
HAL Id: hal-00826119
https://hal.science/hal-00826119

Submitted on 28 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving inverse problems with overcomplete transforms
and convex optimization techniques

Lotfi Chaari, Nelly Pustelnik, Caroline Chaux, Jean-Christophe Pesquet

To cite this version:
Lotfi Chaari, Nelly Pustelnik, Caroline Chaux, Jean-Christophe Pesquet. Solving inverse problems
with overcomplete transforms and convex optimization techniques. SPIE, Aug 2009, San Diego, Cal-
ifornia, United States. �hal-00826119�

https://hal.science/hal-00826119
https://hal.archives-ouvertes.fr


Solving inverse problems with overcomplete transforms and

convex optimization techniques
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ABSTRACT

Many algorithms have been proposed during the last decade in order to deal with inverse problems. Of par-
ticular interest are convex optimization approaches that consist of minimizing a criteria generally composed
of two terms: a data fidelity (linked to noise) term and a prior (regularization) term. As image properties
are often easier to extract in a transform domain, frame representations may be fruitful. Potential functions
are then chosen as priors to fit as well as possible empirical coefficient distributions. As a consequence,
the minimization problem can be considered from two viewpoints : a minimization along the coefficients
or along the image pixels directly. Some recently proposed iterative optimization algorithms can be easily
implemented when the frame representation reduces to an orthonormal basis. Furthermore, it can be noticed
that in this particular case, it is equivalent to minimize the criterion in the transform domain or in the image
domain. However, much attention should be paid when an overcomplete representation is considered. In
that case, there is no longer equivalence between coefficient and image domain minimization. This point
will be developed throughout this paper. Moreover, we will discuss how the choice of the transform may
influence parameters and operators necessary to implement algorithms.

Keywords: inverse problems, wavelets, redundant transforms, convex optimization, proximal operator,
restoration

1. INTRODUCTION

Because of sensor imperfection and acquisition mode, observed data are often noisy and degraded by a linear
operator. This operator and noise properties may actually depend on the considered application. For in-
stance, in optical satellite imaging, the linear operator models a blur and the noise can be assumed Gaussian.
In the biomedical area, the ill-conditioned linear operator in parallel Magnetic Resonance Imaging (pMRI)
represents a sensitivity matrix and the noise is Gaussian, whereas in Positron Emission Tomography (PET),
the acquisition process is modelled by a large-size projection matrix and the noise is Poisson distributed.

To sove such inverse problems, some methods, like the Wiener filter, directly process the image. How-
ever, since the 90’s, wavelet transforms1 have been often used in restoration methods.2–4 Nevertheless, the
classical (critically decimated) discrete wavelet decomposition suffers from some drawbacks like a lack of
shift invariance and poor orientation properties. To circumvent these difficulties, various overcomplete frame
representations have been introduced. The undecimated wavelet transform has been proposed having the
desired shift-invariance properties but at a price of a high redundancy. More recently, geometrical trans-
forms have been proposed such as curvelets,5 dual-trees6 or grouplets,7 which are often able to achieve the
shift-invariance property and to perform directional analyses.

Among all the existing methods which have been developed to solve inverse problems, we are particularly
interested in convex optimization techniques which have gained much popularity during the last past years.
More precisely, these approaches consist of minimizing a criterion, often constituted of two terms, that can
be interpreted from a Bayesian perspective : a term (named the fidelity term) is linked to the noise nature
and the second one (named regularization term) is linked to some a priori one can have concerning the target



image. A large choice of a priori functions can be envisaged. However, it can be convenient to define these
functions in the wavelet transform domain and then, to choose them so as to model the wavelet transform
coefficient distribution. The a priori term can be chosen equal to an ℓ1 norm (promoting sparsity) for example
or a generalized Gaussian prior can be employed.

At this point, two strategies can be envisaged: the criterion can be minimized with respect to the
image (Analysis Approach) or to the wavelet coefficients (Synthesis Approach). Some works comparing the
two approaches have been recently published. Elad et al.8 considered a general inverse problem involving
Gaussian noise and showed that the two approaches are non longer equivalent when overcomplete transforms
are used. More recently, a study was conducted in9 when the criterion to minimize is differentiable. The
proposed restoration method is based on Nesterov10 algorithm.

The two approaches are not disconnected. Depending on the considered problem, it can be easier to
express the minimization in the coefficient space or in the pixel space. Duality properties relate the two
minimization problems (see11 where a denoising example involving Gaussian noise is investigated). A large
panel of approaches are available regarding the Synthesis Approach. Of particular interest are the proximal
algorithms like the forward-backward algorithm12 or the Parallel PRoximal Algorithm (PPRA).13 While the
first one requires to compute a gradient and a proximity operator,14 the second one requires to compute the
proximity operators of J (possibly greater than 2) convex functions so to minimize their sum.

In such proximal algorithms, some parameters play a prominent role in the restoration process. For
example, the step-size of the forward-backward algorithm must be carefully chosen in order to guarantee a
good convergence behaviour. This may require the computation of the upper frame constant of the overcom-
plete transform, which is not always known. Furthermore, for the considered algorithms the computation of
some proximity operators are needed. However, when frames are involved, the computation of the proximity
operator of the composition of the frame operator and some convex function has to be performed, which
is not always obvious. The aim of the paper is to describe general convex optimization techniques to solve
inverse problem whatever the analysis or synthesis approach is chosen.

The organization of the paper is as follows: Section 2 presents the context of the study. The differences
between the analysis and synthesis approaches are emphasized. In Section 3, algorithmic issues are discussed,
which are illustrated in Section 4. A conclusion is given in Section 5

2. PROBLEM FORMULATION

Generally speaking, an inverse problem consists of recovering some unknown signal/image y ∈ R
L from its

degraded observation z ∈ R
M through a linear operator H : RL −→ R

M . When an additive noise n ∈ R
M

is considered, a general formulation of the observed model is the following:

z = Hy + n. (1)

An example of real world inverse problems with zero-mean Gaussian additive noise is image reconstruction in
parallel Magnetic Resonance Imaging (pMRI). However, other non-additive noise models may be encountered
in applications like Poisson noise in Positron Emission Tomography (PET) or confocal microscopy, Gamma
distributed noise in Synthesis Aperture Radar (SAR),. . . . Note that for denoising problems, the operator H
reduces to the identity one.
The inverse problem in (1) can be solved using conventional estimators by minimizing some distance d
between the solution and the observation. In this case, the estimation procedure relies on the optimization
of the following optimality criterion:

min
y

d(Hy, z). (2)

When the considered distance is quadratic, which means that the observation noise is Gaussian, the Least
Squares (LS) estimator is often used in the literature.
When M ≥ L, the problem is overdetermined and well-posed, unless H is ill-conditioned. However, when
M < L, the problem is underdetermined with an infinity of solutions that may match the observation model,
and hence it is ill-posed. When the problem is ill-posed, one usually resorts to regularization15 techniques



to stabilize the solution. In this context, a regularization function r is introduced bringing some prior
information about the target solution. This regularization function may be designed in order to emphasize
some features of the signal under investigation like sparsity or some local smoothness properties.
Moreover, when designing the regularization function, it has been found in many application fields that using
frame representations let one have better results. The next section will give a brief overview of the frame
concept.

2.1 The frame concept

Let K be an integer greater or equal to L. A family of vectors (ek)1≤k≤K in the finite-dimensional space RL

is a frame when there exists two constants µ and µ in ]0,+∞[ such that

(∀y ∈ R
L), µ‖y‖2 ≤

K∑

k=1

| 〈y | ek〉 |
2 ≤ µ‖y‖2. (3)

If µ = µ, (ek)1≤k≤K is called a tight frame. The bounded linear frame analysis operator F and its adjoint
synthesis frame operator F ∗ are defined as

F : RL → R
K (4)

y 7→ (〈y | ek〉)1≤k≤K ,

F ∗ : RK → R
L (5)

(ξk)1≤k≤K 7→

K∑

k=1

ξkek.

When F−1 = F ∗, (ek)k∈K is an orthonormal basis. A simple example of a redundant frame is the union of
µ ∈ N

∗ orthonormal bases. In this case, the frame is tight with µ = µ = µ and thus, we have F ∗ ◦ F = µId
where Id is the identity operator.

2.2 Regularization

Under a Bayesian framework, the design of the regularization function is performed through the choice of
a prior distribution that models the signal under investigation in a given space. Recovering the unknown
signal is then performed based on its posterior distribution.
To go through this Bayesian formulation in more details, we will first assume the following:

• the observed signal z is a realization of a random variable Z,

• the signal to recover y is a realization of a random variable Y .

Using a frame representation, and combining the likelihood and the appropriate prior distribution, the
posterior probability distribution may be easily derived. To do so, two competing approaches are possible
to deal with: Analysis Approach (AA) and Synthesis Approach (SA).

2.2.1 The Analysis Approach (AA)

If one adopts AA, the prior distribution will be designed based on a direct transformation of the signal to
recover. In this case, the posterior probability distribution of the unknown signal is given by:

p(y|z) ∝ p(z|y)p(y). (6)

Assuming appropriate exponential shape for the likelihood and the prior probability distribution, the latters
may be expressed as:

p(z|y) ∝ exp (−d(Hy, z)) (7)



and
p(y) ∝ exp (−r(Fy)) . (8)

The prior defines a proper probability density if, for example,

∀x ∈ R
L, r(x) ≥ ρ‖x‖p (9)

where ρ > 0 and p > 0. We have indeed
∫

RL

e−r(Fy)dy ≤

∫

RL

e−ρ‖Fy‖p

dy ≤

∫

RL

e−ρµp/2‖y‖p

dy < ∞. (10)

The posterior probability in (6) can then be reexpressed as:

p(y|z) ∝ exp (−d(Hy, z)− r(Fy)) . (11)

2.2.2 The Synthesis Approach (SA)

When dealing with SA, the prior distribution will be designed based on the representation of the signal in
a given dictionary such that y = F ∗x. In this case, an estimate x̂ of x will be first found before getting
ŷ = F ∗x̂. The posterior probability of the unknown signal is given by:

p(x|z) ∝ p(z|F ∗x)p(x). (12)

Assuming the same form for the likelihood and the following shape of the prior

p(x) ∝ exp (−r(x)) (13)

the posterior probability distribution in this case is given by:

p(x|z) ∝ exp (−d(HF ∗x, z)− r(x)) . (14)

2.3 Analysis/Synthesis estimation procedure

Based on the posterior probability distribution in each case, the Posterior Mean (PM) or the Maximum A
Posteriori (MAP) estimators may be used to recover an estimate ŷ of y. The PM can be used only when
easy integration of the posterior distribution can be performed. However, an approximation of it may be
obtained by Monte Carlo simulation methods. This approach will not be detailed in this paper, but more
details can be found in16 and references therein. Our attention will be focused on the MAP estimator since
it is somehow more familiar than the PM one.
If one wants to deal with the MAP estimator by maximizing the posterior distribution established with AA
and SA, the inherent optimization problems will be the following:

• AA:

ŷ = argmin
y

d(Hy, z) + r(Fy), (15)

• SA:

ŷ = F ∗ argmin
x

[d(HF ∗x, z) + r(x)]. (16)

We can notice that in both cases, the penalized criterion is based on two terms: data fidelity d(·, ·) and penalty
r(·). The regularization function r generally involves a regularization parameter which balances the solution
between the two terms. Philosophically, AA and SA are quite different. However, when the used frame isan
orthonormal basis, the two approaches are strictly equivalent. For more general frames, the equivalence is
not always ensured unless for special cases of frames or regularization function. In fact, Elad et al.8 proved



the equivalence between AA and SA when a redundant frame is used for the case of Gaussian noise and
quadratic regularization functions. However, for other noise classes or for more useful penalty terms like an
ℓ1 norm (Laplace prior), the two problems become quite different and may give different results. Moreover,
it has been reported in Elad et al. work8 that the AA may be more robust to estimation errors in each
solution component apart. Good results in image deconvolution, for instance, have been obtained using AA
in Weiss et al.17 and SA in Chaux et al.12 . For both approaches, efficient algorithms have been proposed
like the Nesterov algorithm10, 17, the forward-backward algorithm12, 18 , the Douglas-Rachford algorithm,19

the PPRA13 or Dykstra-like algorithms.20

3. OPTIMIZATION ISSUES

In this section we adopt the following notations:

• H and G denote separable Hilbert spaces with scalar product 〈., .〉 and norm ‖.‖ (for example H = R
L

or H = R
K).

• Γ0(H) (resp. Γ0(G)) is the class of lower semicontinuous convex functions from H (resp. G) to
]−∞,+∞] which are not identically equal to +∞.

By considering convex optimization algorithms12, 13, 19 to solve the minimization problems (15) and (16),
some hurdles can be encountered. For example, the convergence rate of the forward-backward algorithm12

depends on the upper frame constant µ. For other approaches such as the Douglas-Rachford algorithm19 or
the PPRA13 , the difficulty may stem from the computation of the proximity operator associated to ϕ ◦ T
where ϕ ∈ Γ0(H) and T : G → H is a bounded linear operator.
In what follows, we will first recall the definition of the proximity operator, as well as some convex opti-
mization schemes such as the forward-backward and PPRA. Computational solution of some problems when
dealing with such algorithms will also be detailed.

3.1 Some convex optimization tools and algorithms

3.1.1 Proximity operator definition

For a function φ ∈ Γ0(H), the proximity operator14, 21 is such that:

(∀ξ ∈ H), proxφ(ξ) = argmin
ζ∈H

φ(ζ) +
1

2
‖ζ − ξ‖

2
. (17)

In the recent literature12, 22 , many useful properties of the proximity operator were given. This tool allows us
to deal with a wide class of SA and AA minimization problems involving possibly non-differentiable criteria.
Two of these algorithms are detailled in the next subsections.

3.1.2 Forward-backward algorithm

Let us define the functions fA ∈ Γ0(R
L) and fS ∈ Γ0(R

K) from d (the data fidelity term) as follows:

(∀y ∈ R
L), fA(y) = d(Hy, z), (18)

and
(∀x ∈ R

K), fS(y) = d(HF ∗x, z). (19)

In the following, the functions d(·, z) and the regularization term r are assumed to be in Γ0(R
M ) and Γ0(R

K)
respectively. When one of these functions is differentiable with a Lipschitz gradient, the forward-backward
algorithm can be used. The forward-backward iterations are given by Algorithm 1 when d(·, z) is assumed
to be differentiable with α-Lipschitz gradient.

The weak convergence12, 22 of (yn)n∈N (resp. (xn)n∈N) to a solution to Problem (15) (resp. Problem
(16)) is secured when infn∈N λn > 0,

∑+∞
n=0 ‖an‖ < +∞ and

∑+∞
n=0 ‖bn‖ < +∞. The sequences (an)n∈N and

(bn)n∈N correspond to some error tolerances in the evaluation of the gradient and the proximity operator,
respectively.



Algorithm 1 The forward-backward algorithm

AA SA
1: Select y0 ∈ R

L

2: for n ∈ N do
3: Set γn ∈]0, 2/(α ‖H‖

2
)[ and λn ∈]0, 1]

4: yn+ 1

2

= yn − γn

(
∇fA(yn) + bn

)

5: pn = proxγnr◦F (yn+ 1

2

)

6: yn+1 = yn + λn

(
pn + an − yn

)

7: end for
8: After convergence, take ŷ = yn+1.

1: Select x0 ∈ R
K

2: for n ∈ N do
3: Set γn ∈]0, 2/(α ‖HF ∗‖

2
)[ and λn ∈]0, 1]

4: xn+ 1

2

= xn − γn

(
∇fS(xn) + bn

)

5: pn = proxγnr(xn+ 1

2

)

6: xn+1 = xn + λn

(
pn + an − xn

)

7: end for
8: After convergence, take ŷ = F ∗xn+1.

3.1.3 Parallel PRoximal Algorithm (PPRA)

The PPRA detailled in Algorithm 2 aims at minimizing a sum of J ∈ N functions (fj)1≤j≤J ∈ Γ0(H)J

non-necessarily differentiable, for which the proximity operator can be computed. The problem is thus the
following:

min
ξ∈H

J∑

j=1

fj(ξ). (20)

Algorithm 2 Parallel PRoximal Algorithm (PPRA)

1: Let γ ∈ ]0,+∞[

2: ∀j ∈ {1, . . . , J}, set (ωj)1≤j≤J ∈]0, 1]J such that
∑J

j=1 ωj = 1.

3: ∀j ∈ {1, . . . , J}, set (uj,0)1≤j≤J ∈ HJ and ξ0 =
∑J

j=1 ωjuj,0.
4: for n ∈ N do
5: for j = 1, . . . , J do
6: pj,n = proxγ/ωjfjuj,n + aj,n
7: end for
8: pn =

∑J
j=1 ωjpj,n

9: λn ∈ ]0, 2[
10: for j = 1, . . . , J do
11: uj,n+1 = uj,n + λn (2 pn − ξn − pj,n)
12: end for
13: ξn+1 = ξn + λn(pn − ξn)
14: end for

The sequence (ξn)n∈N defined by Algorithm 2 converges weakly to a solution to Problem (20) under the
following assumption.

Assumption 3.1

(i) lim‖ξ‖→+∞ f1(ξ) + . . .+ fJ(ξ) = +∞.

(ii) H is finite-dimensional and ∩J
j=1rint dom fj 6= ∅.∗

(iii)
∑

n∈N
λn(2− λn) = +∞.

(iv) (∀j ∈ {1, . . . , J})
∑

n∈N
λn‖aj,n‖ < +∞.

∗The relative interior of a set S of H is designated by rintS and the domain of a function f : H →]−∞; +∞] is
dom f = {ξ ∈ H|f(ξ) < +∞}.



The sequence (aj,n)n∈N in H introduced in Algorithm 2 corresponds to possible errors (numerical errors for
instance) in the computation of the proximity operators, which shows that convergence is ensured in spite
of these errors.

The AA and SA criteria can be minimized by considering Algorithm 2. A special case when J = 2 is to
take f1 = fS and f2 = r for SA and f1 = fA and f2 = r ◦ F for AA.

3.2 Proximity operator and frame representation

In this section, we will focus on the computation of the proximity operator associated with ϕ ◦ T where
ϕ ∈ Γ0(G) and T : H → G is a bounded linear operator. To do so, three methods are described: explicit form
computation, splitting approach and iterative approach.

3.2.1 Explicit form

For some specific operators T , proxϕ◦T can be easily calculated. A helpful property introduced by Combettes
and Pesquet19 states that:

Proposition 3.2 Let G be a real Hilbert space, let ϕ ∈ Γ0(G), and let T : H → G be a bounded linear

operator. Suppose that the composition of T and T ∗ satisfies T ◦ T ∗ = χId, for some χ ∈]0,+∞[. Then

ϕ ◦ T ∈ Γ0(H) and

proxϕ◦T = Id +
T ∗

χ
◦ (proxχϕ − Id) ◦ T. (21)

When a denoising problem (H = Id) is considered with SA using the PPRA, one of the proximity
operators to compute is proxd(.,z)◦F∗ . The latter can be calculated in the restrictive framework of a tight
frame (F ∗ ◦ F = µId) by invoking Proposition (3.2) with T = F ∗ and χ = µ.

3.2.2 Splitting approach

In the case when the function ϕ ∈ Γ0(R
N ) is separable, which means that

(∀ξ = (ξ(n))1≤n≤N ), ϕ(ξ) =

N∑

n=1

ϕn(ξ
(n)), (22)

the splitting approach consists of decomposing the operator T in operators (Ti)1≤i≤I such that Ti◦T
∗
i = χiId.

We subsequently assume that (Ii)1≤i≤I is a partition of {1, . . . , N} in nonempty sets. For every i ∈ {1, . . . , I},
let Ni be the number of elements in Ii and let Υi : RNi → ]0,+∞[ : (ξ(n))n∈Ii 7→

∑
n∈Ii

ϕn(ξ
(n)). Assume

that ϕ ◦ T =
∑I

i=1 Υi ◦ Ti where Ti is the linear operator from G to R
Ni associated with the matrix



t⊤n1

...
t⊤nNi




with Ii = {n1, . . . , nNi}. The following assumption plays a prominent role in the splitting approach:

Assumption 3.3 For all i ∈ {1, . . . , I}, (tn)n∈Ii is a family of orthogonal having the same norm χ
1/2
i where

χi > 0.

Consider AA when the frame representation is associated with a union of I = µ orthogonal bases. where the
regularization function r is separable. The minimization problem (15) can be rewritten as

ŷ = argmin
y

d(Hy, z) +

µ∑

i=1

ri(Fiy). (23)

where, for every i ∈ {1, . . . , I}, F ∗
i ◦ Fi = Id and ri ∈ Γ0(R

K/I). By considering this form of Problem (15),
we are able to compute the proximity operators associated with each proxri◦Fi

by (21). Algorithm 2 can
thus be applied to find a solution.



3.2.3 Iterative approach

Consider now the duality principle23 to compute proxr◦F (y) (∀y ∈ R
L) for a frame which is non necessarily

tight. By using the definition of the proximity operator given in (17), the primal problem consists of finding

min
p∈RL

1

2
‖y − p‖2 + r(Fp) (24)

and the associated dual problem is then

min
v∈RK

1

2
‖y − F ∗v‖2 + r∗(v) (25)

where r∗ ∈ Γ0(R
K) represents the conjugate of r. This formulation is a particular case of the criterion

proposed by Combettes et al.11 and can be solved by using the Splitting Dual-Primal algorithm11 . In
Algorithm 3, under the assumption than

∑
n∈N

‖an‖ ≤ +∞ and
∑

n∈N
‖bn‖ ≤ +∞, the sequence (vn)n∈N

converges to a solution v of the Dual problem (25) and proxr◦F (y) = y − F ∗v.

Algorithm 3 Splitting Dual-Primal algorithm to compute proxr◦F (y)

1: Select ǫ ∈]0,min{1, 1/µ}[
2: Set v0 ∈ R

K

3: for n ∈ N do
4: yn = y − F ∗vn + bn
5: γn ∈ [ǫ, 2/µ− ǫ]
6: λn ∈ [ǫ, 1]
7: vn+1 = vn + λn

(
γnFyn − γnprox 1

γn
r(

vn
γn

+ Fyn) + an
)

8: end for

3.3 Frame constant

Another issue related to the forward-backward algorithm for SA, consists of computing the norm ‖HF ∗‖2.
The problem is clearly illustrated in Algorithm 1 (SA) where the step-size γn is inversely proportional to this
norm. Consider the objective function (16) for which f = d(., z) is α-Lipschitz differentiable. By definition
of Lipschitz differentiability,

(∀(y1, y2) ∈ (RM )2) ‖∇f(y1)−∇f(y2)‖ ≤ α‖y1 − y2‖ (26)

In Section 3.1.2 the function fS ∈ Γ0(R
K) has been introduced such that fS = f ◦H ◦ F ∗. The gradient of

fS is defined as
(∀x ∈ (RK)), ∇fS(x) = FH∗(∇f(HF ∗x)) (27)

which yields to

(∀(x1, x2) ∈ (RK)2) ‖∇fS(x1)−∇fS(x2)‖ ≤ α‖HF ∗‖2‖x1 − x2‖. (28)

Consequently fS is α‖HF ∗‖2-Lipschitz differentiable which explains why γn was chosen inversely proportional
to α‖HF ∗‖2 in Algorithm 1 (SA). Most of the time, the norm ‖HF ∗‖2 is not easy to compute and the
convergence rate depends on the Lipschitz bound. To overcome this difficulty, we propose to use Algorithm 4
which converges to ‖HF ∗‖2.

The rationale of this algorithm is as follows. Let B = HF ∗ and perform the eigenvalue decomposition
UΛU∗ of the matrix associated with the positive semi-definite operator B∗B , where Λ = diag{λ1, . . . , λK}
and U = [u1, . . . , uK ] ∈ R

K×K is an orthogonal matrix. Moreover, ‖HF ∗‖2 = λi0 where i0 ∈ argmax1≤i≤K λi.
Thus, let x0 ∈ R

K which does not belong to an eigenspace of B∗B, we can write,

‖Bnx0‖
2

‖Bn−1x0‖2
=

∑K
i=1 λ

n
i |〈x0, ui〉|

2

∑K
i=1 λ

n−1
i |〈x0, ui〉|2

, (29)



which yields to

lim
n→+∞

‖Bnx0‖
2

‖Bn−1x0‖2
= λi0 = ‖HF ∗‖2. (30)

Algorithm 4 Frame constant computation

Select randomly x0 ∈ R
K , set ρ0 = ǫ+ 1, n = 1 and ρn = 1

while |ρn−ρn−1|
ρn

≥ ǫ do
Set xn = B∗Bxn−1 where B = HF ∗

Set ρn = ‖xn‖
‖xn−1‖

end while
After convergence take ‖HF ∗‖2 = ρn

4. NUMERICAL ILLUSTRATIONS

In this section, a deconvolution problem is addressed with uniform blur H of size 5× 5 and additive Gaus-
sian noise of standard deviation σ = 8. A comparison will be made between the performance of AA and SA
in image deblurring, using in each case the appropriate tools to optimize the related optimality criterion.
Concerning the frame representation, two examples will be considered: regularization using GenLOT24, 25

transform and the union of two orthonormal bases. Since the blur operator H is ill-conditioned, the con-
sidered deblurring problem is ill-posed. A regularization should then be used to stabilize the solution.
Although many choices for the regularization function can be made, a classical ℓ1 regularization will be used
as a penalty term in this paper. This means that a Laplace distribution will be retained as the prior to
model the wavelet frame coefficients.

4.1 Comparison of AA/SA Regularization using GenLOT transform

In this section, the main goal is to compare the performance of AA and SA, when using the appropriate
proximity algorithms to optimize the related optimality criterion.
Based on the noise model and prior distribution, the optimality criteria in (15) and (16) may be reexpressed
as:

• AA:

ŷ = argmin
y

1

2σ2
‖Hy − z‖2 + κ‖Fy‖1. (31)

• SA:

ŷ = F ∗ argmin
x

[
1

2σ2
‖HF ∗x− z‖2 + κ‖x‖1]. (32)

To minimize this criterion, the forward-backward algorithm (see Algorithm 1 for AA and SA) was retained

using f =
1

2σ2
‖ ·−z‖2 and r = ‖ · ‖1. The main difficulty when dealing with AA is to compute the proximity

operator of r ◦ F . To perform this task, Algorithm 3 was used as detailed in Section 3.2.3.
However, when SA is adopted, the main difficulty is to evaluate the Lipschitz constant of the gradient of fS.

In fact, since the gradient of f is
1

σ2
-Lipschitz, fS is then

1

σ2
‖HF ∗‖2-Lipschitz differentiable. The difficulty

is therefore to compute ‖HF ∗‖
2
, which may be achieved using Algorithm 4 introduced in Section 3.3.

The comparison in this section is mainly based on the performance of AA and SA in terms of visual restoration
quality and Signal to Noise Ratio defined as

SNR = 20 log10
( ‖y‖

‖y − ŷ‖

)
,



where y is the known reference image and ŷ is the estimated one. Tests are conducted on two standard
256× 256 images: cameraman and barbara.
Figure 1 shows the reference cameraman image (a), the degraded one (b) and restored ones using AA (c)
and SA (d). We notice that visually, the two restored images are quite similar. In terms of SNR, AA gives
slightly better restored images with 0.2 dB of SNR improvement over SA.

(a) (b) SNR = 16.60 dB

(c) SNR = 19.23 dB (d) SNR = 19.03 dB

Figure 1. Original image (a), degraded one (b) and restored images using AA (c) and SA (d).

Based on this observation, one might say that AA outperforms SA in restoration quality using the same
frame representation and optimization algorithm. However, when looking at restoration results for the
barbara image in Figure 2, we notice that, for this image, AA and SA lead to the same performance.

Moreover, complementary tests illustrated in Table 1 using other frame representations (here the trans-
lation invariant wavelet transform26) showed that SA may outperform AA. Consequently, one can conclude
that the performance of AA and SA may depend on the frame representation, as well as on the image itself.

Table 1. SNR evaluation for image deblurring using translation invariant wavelet transform.

SNR (dB)
Degraded AA SA

cameraman 16.60 18.90 19.26
barbara 17.47 19.25 19.49



(a) (b) SNR = 17.47 dB

(c) SNR = 19.92 dB (d) SNR = 19.93 dB

Figure 2. Original image (a), degraded one (b) and restored images using AA (c) and SA (d).

4.2 Regularization using AA

When a union of two orthonormal bases (µ = 2) is considered (for example Symmlets of length 8 and
Daubechies of length 6), the duality approach (Section 3.2.3) and the splitting approach (Section 3.2.2)
can be used to deal with r ◦ F when considering AA. The goal of this section is to demonstrate the good
convergence rate behaviour of the splitting approach for this particular frame representation. To do this,
we consider Criterion (31) and detail the proposed PPRA-based algorithms for each approach and their
associated convergence rates.

The first approach consists of an internal loop of Splitting Dual-Primal algorithm in the Parallel Proximal
one which yields to Algorithm 5.

The second approach splits Criterion (31) as follows:

ŷ = argmin
y

1

2σ2
‖Hy − z‖2 + κ‖F1y‖1 + κ‖F2y‖1. (33)

where F1 (resp. F2) is associated to Symmlet (resp. Daubechies) decomposition. The proximity operator of
each function can be expressed explicitly and thus the Parallel Proximal algorithm can be used. Steps are
detailed in Algorithm 6.

Algorithms 5 and 6 converge to a solution to (31). Figure 3 illustrates the convergence rate of both
approaches in iteration number and CPU time. As it can be noticed, Algorithm 5 converges faster than
6 in iteration number; this is related to the number of proximity operators to compute in each step (2 for
Algorithm 5 and 3 for Algorithm 6). However, in terms of CPU time, the internal loop strongly penalizes
the convergence rate of Algorithm 5 as it can be observed in Figure 3 (right); this result emphasizes the
interest in using a splitting approach for frames which can be decomposed in a union (with few terms) of



Algorithm 5 PPRA with an intern loop of Splitting Dual-Primal algorithm

1: Choose ǫ ∈ ]0,+∞[ small enough
2: Let γ ∈ ]0,+∞[
3: Let ω1 = 1/2 and ω2 = 1/2

4: Set u1,0 = u2,0 = z and y0 =
∑2

j=1 ωjuj,0.
5: for n ∈ N do
6: Set p1,n = (Id + γ

ω1σ2H
∗H)−1(u1,n + γ

ω1σ2H
∗z)

7: Set v0 = u2,n

8: Set m = 0
9: while ‖vm+1,n − vm,n‖ > ǫ‖vm,n‖ do

10: Set πm,n = u2,n − F ∗vm,n

11: Let γ̃m,n ∈]0, 1[

12: Let λ̃m,n ∈]0, 1]

13: Set vm+1,n = vm,n + λ̃m,nγ̃m,n

(
Fπm,n − prox γκ

ω2γ̃m,n
‖.‖1

(
vm,n

γ̃m,n
+ Fπm,n)

)

14: end while
15: p2,n = πm,n

16: pn =
∑2

j=1 ωjpj,n
17: λn ∈ ]0, 2[
18: u1,n+1 = u1,n + λn (2 pn − yn − p1,n)
19: u2,n+1 = u2,n + λn (2 pn − yn − p2,n)
20: yn+1 = yn + λn(pn − yn)
21: end for

Algorithm 6 PPRA for splitting criterion

1: Let γ ∈ ]0,+∞[
2: Set ω1 = 1/2 and ω2 = ω3 = 1/4

3: Set u1,0 = u2,0 = u3,0 = z and y0 =
∑3

j=1 ωjuj,0.
4: for n ∈ N do
5: p1,n = (Id + γ/(ω1σ

2)H∗H)−1(u1,n + γ/(ω1σ
2)H∗z)

6: p2,n = F ∗
1 prox(γκ)/ω2‖.‖1

F1u2,n

7: p3,n = F ∗
2 prox(γκ)/ω3‖.‖1

F2u3,n

8: pn =
∑3

j=1 ωjpj,n
9: λn ∈ ]0, 2[

10: u1,n+1 = u1,n + λn (2 pn − yn − p1,n)
11: u2,n+1 = u2,n + λn (2 pn − yn − p2,n)
12: u3,n+1 = u3,n + λn (2 pn − yn − p3,n)
13: yn+1 = yn + λn(pn − yn)
14: end for



orthonormal bases. However, the splitting approach cannot be used for any kind of frames, whereas proxr◦F
can always be computed by using the Splitting Dual Primal algorithm.
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Figure 3. Convergence rate between Algorithm 5 (dashed line) and Algorithm 6 (continuous line) in the case of a
union of orthonormal bases.

5. CONCLUSION

In this paper, we discussed several aspects of convex optimization tools and algorithms that may be used
when dealing with inverse problems with frame representations. A particular attention has been paid to
iterative proximal algorithms and related parameters which may need to be carefully chosen. Using these
algorithms, two competing approaches (analysis versus synthesis) have been investigated. An application to
an image deblurring problem showed that the performance of both methods depends on the used frame and
even on the image itself. Consequently, it is quite difficult to conclude about the superiority of one approach
over the other, in a general context.
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