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We propose a variational method for decomposing an image into a geometry and a texture component. Our model involves the sum of two functions promoting separately properties of each component, and of a coupling function modeling the interaction between the components. None of these functions is required to be differentiable, which significantly broadens the range of decompositions achievable through variational approaches. The convergence of the proposed proximal algorithm is guaranteed under suitable assumptions. Numerical examples are provided that show an application of the algorithm to image decomposition and restoration in the presence of Poisson noise.

INTRODUCTION

An important problem in image processing is to decompose an image in two elementary structures. In the context of denoising, this decomposition was achieved in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] with a total variation potential. In [START_REF] Meyer | Oscillating patterns in image processing and in some nonlinear evolution equations[END_REF], a different potential was used to better penalize strongly oscillating components. The resulting variational problem is not straightforward. Numerical methods were proposed in [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Vese | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF] and experiments were performed for image denoising and analysis problems based on a geometry-texture decomposition. Another interesting problem is to extract meaningful components from a blurred and noise-corrupted image. In the presence of additive Gaussian noise, a decomposition into geometry and texture components is proposed in [START_REF] Anthoine | Deux méthodes de déconvolution et séparation simultanées -Application à la Fig. 2. Degraded image z: SNR = 15.7 dB -SSIM = 0.55. reconstruction des amas de galaxies[END_REF]. The method developed in the present paper, will make it possible to consider general (not necessarily additive and Gaussian) noise models and arbitrary linear degradation operator. In addition, it lends itself to the incorporation of various additional convex constraints and parallel computing.

In mathematical terms, our problem is to decompose an image x ∈ R N into the sum of a geometry and a texture component, say

x = R 1 (x 1 ) + R 2 (x 2 ), (1) 
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where R 1 : R N1 → R N and R 2 : R N2 → R N are known operators. The vectors x 1 ∈ R N1 and x 2 ∈ R N2 to be estimated parameterize, respectively, the geometry and the texture components. They will be obtained via the following variational formulation, which involves potentials f 1 and f 2 promoting the properties of x 1 and x 2 separately, as well as a coupling term ϕ modeling their interaction.

Problem 1.1 Let f 1 : R N1 → ]-∞, +∞], f 2 : R N2 → ]-∞, +∞],
and ϕ : R N1 × R N2 → ]-∞, +∞] be proper lower semicontinuous convex functions. The problem is to

minimize x1∈R N 1, x2∈R N 2 f 1 (x 1 ) + f 2 (x 2 ) + ϕ(x 1 , x 2 ). (2) 
Instances of Problem 1.1 have already been studied in [START_REF] Anthoine | Deux méthodes de déconvolution et séparation simultanées -Application à la Fig. 2. Degraded image z: SNR = 15.7 dB -SSIM = 0.55. reconstruction des amas de galaxies[END_REF][START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Aujol | Structuretexture image decomposition -Modeling, algorithms, and parameter selection[END_REF][START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF][START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Meyer | Oscillating patterns in image processing and in some nonlinear evolution equations[END_REF][START_REF] Vese | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF]. However, in each case, the coupling function ϕ was differentiable, which excludes many important problems. The objective of the present paper is to remove this restriction and to propose a proximal splitting method for solving [START_REF] Anthoine | Deux méthodes de déconvolution et séparation simultanées -Application à la Fig. 2. Degraded image z: SNR = 15.7 dB -SSIM = 0.55. reconstruction des amas de galaxies[END_REF].

In the next section, we provide some background on proximity operators. In Section 3, we introduce the Parallel ProXimal Algorithm (PPXA), which will be used to solve a decomposed version of Problem 1.1, more amenable to numerical solution. Finally, in Section 4, we describe an application of the proposed framework to image restoration and decomposition in the presence of Poisson noise.

PROXIMITY OPERATORS

Throughout this paper, we denote by R K the usual Kdimensional Euclidean space and by I the identity matrix. Γ 0 (R K ) denotes the class of lower semicontinuous convex functions f :

R K → ]-∞, +∞] which are proper in the sense that dom f = y ∈ R K f (y) < +∞ = ∅. Let f ∈ Γ 0 (R K ). For every y ∈ R K , the function z → f (z) + y -z 2 /
2 has a unique minimizer, which is denoted by prox f z [START_REF] Moreau | Proximité et dualité dans un espace Hilbertien[END_REF]. Thus, the proximity operator of f is

prox f : y → argmin z∈R K f (z) + 1 2 y -z 2 . (3) 
Let C be a nonempty convex subset of R K . Then ι C denotes the indicator function of C (it takes on the value 0 in C and +∞ in R K \ C), ri C the relative interior of C, and, if C is closed, P C = prox ιC its projection operator. For a detailed account of the theory of proximity operators, see [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] and the pioneering work in [START_REF] Moreau | Proximité et dualité dans un espace Hilbertien[END_REF]. Closed-form expressions of proximity operators can be found in [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Moreau | Proximité et dualité dans un espace Hilbertien[END_REF] and the references therein.

The following fact will be used subsequently.

Lemma 2.1 Let χ > 0 and set

f : R 2 → R : (η 1 , η 2 ) → χ |η 1 | 2 + |η 2 | 2 . ( 4 
)
Then, for every

(η 1 , η 2 ) ∈ R 2 , prox f (η 1 , η 2 ) =      1 - χ |η 1 | 2 + |η 2 | 2 (η 1 , η 2 ), if |η 1 | 2 + |η 2 | 2 > χ;
(0, 0), otherwise.

DECOMPOSITION: PRODUCT SPACE PPXA

Problem 1.1 can be rewritten as

minimize x1∈R N 1, x2∈R N 2 h(x 1 , x 2 ) + ϕ(x 1 , x 2 ), (5) 
where

h : (x 1 , x 2 ) → f 1 (x 1 ) + f 2 (x 2 ). Since h is separa- ble, prox h : (x 1 , x 2 ) → (prox f1 x 1 , prox f2 x 2 )
. Hence, if the proximity operators of f 1 and f 2 are easily computable, so is prox h . In addition, if prox ϕ were also easy to implement, then Douglas-Rachford splitting [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] could be used to solve [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF]. However, in many cases, the proximity operator of the coupling term ϕ will not be explicit. Our strategy is to derive an equivalent decomposed variational formulation by introducing auxiliary variables and functions. This decomposed problem assumes the following form.

Problem 3.1 Let (h j ) 1≤j≤p be proper lower semicontinuous convex functions from

R K1 × • • • × R Km to ]-∞, +∞] sat- isfying p j=1 ri dom h j = ∅. The problem is to minimize y1∈R K 1 ,..., ym∈R Km p j=1 h j (y 1 , . . . , y m ), (6) 
under the assumption that a solution exists.

In practice, the objective is to choose functions (h j ) 1≤j≤p for which the proximity operators (prox hj ) 1≤j≤p are easily implementable. In turn, this allows us to solve Problem 3.1 by applying [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF]Theorem 3.4] in the Euclidean space R K1 × • • • × R Km as follows.

Theorem 3.1 Let (y 1,n ) n∈N , . . . , (y m,n ) n∈N be the sequences generated by the following routine.

Initialization                 Set γ ∈ ]0, +∞[ and take {ω j } 1≤j≤p ⊂ ]0, 1] such that p j=1 ω j = 1 For i = 1, . . . , m        For j = 1, . . . , p ⌊ s i,j,0 ∈ R Ki y i,0 = p j=1 ω j s i,j,0 For n = 0, 1, . . .              For j = 1, . . . , p ⌊ (q i,j,n ) 1≤i≤m = prox γhj /ωj (s i,j,n ) 1≤i≤m For i = 1, . . . , m        y i,n+1 = p j=1 ω j q i,j,n
For j = 1, . . . , p ⌊ s i,j,n+1 = s i,j,n + 2y i,n+1y i,nq i,j,n .

Then, for every i ∈ {1, . . . , m}, the sequence (y i,n ) n∈N converges to a point y i ∈ R Ki , and (y 1 , . . . , y m ) is a solution to Problem 3.1.

EXPERIMENTAL RESULTS

We illustrate the use of the proposed product space PPXA in the context of a simple geometry-texture decomposition from a degraded observation. In our scenario, the observed image z ∈ R N of Figure 2 (N = 512 × 512) is obtained by blurring the original electron microscopy image x ∈ R N of Figure 1 with a matrix T ∈ R N ×N , which models a uniform blur of size 5 × 5. Furthermore, x is contaminated by a Poisson noise with scaling parameter α = 0.6. We consider a simple instance of (1) with a linear mixture model:

N 1 = N , R 1 : x 1 → x 1 , and R 2 : x 2 → F ⊤ x 2 , where F ⊤ ∈ R N ×N2
is a linear tight frame synthesis operator. In other words, the information regarding the texture component pertains to the coefficients x 2 of its decomposition in the frame. The tightness condition implies that

F ⊤ F = ν I , for some ν ∈ ]0, +∞[ . ( 8 
)
The original image is therefore decomposed as

x = x 1 + F ⊤ x 2 . It is known a priori that x ∈ C 1 ∩ C 2 ,
where C 1 = [0, 255] N models the constraint on the numerical range of the pixels, and

C 2 = x ∈ R N x = (η k ) 1≤k≤N , k∈I |η k | 2 ≤ δ (9) 
models an energy bound in the frequency domain ( x denotes the 2D Discrete Fourier Transform (DFT) of the image x and I corresponds to some set of discrete frequency indices). In addition, to limit the total variation of the geometrical component, we use the potential x → ψ(Hx, V x), with

ψ : (η k ) 1≤k≤N , (ζ k ) 1≤k≤N → χ N k=1 |η k | 2 + |ζ k | 2 , (10) 
where χ ∈ ]0, +∞[, and where H ∈ R N ×N and V ∈ R N ×N are matrix representations of the horizontal and vertical discrete differentiations, respectively. Furthermore, to promote the sparsity in the frame of the texture component of the image, we introduce the potential

f 2 : (η k ) 1≤k≤N2 → N2 k=1 τ k |η k |, (11) 
where {τ k } 1≤k≤N2 ⊂ ]0, +∞[. Finally, as a data fidelity term, we use the generalized Kullback-Leibler divergence D, which is well adapted to Poisson noise. Altogether, we arrive at the variational problem

min x1∈R N , x2∈R N 2 x1+F ⊤ x2∈C1 x1+F ⊤ x2∈C2 ψ(Hx 1 , V x 1 )+f 2 (x 2 )+D(z, T x 1 +T F ⊤ x 2 ), (12) 
which is a particular case of (2) with f 1 : x → ψ(Hx, V x) and

ϕ : (x 1 , x 2 ) → D(z, T x 1 + T F ⊤ x 2 )+ ι C1 (x 1 + F ⊤ x 2 ) + ι C2 (x 1 + F ⊤ x 2 ). ( 13 
)
Since prox ϕ and prox f1 are not easily computable, a strategy is to decompose [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] into the equivalent problem min (y1,y2,y3,y4,y5,y6) y3=y1+F ⊤ y2 y3∈C1, y3∈C2 y4=T y3 y5=Hy1, y6=V y1 ψ(y 5 , y 6 ) + f 2 (y 2 ) + D(z, y 4 ),

where we have changed the variables (x 1 , x 2 ) into (y 1 , y 2 ) and introduced the auxiliary variables (y 3 , y 4 , y 5 , y 6 ). Problem ( 14) is a particular case of ( 6) with m = 6, p = 3, 

K 1 = K 3 = K 4 = K 5 = K 6 = N , K 2 = N 2 , and                   
In [START_REF] Afonso | Fast image recovery using variable splitting and constrained optimization[END_REF], a similar reformulation is considered in the case when m = 2, and solved by an alternating direction method of multipliers.

The proximity operators associated with f 2 and D(z, •) can be obtained from [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]. On the other hand, prox ψ is derived from Lemma 2.1 and, as seen earlier, prox ιC 1 = P C1 and prox ιC 2 = P C2 . Furthermore, if we set

L = 2 6 6 4 I F ⊤ -I 0 0 0 0 0 T -I 0 0 H 0 0 0 -I 0 V 0 0 0 0 -I 3 7 7 5 , (16) 
we deduce from (15) that h 3 = ι {0} •L. Lastly, since the matrices T , H, and V are associated with periodic convolution operators, they are diagonalized by the DFT. Hence, using [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], prox h3 can be deduced from the well-known expression of the projection onto the kernel of L.

The convergence of the employed algorithm is guaranteed under the assumptions of Problem 3.1. Since int(C 1 ∩ C 2 ) = ∅, these assumptions are satisfied due to the fact that T models a uniform blur and thus has positive entries and each of its lines is nonzero.

Figure 3 shows the results of the decomposition into geometry and texture components. The parameter χ of (10) and the parameters (τ k ) 1≤k≤N2 of ( 11) are selected so as to maximize the signal-to-noise ratio (SNR). The matrix F is a tight frame version of the dual-tree transform proposed in [START_REF] Chaux | Image analysis using a dual-tree M -band wavelet transform[END_REF] 

h 1 :

 1 (y 1 , . . . , y 6 ) → f 2 (y 2 ) + ι C1 (y 3 ) + D(z, y 4 ) +ψ(y 5 , y 6 ), h 2 : (y 1 , . . . , y 6 ) → ι C2 (y 3 ), h 3 : (y 1 , . . . , y 6 ) → ι {0} (y 1 + F ⊤ y 2y 3 ) +ι {0} (T y 3y 4 ) + ι {0} (Hy 1y 5 ) +ι {0} (V y 1y 6 ).

  using symlets of length 6 over 3 resolution levels (ν = 2 and N 2 = 2N ). The same discrete gradient matrices H and V as in [7, Section 4.2] are used.
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