈ R

Ki , and(y1, . . . , ym) is a solution to
Problem 3.1.

4. EXPERIMENTAL RESULTS

We illustrate the use of the proposed product space PPXA in
the context of a simple geometry-texture decomposition from
a degraded observation. In our scenario, the observed im-
agez ∈ R

N of Figure 2 (N = 512 × 512) is obtained by
blurring the original electron microscopy imagex ∈ R

N of
Figure 1 with a matrixT ∈ R

N×N , which models a uniform
blur of size5 × 5. Furthermore,x is contaminated by a Pois-
son noise with scaling parameterα = 0.6. We consider a
simple instance of (1) with a linear mixture model:N1 = N ,
R1 : x1 7→ x1, andR2 : x2 7→ F⊤x2, whereF⊤ ∈ R

N×N2

is a linear tight frame synthesis operator. In other words, the
information regarding the texture component pertains to the
coefficientsx2 of its decomposition in the frame. The tight-
ness condition implies that

F⊤F = ν I , for someν ∈ ]0,+∞[ . (8)

The original image is therefore decomposed asx = x1 +
F⊤x2. It is known a priori thatx ∈ C1 ∩ C2, whereC1 =
[0, 255]N models the constraint on the numerical range of the
pixels, and

C2 =

{
x ∈ R

N
∣∣ x̂ = (ηk)1≤k≤N ,

∑

k∈I

|ηk|
2 ≤ δ

}
(9)



models an energy bound in the frequency domain (x̂ denotes
the 2D Discrete Fourier Transform (DFT) of the imagex and
I corresponds to some set of discrete frequency indices). In
addition, to limit the total variation of the geometrical com-
ponent, we use the potentialx 7→ ψ(Hx, V x), with

ψ :
(
(ηk)1≤k≤N , (ζk)1≤k≤N

)
7→ χ

N∑

k=1

√
|ηk|2 + |ζk|2,

(10)
whereχ ∈ ]0,+∞[, and whereH ∈ R

N×N andV ∈ R
N×N

are matrix representations of the horizontal and vertical dis-
crete differentiations, respectively. Furthermore, to promote
the sparsity in the frame of the texture component of the im-
age, we introduce the potential

f2 : (ηk)1≤k≤N2
7→

N2∑

k=1

τk|ηk|, (11)

where{τk}1≤k≤N2
⊂ ]0,+∞[. Finally, as a data fidelity

term, we use the generalized Kullback-Leibler divergenceD,
which is well adapted to Poisson noise. Altogether, we arrive
at the variational problem

min
x1∈R

N, x2∈R
N2

x1+F
⊤x2∈C1

x1+F
⊤x2∈C2

ψ(Hx1, V x1)+f2(x2)+D(z, Tx1+TF
⊤x2),

(12)
which is a particular case of (2) withf1 : x 7→ ψ(Hx, V x)
and

ϕ : (x1, x2) 7→ D(z, Tx1 + TF⊤x2)+

ιC1
(x1 + F⊤x2) + ιC2

(x1 + F⊤x2). (13)

Sinceproxϕ andproxf1 are not easily computable, a strategy
is to decompose (12) into the equivalent problem

min
(y1,y2,y3,y4,y5,y6)

y3=y1+F
⊤y2

y3∈C1, y3∈C2

y4=Ty3
y5=Hy1, y6=V y1

ψ(y5, y6) + f2(y2) +D(z, y4), (14)

where we have changed the variables(x1, x2) into (y1, y2)
and introduced the auxiliary variables(y3, y4, y5, y6). Prob-
lem (14) is a particular case of (6) withm = 6, p = 3,
K1 = K3 = K4 = K5 = K6 = N ,K2 = N2, and





h1 : (y1, . . . , y6) 7→ f2(y2) + ιC1
(y3) +D(z, y4)

+ψ(y5, y6),

h2 : (y1, . . . , y6) 7→ ιC2
(y3),

h3 : (y1, . . . , y6) 7→ ι{0}(y1 + F⊤y2 − y3)

+ι{0}(Ty3 − y4) + ι{0}(Hy1 − y5)

+ι{0}(V y1 − y6).
(15)

In [1], a similar reformulation is considered in the case when
m = 2, and solved by an alternating direction method of mul-
tipliers.

The proximity operators associated withf2 andD(z, ·)
can be obtained from [9]. On the other hand,proxψ is derived
from Lemma 2.1 and, as seen earlier,proxιC1

= PC1
and

proxιC2

= PC2
. Furthermore, if we set

L =

2

6

6

4

I F⊤
− I 0 0 0

0 0 T − I 0 0

H 0 0 0 − I 0

V 0 0 0 0 − I

3

7

7

5

, (16)

we deduce from (15) thath3 = ι{0}◦L. Lastly, since the ma-
tricesT , H , andV are associated with periodic convolution
operators, they are diagonalized by the DFT. Hence, using
(8), proxh3

can be deduced from the well-known expression
of the projection onto the kernel ofL.

The convergence of the employed algorithm is guaranteed
under the assumptions of Problem 3.1. Sinceint(C1 ∩C2) 6=
∅, these assumptions are satisfied due to the fact thatT mod-
els a uniform blur and thus has positive entries and each of its
lines is nonzero.

Figure 3 shows the results of the decomposition into ge-
ometry and texture components. The parameterχ of (10) and
the parameters(τk)1≤k≤N2

of (11) are selected so as to max-
imize the signal-to-noise ratio (SNR). The matrixF is a tight
frame version of the dual-tree transform proposed in [6] us-
ing symlets of length 6 over 3 resolution levels (ν = 2 and
N2 = 2N ). The same discrete gradient matricesH andV as
in [7, Section 4.2] are used.

Fig. 1. Original imagex.
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