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Null controllability of Kolmogorov-type

equations

K. Beauchard ∗, †

Abstract

We study the null controllability of Kolmogorov-type equations ∂tf +
vγ∂xf−∂2

vf = u(t, x, v)1ω(x, v) in a rectangle Ω, under an additive control
supported in an open subset ω of Ω.

For γ = 1, with periodic-type boundary conditions, we prove that null
controllability holds in any positive time, with any control support ω.
This improves the previous result [5], in which the control support was a
horizontal strip.

With Dirichlet boundary conditions and a horizontal strip as control
support, we prove that null controllability holds in any positive time if
γ = 1, or if γ = 2 and ω contains the segment {v = 0}, and only in large
time if γ = 2 and ω does not contain the segment {v = 0}.

Our approach, inspired from [7, 31], is based on 2 key ingredients: the
observability of the Fourier components of the solution of the adjoint sys-
tem, uniformly with respect to the frequency, and the explicit exponential
decay rate of these Fourier components.

Key words: null controllability, degenerate parabolic equations, Carleman es-
timates, hypoelliptic systems.

1 Introduction

1.1 Main result

We consider Kolmogorov-type equations

∂tf + vγ∂xf − ∂2
vf = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0,+∞)× Ω , (1)

where γ ∈ N∗, Ω = T× (−1, 1), T is the 1D-torus, ω is an open subset of Ω, 1ω
is the characteristic function of this set and u(t, x, v) is a source term located
on the subdomain ω. It is a linear control system in which the state is f and
the control u is supported in the subset ω.

Depending on the value of γ, we use di�erent boundary conditions in variable
v: periodic type boundary conditions when γ = 1{

f(t, x− t,−1) = f(t, x+ t,+1) , (t, x) ∈ (0,+∞)× T ,
∂vf(t, x− t,−1) = ∂vf(t, x+ t, 1) , (t, x) ∈ (0,+∞)× T , (2)
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or Dirichlet boundary conditions when γ ∈ N∗

f(t, x,−1) = f(t, x,+1) = 0 , (t, x) ∈ (0,+∞)× T . (3)

We will also use initial data

f(0, x, v) = f0(x, v), (x, v) ∈ Ω . (4)

De�nition 1 (Null controllability). Let T > 0 and γ ∈ N∗. System (1)-(2)
(resp. System (1)-(3)) is null controllable in time T if, for every f0 ∈ L2(Ω),
there exists u ∈ L2((0, T ) × Ω) such that the solution of the Cauchy problem
(1)-(2)-(4) (resp. (1)-(3)-(4)) satis�es f(T, ·, ·) = 0.

When γ = 1 and ω = T×(a, b) for some a, b ∈ (−1, 1), the null controllability
of system (1)-(2) is proved in [5]. The goals of this article are

1. to improve the strategy of [5] in order to conclude with more general
control supports, in the case of periodic-type boundary conditions when
γ = 1 (i.e. for system (1)-(2)),

2. to study the case of Dirichlet boundary conditions (i.e. system (1)-(3)),

3. to give an indication about the possible critical parameter γ for the null
controllability (possibly γ = 2), for system (1)-(3), as for Grushin equa-
tions in [4].

The main results of this paper are the following ones.

Theorem 1. 1. If γ = 1 and ω is an open subset of Ω, then the system
(1)-(2) is null controllable in any time T > 0.

2. If γ = 1 and ω = T× (a, b) with −1 < a < b < 1, then the system (1)-(3)
is null controllable in any time T > 0.

3. If γ = 2 and ω = T× (a, b) with 0 < a < b < 1 then there exists T ∗ > a2/2
such that

• the system (1)-(3) is null controllable in any time T > T ∗,

• the system (1)-(3) is not null controllable in time T < T ∗.

4. If γ = 2 and ω = T × (a, b) with −1 < a < 0 < b < 1 then the system
(1)-(3) is null controllable in any time T > 0.

Note that in the third statement, the set {v = 0} is not contained in the
control location ω, contrary to the fourth case. Theorem 1 emphasizes several
behaviors:

1. a sensitivity to boundary conditions (see the asymptotic behavior of Fourier
components in Propositions 2, 10 and 17),

2. a �nite speed of propagation through the set {v = 0} with γ = 2 and
Dirichlet boundary conditions.
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By duality, Theorem 1 is equivalent to observability results for the adjoint
system

∂tg − vγ∂xg − ∂2
vg = 0 , (t, x, v) ∈ (0,+∞)× Ω , (5)

associated to the following boundary conditions when γ = 1{
g(t, x− T + t,−1) = g(t, x+ T − t, 1) , (t, x) ∈ (0,+∞)× T ,
∂vg(t, x− T + t,−1) = ∂vg(t, x+ T − t, 1) , (t, x) ∈ (0,+∞)× T , (6)

or the following ones for γ ∈ N∗

g(t, x,−1) = g(t, x, 1) = 0 , (t, x) ∈ (0,+∞)× T . (7)

We will also use initial data

g(0, x, v) = g0(x, v) , (x, v) ∈ Ω . (8)

De�nition 2 (Observability). Let T > 0 and γ ∈ N∗. System (5)-(6) (resp.
System (5)-(7)) is observable in ω in time T if there exists C > 0 such that,
for every g0 ∈ L2(Ω), the solution of the Cauchy problem (5)-(6)-(8) (resp.
(5)-(7)-(8)) satis�es∫

Ω

|g(T, x, v)|2dxdv 6 C

∫ T

0

∫
ω

|g(t, x, v)|2dxdvdt .

Theorem 2. 1. If γ = 1 and ω is an open subset of Ω, then the system
(5)-(6) is observable in ω in any time T > 0.

2. If γ = 1 and ω = T× (a, b) with 0 < a < b < 1, then the system (5)-(7) is
observable in ω in any time T > 0.

3. If γ = 2 and ω = T×(a, b) with 0 < a < b < 1, then there exists T ∗ > a2/2
such that

• the system (5)-(7) is observable in ω in any time T > T ∗,

• the system (5)-(7) is not observable in ω in time T < T ∗.

4. If γ = 2 and ω = T × (a, b) with −1 < a < 0 < b < 1 then the system
(5)-(7) is observable in ω in any time T > 0.

Remark 1. Let us emphasize that, when γ = 2, ω = T × (a, b) with 0 < a <
b < 1 and T 6 T ∗, then unique continuation holds for system (5)-(7), i.e. any
solution g of (5)-(7) satis�es

g ≡ 0 on (0, T )× ω ⇒ g ≡ 0 on (0, T )× Ω

(see Proposition 9 for a proof).

1.2 Motivation and bibliographical comments

1.2.1 Null controllability of the heat equation

The null and approximate controllability of the heat equation are essentially
well understood subjects for both linear and semilinear equations, for bounded
or unbounded domains (see, for instance, [16], [19], [21], [22], [23], [26], [30],
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[31], [33], [36], [37], [42], [43]) and also with discontinuous (see, e.g. [17], [6], [7],
[39]) or singular ([40] and [18]) coe�cients.

In particular, the heat equation on a smooth bounded domain Ω of Rd (d ∈
N∗), with a source term located on an open subset ω of Ω is null controllable in
arbitrarily small time T and with an arbitrarily small control support ω. This
result is due, for the case d = 1, to H. Fattorini and D. Russell [20, Theorem 3.3],
and, for d > 2, to O. Imanuvilov [28], [29] (see also the book [25] by A. Fursikov
and O.Imanuvilov) and G. Lebeau and L. Robbiano [31]. It is then natural to
wonder whether the same result holds for degenerate parabolic equations.

1.2.2 Boundary-degenerate parabolic equations

The null controllability of parabolic equations degenerating on the boundary of
the domain in one space dimension is well-understood, much less so in higher
dimension. Given 0 < a < b < 1 and γ > 0, let us consider the 1D equation

∂tw + ∂x(x2γ∂xw) = u(t, x)1(a,b)(x) , (t, x) ∈ (0,∞)× (0, 1) ,

with suitable boundary conditions. Then, null controllability holds if and only if
γ ∈ (0, 1) (see [13, 14]), while, for γ ≥ 1, the best result one can show is �regional
null controllability�(see [12]), which consists in controlling the solution within
the domain of in�uence of the control. Several extensions of the above results
are available in one space dimension, see [1, 34] for equations in divergence
form, [11, 10] for nondivergence form operators, and [9, 24] for cascade systems.
Fewer results are available for multidimensional problems, mainly in the case
of two dimensional parabolic operators which simply degenerate in the normal
direction to the boundary of the space domain, see [15].

1.2.3 Parabolic equations degenerating inside the domain

In [35], the authors study linearized Crocco type equations{
∂tf + ∂xf − ∂vvf = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T )× T× (0, 1) ,
f(t, x, 0) = f(t, x, 1) = 0, (t, x) ∈ (0, T )× T .

For a given strict open subset ω of T× (0, 1), they prove that null controllability
does not hold: the optimal result is regional null controllability. Note that,
for Kolmogorov equation (1), the coupling between the di�usion (in v) and the
transport (in x at speed v) generates di�usion both in variables x and v (see
Propositions 2, 10 and 17).

In [4], we study Grushin-type equations{
∂tf − ∂2

xf − |x|2γ∂2
yf = u(t, x, y)1ω(x, y), (t, x, y) ∈ (0, T )× Ω,

f(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂Ω ,
(9)

where Ω := (−1, 1) × (0, 1), ω ⊂ (0, 1) × (0, 1), and γ > 0. Here, the parabolic
operator degenerates along the line {0} × (0, 1). We prove that

• null controllability holds in any time T > 0 when γ ∈ (0, 1),

• null controllability does not hold (whatever T > 0) when γ > 1,
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• when γ = 1 and ω = (a, b) × (0, 1) with 0 < a < b < 1, there exists
Tmin > a2/2 such that null controllability holds when T > Tmin and does
not hold when T < Tmin.

Note that, contrary to Grushin-type equations (9), in Kolmogorov equations
(1), the parabolic operator degenerates everywhere on the domain.

1.2.4 Null controllability and hypoellipticity

It could be interesting to analyze the connections between null controllability
and hypoellipticity.

We recall that a linear di�erential operator P with C∞ coe�cients in an open
set Ω ⊂ Rd is called hypoelliptic if, for every distribution u in Ω, u must be a
C∞ function in every open set where so is Pu. The following su�cient condition
(which is also essentially necessary) for hypoellipticity is due to Hörmander (see
[27]).

Theorem 3. Let P be a second order di�erential operator of the form P =∑r
j=1X

2
j +X0 + c, where X0, ..., Xr denote �rst order homogeneous di�erential

operators in an open set Ω ⊂ Rn with C∞ coe�cients, and c ∈ C∞(Ω). Assume
that there exists n operators among

Xj1 , [Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]], ..., [Xj1 , [Xj2 , [Xj3 , [..., Xjk ]...]]],

where ji ∈ {0, 1, ..., r}, which are linearly independent at any given point in Ω.
Then, P is hypoelliptic.

The Kolmogorov operator K := vγ∂x +∂2
v satis�es Hörmander condition for

every γ ∈ N∗. Indeed, K = X0 +X2
1 where

X0(x, v) :=

(
vγ

0

)
, X1(x, v) :=

(
0
1

)
and

[X0, X1](x, v) =

(
γvγ−1

0

)
, [X1, [X1, X2]](x, v) =

(
γ(γ − 1)vγ−2

0

)
.

Thus, when γ = 1, the �rst iterated Lie bracket is su�cient, whereas when
γ = 2, the second one the required (at v = 0), to satisfy Hörmander's condition.

First, we emphasize that hypoellipticity is not su�cient for unique contin-
uation. For instance, Alinhac and Zuily built a zero order C∞-perturbation of
the Kolmogorov operator K for which unique continuation does not hold: there
exists C∞-functions u(t, x, v) and a(t, x, v) on a neighborhood V of 0 in R3

such that Ku+ au = 0, u(t, x, v) = v(t, x, v) = 0 when v < 0, and 0 ∈ Supp(u)
[2]. Therefore, hypoellipticity cannot be su�cient neither for null controllability.

Let us recall that the Grushin operator G := ∂2
x + |x|2γ∂2

y is the hypoelliptic
operator of type II associated to the vector �eld (X0, X1) (i.e. G = X2

0 +X2
1 ),

whereas Kolmogorov operator K is the one of type I (i.e. K = X0 +X2
1 ). Both

are prototypes of hypoelliptic operators.

5



For Grushin-type equations, null controllability (with control on a verti-
cal strip) holds only when the �rst iterated Lie-bracket is su�cient to satisfy
Hörmander's condition (γ ∈ (0, 1]). For Kolmogorov-type equations, null con-
trollability (with control on a horizontal strip) holds when the two �rst iterated
Lie-brackets are su�cient (γ ∈ {1, 2}). A general result which relates null con-
trollability of hypoelliptic operators (depending on their type) to the number
of iterated Lie brackets that are necessary to satisfy Hörmander's condition
would be very interesting, but remains�for the time being�a challenging open
problem.

This article also underlines an important in�uence of the boundary condi-
tions on the validity of null controllability, through the exponential decay rate
of Fourier components (see Propositions 2 and 17).

1.3 Structure of the article

In Section 2, we state a global Carleman estimate, for 1D heat equations with
parameters, which is a preliminary result for the whole article. In Section 3, we
prove Theorem 1 for γ = 1 with periodic type boundary conditions. In Section
4, we study the well posedness and the Fourier decomposition of the solutions
of (1)-(3) when γ ∈ {1, 2}. In Section 5 (resp. 6), we prove Theorem 1 for γ = 2
(resp. γ = 1), with Dirichlet boundary conditions.

2 Preliminary

The goal of this section is the statement of a global Carleman estimate for the
Fourier components (in x) of the solution of the adjoint system (5). For n ∈ Z
and γ ∈ N∗, we introduce the operator

Pn,γg := ∂tg + invγg − ∂2
vg.

Proposition 1. We assume γ ∈ N∗ (resp. γ = 1). Let a, b be such that
−1 < a < b < 1. There exist a weight function β ∈ C1([−1, 1],R∗+), pos-
itive constants C1, C2 such that, for every n ∈ Z, γ ∈ {1, 2}, T > 0 and
g ∈ C0([0, T ], L2(−1, 1))∩L2(0, T ;H1

0 (−1, 1)) (resp. g ∈ C0([0, T ], L2(−1, 1))∩
L2(0, T ;H1(−1, 1)) such that g(t,−1) = g(t, 1)ei2n(T−t) and
∂vg(t,−1) = ∂vg(t,+1)ei2n(T−t)) the following inequality holds

C1
∫ T

0

∫ 1

−1

(
M

t(T−t)
∣∣∂g
∂v (t, v)

∣∣2 + M3

(t(T−t))3
∣∣g(t, v)

∣∣2) e−Mβ(v)
t(T−t) dvdt

6
∫ T

0

∫ 1

−1
|Pn,γg|2e−

Mβ(v)
t(T−t) dvdt+

∫ T
0

∫ b
a

M3

(t(T−t))3 |g(t, v)|2e−
Mβ(v)
t(T−t) dvdt

(10)

where M := C2 max{T + T 2;
√
|n|T 2}.

The proof of this estimate is classical (see [25]): our weight β is the usual
one (see (36), (37), (38) and (39)). We only track carefully the behavior with
respect to n of the di�erent constants. For sake of completeness, a proof is
reproduced in Appendix, in the case of Dirichlet boundary conditions on g. For
periodic-type boundary conditions, one may use a periodic weight function β,
as in [5].
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3 Proof of Theorem 1 with γ = 1 and periodic-

type boundary conditions

In all this section, we take γ = 1.

3.1 Well posedness, Fourier decomposition and dissipa-
tion

We have the following well posedness result, for the Cauchy-problem (1)-(2).

Proposition 2. Let T > 0, f0 ∈ L2(Ω) and u ∈ L2((0, T ) × Ω). There ex-
ists a unique solution f ∈ C0([0, T ], L2(Ω)) of the Cauchy problem (1)-(2)-(4).
Moreover, if u ≡ 0, the Fourier components

fn(t, v) :=

∫
T
f(t, x, v)e−inxdx, t ∈ (0,+∞), v ∈ (−1, 1), n ∈ Z

satisfy

‖fn(t, .)‖L2(−1,1) 6 ‖fn(0, .)‖L2(−1,1)e
−n2t3

12 ,∀t > 0, n ∈ Z.

Proof of Proposition 2: The function h(t, x, v) := f(t, x + vt, v) solves a
linear equation with coe�cients depending only on t, and periodic boundary
conditions. Thus, we have an explicit expression

h(t, x, v) =
∑

p,n∈Z
f̂(n, p)e−(pπ)2t+npπt2−n2 t3

3 ei(nx+pπv)

+
∑

p,n∈Z

(∫ t
0
ŵ(τ, n, p)e(pπ)2τ−npπτ2+n2 τ3

3

)
e−(pπ)2t+npπt2−n2 t3

3 ei(nx+pπv)

where

f̂(n, p) :=

∫
T

∫ 1

−1

f0(x, v)e−i(nx+pπv)dvdx,

ŵ(τ, n, p) :=

∫
T

∫ 1

−1

1ω(x+ vt, v)u(τ, x+ vt, v)e−i(nx+pπv)dvdx.

The dissipation result is a consequence of the relation

−(pπ)2t+ npπt2 − n2 t
3

3
= −t

(
pπ − nt

2

)2

− n2t3

12
.

We refer to [5] for more details. 2

3.2 Null controllability of initial data with a �nite number
of Fourier modes

The goal of this section is the proof of the following result.

Proposition 3. There exists C > 0 such that, for every T > 0, N ∈ N∗ and
f0 ∈ L2(Ω) of the form f0(x, v) =

∑
|n|6N f0,n(v)einx there exists a control

u ∈ L2((0, T ) × Ω) such that the solution of (1)-(2)-(4) satis�es f(T, ., .) = 0
and

‖u‖L2((0,T )×Ω) 6 TeC(1+ 1
T +N)‖f0‖L2(Ω).
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By duality, this null controllability result is equivalent to the following ob-
servability inequality.

Proposition 4. There exists C > 0 such that, for every T > 0, N ∈ N∗ and
g0 ∈ L2(Ω) of the form g0(x, v) =

∑
|n|6N g0,n(v)einx the solution of (5)-(6)-(8)

satis�es ∫
Ω

|g(T, x, v)|2dxdv 6 T 2eC(1+ 1
T +N)

∫ T

0

∫
ω

|g(t, x, v)|2dxdv.

For the proof of Proposition 4, we need the 2 following ingredients. The �rst
one is a classical inequality, proved, for example, in [31] (see also [32]).

Proposition 5. Let c, d ∈ R be such that c < d. There exists C > 0 such that,
for every N ∈ N∗ and (bn)|n|6N ∈ R2N+1,

N∑
n=−N

|bn|2 6 eCN
∫ d

c

∣∣∣∣∣
N∑

n=−N
bne

inx

∣∣∣∣∣
2

dx.

The second ingredient is an estimate of the observability constant for the
Fourier components of g.

Proposition 6. Let a, b ∈ R be such that −1 < a < b < 1. There exists C > 0
such that, for every T > 0, n ∈ Z, g0,n ∈ L2(−1, 1), the solution of

∂tgn + invgn − ∂2
vgn = 0 , (t, v) ∈ (0,+∞)× (−1, 1) ,

gn(t,−1) = gn(t,+1)ei2n(T−t) , t ∈ (0,+∞) ,
∂vgn(t,−1) = ∂vgn(t,+1)ei2n(T−t) , t ∈ (0,+∞) ,
gn(0, v) = g0,n(v) , v ∈ (−1, 1) ,

(11)

satis�es ∫ 1

−1

|gn(T, v)|2dv 6 T 2e
C
(

1+ 1
T +
√
|n|
) ∫ T

0

∫ b

a

|gn(t, v)|2dvdt.

Proof of Proposition 6: For t ∈ (T/3, 2T/3), we have

4

T 2
6

1

t(T − t)
6

9

2T 2

and ∫ 1

−1

|gn(T, v)|2dv 6
∫ 1

−1

|gn(t, v)|2dv.

Thanks to Proposition 1, we get

C1
64M3

T 6
e−

9Mβ∗

2T2
T

3

∫ 1

0

|gn(T, v)|2dv 6 C3
∫ T

0

∫ b

a

|gn(t, v)|2dvdt

where β∗ := max{β(x);x ∈ [−1, 1]}, β∗ := min{β(x);x ∈ [−1, 1]} and C3 :=
max{x3e−β∗x;x ∈ [−1, 1]}. Using the inequality M > C2[T + T 2], we get∫ 1

0

|gn(T, v)|2dv 6 C4T 2ec1
M
T2

∫ T

0

∫ b

a

|gn(t, v)|2dvdt (12)

8



for some constants c1, C4 > 0 (independent of n, T and g0,n).

First case:
√
|n| < 1 + 1

T . Then, M = C2(T + T 2) thus∫ 1

−1

|gn(T, v)|2dv 6 C4T 2ec1C2(1+ 1
T )
∫ T

0

∫ b

a

|gn(t, v)|2dvdt.

Second case:
√
|n| > 1 + 1

T . Then, M = C2
√
|n|T 2, thus∫ 1

0

|gn(T, v)|2dv 6 C4T 2ec1C2
√
|n|
∫ T

0

∫ b

a

|gn(t, v)|2dvdt.

This gives the conclusion. 2

Now, let us prove Proposition 4, thanks to Propositions 5 and 6.

Proof of Proposition 4: Let a, b, c, d ∈ R be such that a < b, c < d and
(c, d) × (a, b) ⊂ ω. Let gn be the solution of (11) for n = −N, ..., N . Then
g(t, x, v) =

∑
|n|6N gn(t, v)en(x), where en(x) := einx. From the orthogonality

of the family (en)n∈Z in L2(T), Propositions 6 and 5, we deduce∫
Ω
g(T, x, v)2dxdv =

∑
|n|6N

∫ 1

−1
|gn(T, v)|2dv

6 T 2eC(1+ 1
T +
√
N) ∑
|n|6N

∫ T
0

∫ b
a
|gn(t, v)|2dvdt

6 T 2eC(N+ 1
T +
√
N) ∫ T

0

∫ b
a

∫ d
c

∣∣∣∣∣ ∑|n|6N gn(t, v)en(x)

∣∣∣∣∣
2

dxdvdt

6 T 2eC(N+ 1
T ) ∫ T

0

∫
ω
|g(t, x, v)|2dxdvdt

where the constant C may change from line to line. 2

3.3 Construction of the control function

The goal of this section is the proof of the statement 1 of Theorem 1. The
construction of the control is the one of [7] (itself inspired from [31], see also
[32]).

For n ∈ Z, we de�ne en(x) := einx and Hn := en ⊗ L2(0, 1), which is a
closed subspace of L2(Ω). For j ∈ N, we de�ne Ej := ⊕|n|62jHn and ΠEj the
orthogonal projection from L2(Ω) to Ej .

Let T > 0 and f0 ∈ L2(Ω) and let us build a control u ∈ L2((0, T )×Ω) such
that the solution of (1)-(3)-(4) satis�es f(T ) = 0. Let ρ ∈ R with

0 < ρ <
1

3
. (13)

Let K = K(ρ) > 0 be such that K
∑∞
j=1 2−jρ = T . Let (aj)j∈N be de�ned by

a0 = 0, aj+1 = aj + 2Tj where Tj := K2−jρ for every j ∈ N. We now de�ne the

9



control function u in the following way. On [aj , aj + Tj ], we apply a control u
such that ΠEjf(aj + Tj) = 0 and

‖u‖L2((aj ,aj+Tj)×Ω) 6 Cj‖f(aj)‖L2(Ω)

where Cj := Tje
C
(

2j+ 1
Tj

)
(see Proposition 3). Then

‖f(aj + Tj)‖L2(Ω) 6 (1 +
√
TjCj)‖f(aj)‖L2(Ω).

On [aj + Tj , aj+1], we apply no control, to take advantage of the dissipation of
the solution proved in Proposition 2

‖f(aj+1)‖L2(Ω) 6 e−22j
T3
j

12 ‖f(aj + Tj)‖L2(Ω).

Thus, we obtain

‖f(aj+1)‖L2(Ω) 6 e

2j∑
k=1

ln(1+
√
TkCk)−22k T

3
k

12 ‖f0‖L2(Ω).

The choice of ρ ensures that the sum in the exponent tends to −∞ when j →
+∞, this gives f(T ) = 0. Arguing in the same way, one proves that the control
built above belongs to L2((0, T )× Ω).

4 With Dirichlet boundary conditions: well posed-

ness, Fourier decomposition, unique continua-

tion

In this section γ ∈ {1, 2}. Let

V := {f ∈ C∞(T× (−1, 1));∃K ⊂ (−1, 1) compact s.t. Supp(f) ⊂ T×K}.

For f ∈ V, we de�ne

|f |V :=

(∫
Ω

|∂vf(x, v)|2dxdv
)1/2

and V := Adh|.|V (V). Observe that H1
0 (Ω) ⊂ V ⊂ L2(Ω), thus V is dense in

L2(Ω). We de�ne the operator Aγ by

D(Aγ) := {f ∈ V ;−∂2
vf + vγ∂xf ∈ L2(Ω)},

Aγf := −∂2
vf + vγ∂xf.

Then D(Aγ) is dense in L2(Ω), (Aγ , D(Aγ)) is closed and both Aγ and A∗γ
are dissipative, thus (Aγ , D(Aγ)) generates an strongly continuous semigroup
Sγ(t) of contractions of L2(Ω) (see Lumer-Phillips theorem [38, Corollary 4.4,
Chapter 1, page 15], or HilleYosida theorem [8, Theorem VII.4, page 105]). For
every T > 0, u ∈ L2((0, T )×Ω), f0 ∈ L2(Ω), the weak solution of (1)-(3)-(4) is

f(t) = Sγ(t)f0 +

∫ t

0

Sγ(t− s)(1ωu)(s)ds

and the following existence and uniqueness result follows.

10



Proposition 7. Let γ ∈ {1, 2}. For every T > 0, u ∈ L2((0, T )×Ω), f0 ∈ L2(Ω)
there exists a unique weak solution f ∈ C0([0, T ], L2(Ω)) ∩ L2((0, T ), V ) of (1)-
(3)-(4). Moreover, f(t) ∈ D(Aγ) and ∂tf(t) ∈ L2(Ω) for a.e. t ∈ (0, T ).

Let us consider a solution of (5)-(7)-(8) in the sense above. Since g ∈
C0([0, T ], L2(Ω)), the function x 7→ g(t, x, v) belongs to L2(T) for almost ev-
ery (t, v) ∈ [0,+∞)× (−1, 1), thus, it can be developed in Fourier series of x as
follows

g(t, x, v) =
∑
n∈Z

gn(t, v)einx where gn(t, v) :=

∫
T
g(t, x, v)e−inxdx, ∀n ∈ Z.

(14)

Proposition 8. For every n ∈ Z, gn is the unique solution of ∂tgn − invγgn − ∂2
vgn = 0, (t, v) ∈ (0,+∞)× (−1, 1),

gn(t,±1) = 0, t ∈ (0,+∞),
gn(0, v) = g0,n(v), v ∈ (−1, 1),

(15)

where g0,n ∈ L2(−1, 1) is given by

g0,n(v) :=

∫
T
g0(x, v)e−inxdx, v ∈ (−1, 1).

This result may be proved by following the same steps as in [4, Section 2.2].
Then, the following unique continuation property follows.

Proposition 9. Let γ ∈ {1, 2}, ω = T× (a, b) where 0 < a < b < 1, T > 0 and
g ∈ C0([0, T ], L2(Ω))∩L2((0, T ), V ) a solution of (5)-(7). If g ≡ 0 on (0, T )×ω,
then g ≡ 0 on (0, T )× Ω.

Proof of Proposition 9: Let n ∈ Z and gn be de�ned by (14). Then gn ≡ 0
on (0, T ) × (a, b) and gn solves (15). Thus, Proposition 1 ensures that gn ≡ 0
on (0, T )× (−1, 1). Therefore, g ≡ 0 on (0, T )× Ω. 2

5 Proof of Theorem 1 when γ = 2

In all this section, we take γ = 2 and ω = T× (a, b) where −1 < a < b < 1. In
the �rst 4 subsections, we prove the statement 3 of Theorem 1 and in the last
subsection, we prove the statement 4.

5.1 Dissipation speed on (-1,1)

The goal of this section is the proof of the following dissipation property.

Proposition 10. There exists K, δ > 0 such that, for every n ∈ Z − {0} and
g0,n ∈ H1(−1, 1), the solution of (15) satis�es∫ 1

−1

|gn(t, v)|2dv 6 Ke−δ
√
|n|t
∫ 1

−1

( 1√
n
|∂vg0,n(v)|2 +

√
n|vg0,n(v)|2

)
dv,∀t > 0.

The proof of Proposition 10 relies on the following result.
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Proposition 11. There exists A,B,C, δ > 0 with B2 < AC such that, for every
L > 0 and h0 ∈ H1(−L,L), the solution of

∂τh = ∂2
yh+ iy2h , (τ, y) ∈ (0,+∞)× (−L,L) ,

h(τ,±L) = 0 , τ ∈ (0,+∞) ,
h(0, y) = h0(y) , y ∈ (−L,L) ,

(16)

satis�es
L(t) 6 L(0)e−δτ ,∀τ > 0, (17)

where

L(τ) =

L∫
−L

(
|h(τ, y)|2 +A|∂yh(τ, y)|2 − 2B=[yh(τ, y)∂yh(τ, y)] + C|yh(τ, y)|2

)
dy.

Proof of Proposition 11: This proof is inspired from [41]. Let A,B,C > 0
be such that

B2 < AC and A2 + C2 <
B

2
(18)

(for instance A = εÃ, B = εB̃, C = εC̃ for any Ã, B̃, C̃, ε > 0 such that
B̃2 < ÃC̃ and ε(Ã2 + C̃2) < B̃/2). Easy computations give

1
2
dL
dτ = −3B‖yh‖2 − ‖∂yh‖2 − C‖y∂yh‖2 −A‖∂2

yh‖2

+C‖h‖2 − 2A=
[∫ L
−L y∂yhh

]
− 2B=

[∫ L
−L y∂

2
yh∂yh

]
.

where ‖.‖ is the usual L2((−L,L),C)-norm, i.e.

‖f‖ :=

∫ L

−L
|f(y)|2dy.

Thanks to the following inequalities

C‖h‖2 6 2C‖yh‖‖∂yh‖ 6 B
2 ‖yh‖

2 + 2C2

B ‖∂yh‖
2,

−2A=
[∫ L

0
y∂yhh

]
6 B

2 ‖yh‖
2 + 2A2

B ‖∂yh‖
2,

−2B=
[∫ L

0
y∂2
yh∂yh

]
6 A‖∂2

yh‖2 + B2

A ‖y∂yh‖
2,

we get
1

2

dL
dτ

6 −2B‖yh‖2 −
(

1− 2(A2 + C2)

B

)
‖∂yh‖2.

Thanks to (18), there exists δ > 0 (independent of L) such that dL
dτ 6 −δL,

which gives the conclusion. 2

Proof of Proposition 10: One may assume that n > 0, otherwise, consider
gn. In order to simplify the notations, we write g, instead of gn. The function
h(τ, y) de�ned by

g(t, v) = h(
√
nt, 4
√
nv)

satis�es (16) with L = 4
√
n and h0(y) := g0,n(y/ 4

√
n). From the previous propo-

sition, we know that

L̃(t) =

1∫
−1

(
|g(t, v)|2+

A√
n
|∂vg(t, v)|2−2B=[vg(t, v)∂vg(t, v)]+C

√
n|vg(t, v)|2

)
dv

12



satis�es L̃(t) 6 L̃(0)e−δ
√
nt. Moreover, using (18) and

‖g‖2 6 2‖vg‖‖∂vg‖ 6
√
n‖vg‖2 +

1√
n
‖∂vg‖2

we get

L̃(0) 6
∫ 1

−1

(
2A+ 1√

n
|∂vg0(v)|2 + (2C + 1)

√
n|vg0(v)|2

)
dv.

Thus ∫ 1

−1
|gn(t, v)|2dv 6 L̃(t)

6 L̃(0)e−δ
√
nt

6 K
∫ 1

−1

(
1√
n
|∂vg0(v)|2 +

√
n|vg0(v)|2

)
dve−δ

√
nt

where K := max{2A+ 1; 2C + 1}. 2

5.2 Null controllability in large time T when 0 < a < b < 1

In this section, we assume 0 < a < b < 1. Our goal is to prove the existence of
a time T1 > 0 such that, for every T > T1, the system (5)-(7) is observable in ω
in time T . The following uniform observability result gives the conclusion.

Proposition 12. There exists T1, C > 0 such that for every T > T1, n ∈ Z and
g0,n ∈ L2(−1, 1), the solution of (15) satis�es∫ 1

−1

gn(T, v)2dv 6 C

∫ T

0

∫ b

a

gn(t, v)2dvdt.

Proof of Proposition 12: Working as in the proof of Proposition 6, we get

C3e−c
∗√n

∫ 2T/3

T/3

∫ 1

−1

(√
n|∂vg|2 + n3/2|g|2

)
dvdt 6 C4

∫ T

0

∫ b

a

|g|2dvdt (19)

for n large enough, where C3 := C2 max{4C1; (4C1)3}, c∗ := 9
2C2 max{β(v); v ∈

[−1, 1]}, C4 := max{x3e−β∗x;x > 0} and β∗ := min{β(v); v ∈ (a, b)}. Moreover,
thanks to Proposition 10, we have, for any t ∈ (T/3, 2T/3),

REPRENDRE ICI∫ 1

−1

(√
n|∂vg(t, v)|2 + n3/2|g(t, v)|2

)
dv

> n
∫ 1

−1

(
1√
n
|∂vg(t, v)|2 +

√
n|vg(t, v)|2

)
dv

> n
K e

δ
√
nT3
∫ 1

−1
|g(T, v)|2dv.

Thus, ∫ 1

−1

|g(T )|2dv 6
1

nT
C5e[c∗−δT/3]

√
n

∫ T

0

∫ b

a

|g|2dvdt

where C5 := 3KC4/C3. This gives the conclusion with T1 := 3c∗/δ. 2
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5.3 No null controllability when 0 < a < b < 1 and T 6 a2/2

In this section, we assume 0 < a < b < 1. The goal of this section is to prove
that (5)-(7) is not observable in ω in time T 6 a2/2, which is equivalent to the
following non uniform observability result.

Proposition 13. Let T 6 a2/2. For every C > 0, there exists n ∈ Z, g0,n ∈
L2(−1, 1) such that the solution of (15) satis�es∫ 1

−1

gn(T, v)2dv > C

∫ T

0

∫ b

a

gn(t, v)2dvdt.

Proof of Proposition 13:

First step: Approximate solution. Let ε > 0 be such that b < 1 − ε and
θ ∈ C∞(R) be such that

Supp(θ) ⊂ (−1− ε,−1 + ε) ∪ (1− ε, 1 + ε), θ(±1) = 1.

For n ∈ N∗, we de�ne

g̃n(t, v) := 8
√
n
(
e−
√
in v

2

2 − e−
√
in
2 θ(v)

)
e−
√
int

where
√
i := ei

π
4 . We have{

∂tg̃n + inv2g̃n − ∂2
v g̃n = 8

√
ne−

√
in
2

(√
inθ + θ′′ − inv2θ

)
e−
√
int,

g̃n(t,±1) = 0.

Let gn be the solution of ∂tgn + inv2gn − ∂2
vgn = 0, (t, v) ∈ (0, T )× (0, 1),

gn(t,±1) = 0, t ∈ (0, T ),
gn(0, v) = g̃n(0, v), v ∈ (0, 1).

We have

1
2
d
dt‖(g̃n − gn)(t)‖2L2(−1,1) = −‖∂v(g̃n − gn)(t)‖2L2(−1,1)

+<
(∫ 1

−1
8
√
ne−

√
in
2

(√
inθ(v) + θ′′(v)− inv2θ(v)

)
e−
√
int(g̃n − gn)(t, v)dv

)
.

Thanks to Poincare and Cauchy-Schwarz inequalities, we get

d

dt
‖(g̃n − gn)(t)‖L2(−1,1) 6 −CP ‖(g̃n − gn)(t)‖L2(−1,1) + C1n

9/8e−
√

2n
4 e−

√
2nt
2

where CP is the Poincare constant on (−1, 1) and C1 is a positive constant that
depends only on θ. Thus

‖(g̃n − gn)(t)‖L2(−1,1) 6 C2n
5/8e−

√
2n
4 ,∀t > 0. (20)

where C2 > 0 does not depend on n.

Second step: Conclusion. Let T 6 a2/2. Working by contradiction, we
assume that there exists CT > 0 such that, for every n ∈ N∗,∫ 1

−1

gn(T, v)2dv 6 CT

∫ T

0

∫ b

a

gn(t, v)2dvdt.
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Thanks to the triangular inequality and (20), we deduce that

‖g̃n(T )‖L2(−1,1) 6
(
CT
∫ T

0

∫ b
a
|g̃n|2dvdt

)1/2

+ ‖(g̃n − gn)(T )‖L2(−1,1)

+
(
CT
∫ T

0

∫ b
a
|g̃n − gn|2dvdt

)1/2

6
(
CT
∫ T

0

∫ b
a
|g̃n|2dvdt

)1/2

+ (1 +
√
TCT )C2n

5/8e−
√

2n
4 .

However, there exists C3, C4 > 0 such that, when n→ +∞,

‖g̃n(T )‖L2 ∼ C3e
−
√

2nT
2(∫ T

0

∫ b

a

|g̃n(t, v)|2dvdt

)1/2

∼ C4

n3/8
e−
√

2na2

4 ,

which gives a contradiction. 2

5.4 End of the proof of Theorems 1.3 and 2.3

Let us consider γ = 2 and ω = T× (a, b) with 0 < a < b < 1. From Proposition
12 and Bessel Parseval equality, we know that system (5)-(7) is observable in ω

in any time T > T1. From Proposition 13, we deduce that for any time T 6 a2

2 ,
(5)-(7) is not observable in ω in time T . Thus, the quantity

T ∗ := inf{T > 0 ; system (5)(7) is observable in ω in time T }

is well de�ned and belongs to [a
2

2 ,+∞). Clearly, observability in some time T]
implies observability in any time T > T], so

• for every T > T ∗, (5)-(7) is observable in ω in time T ,

• for every T < T ∗, (5)-(7) is not observable in ω in time T .

5.5 Null controllability in any time T > 0 when a < 0 < b

In this section, ω = T× (−a, a) where a > 0. We �x β ∈ (0, a). Our goal is the
proof of the statement 4 of Theorem 1, thanks to a cut-o� argument.

5.5.1 Preliminary

We de�ne Ω1 := T× (β, 1), ω1 := T× (β, a) and we consider the system{
∂tf + v2∂xf − ∂2

vf = u(t, x, v)1ω1
(x, v), (t, x, v) ∈ (0, T )× Ω1,

f(t, x, β) = f(t, x, 1) = 0, (t, x) ∈ (0, T )× T, (21)

The goal of this section is the proof of the following result.

Proposition 14. The system (21) is null controllable in any time T > 0.

As in section 5.2, this is equivalent to the following observability result.
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Proposition 15. There exists C > 0 such that, for every n ∈ Z and g0,n ∈
L2(β, 1), the solution of ∂tgn − inv2gn − ∂2

vgn = 0, (t, v) ∈ (0,+∞)× (β, 1),
gn(t, β) = gn(t, 1) = 0, t ∈ (0,+∞),
gn(0, v) = g0,n(v), v ∈ (β, 1),

(22)

satis�es ∫ 1

β

|gn(T, v)|2dv 6 C

∫ T

0

∫ a

β

|gn(t, v)|2dvdt.

For the proof of Proposition 15, we need the following dissipation result.

Proposition 16. There exists K, δ > 0 such that, for every n ∈ Z, g0,n ∈
H1(β, 1), the solution of (22) satis�es∫ 1

β

|gn(t, v)|2dv 6 Ke−δ|n|
2/3t

∫ 1

β

(
|g0,n(v)|2 +

1

|n|2/3
|∂vg0,n(v)|2

)
dv.

Proof of Proposition 16: One may assume that n > 0, otherwise, consider
gn. To simplify the notations, we write g, instead of gn. Let B,C > 0 be such
that

B2 < 2C and 3B > 4C2 (23)

(for instance B =
√
C with C > 0 small enough). The function

L(t) :=

∫ 1

β

(
|g(t, v)|2 +

B

n1/3
=
[
vg(t, v)∂vg(t, v)

]
+

C

n2/3
|∂vg(t, v)|2

)
dv

satis�es

1
2
dL
dt = − 3Bn2/3

2 ‖vg‖2 − ‖∂vg‖2 − C
n2/3 ‖∂2

vg‖2

−2Cn1/3=

[
1∫
β

vg∂vg

]
− B

n1/3=

[
1∫
β

v∂vg∂
2
vg

]
.

Thanks to

−2Cn1/3=

[
1∫
β

vg∂vg

]
6 1

2‖∂vg‖
2 + 2C2n2/3‖vg‖2,

− B
n1/3=

[
1∫
β

v∂vg∂
2
vg

]
6 C

n2/3 ‖∂2
vg‖2 + B2

4C ‖∂vg‖
2,

we get

1

2

dL
dt

6 −
(

3B

2
− 2C2

)
n2/3β2‖g‖2 −

(
1

2
− B2

4C

)
‖∂vg‖2.

Thanks to (23), there exists δ > 0 (independent of n) such that dL
dt 6 −δn2/3L,

which gives the conclusion. 2

Proof of Proposition 15: Working as in the proof of Proposition 12, we get

C3e−c
∗√n

∫ 2T/3

T/3

∫ 1

β

(√
n|∂vg|2 + n3/2|g|2

)
dvdt 6 C4

∫ T

0

∫ a

β

|g|2dvdt (24)
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for n large enough. Moreover, thanks to Proposition 16, we have, for any t ∈
(T/3, 2T/3), ∫ 1

β

(√
n|∂vg(t, v)|2 + n3/2|g(t, v)|2

)
dv

> n7/6
∫ 1

β

(
1

n2/3 |∂vg(t, v)|2 + |g(t, v)|2
)
dv

> n7/6

K eδn
2/3 T

3

∫ 1

β
|g(T, v)|2dv.

Thus, ∫ 1

β

|g(T )|2dv 6
C5

n7/6T
e[c∗
√
n−δn3/2T/3]

∫ T

0

∫ a

β

|g|2dvdt

where C5 := 3KC4/C3, which gives the conclusion. 2

5.5.2 Cut-o� strategy

Let ξi ∈ C∞(R) for i = 1, 2, 3 such that 0 6 ξi 6 1 and
ξ1 + ξ2 + ξ3 ≡ 1

ξ1(v) = 0 if v ≤ β , ξ1(v) = 1 if v ≥ a
ξ2(v) = 1 if v ≤ −a , ξ2(v) = 0 if v ≥ −β
ξ3(v) = 1 if |v| ≤ β , ξ3(x) = 0 if |v| ≥ a

(25)

By Proposition 14, there exists u1 ∈ L2((0, T )× Ω1) such that the solution of ∂tf1 + v2∂xf1 − ∂2
vf1 = u1(t, x, v)1ω1

(x, v) , (t, x, v) ∈ (0, T )× Ω1 ,
f1(t, x, β) = f1(t, x, 1) = 0 , (t, x) ∈ (0, T )× T ,
f1(0, x, v) = f0(x, v) , (x, v) ∈ Ω1 ,

(26)
satis�es f1(T, ., .) = 0. Similarly, let Ω2 := T × (−1,−β), ω2 := T × (−a,−β);
there exists u2 ∈ L2((0, T )× Ω2) such that the solution of ∂tf2 + v2∂xf2 − ∂2

vf2 = u2(t, x, v)1ω2(x, v) , (t, x, v) ∈ (0, T )× Ω2 ,
f2(t, x,−1) = f2(t, x,−β) = 0 , (t, x) ∈ (0, T )× T ,
f2(0, x, v) = f0(x, v) , (x, v) ∈ Ω2 ,

(27)
satis�es f2(T, ., .) = 0. Finally, let Ω3 := T× (−β, β) and f3 be the solution of ∂tf3 + v2∂xf3 − ∂2

vf3 = 0 , (t, x, v) ∈ (0, T )× Ω3 ,
f3(t, x,±β) = 0 , (t, x) ∈ (0, T )× T ,
f3(0, x, v) = f0(x, v) , (x, v) ∈ Ω3.

(28)

We extend fj and uj by zero on (0, T ) × [Ω − Ωj ] for j = 1, 2, 3. Then, the
functions

f(t, x, v) := ξ1(v)f1(t, x, v) + ξ2(v)f2(t, x, v) +
T − t
T

ξ3(v)f3(t, x, v),

u(t, x, v) :=
2∑
j=1

ξj(v)uj(t, x, v)1ωj (x, v)− 1
T ξ3(v)f3(t, x, v)

−
3∑
j=1

(
2ξ′j(v)∂vfj(t, x, v) + ξ′′j (v)fj(t, x, v)

)
solve (1)-(3)-(4), as well as f(T, ., .) = 0 on Ω. 2

17



6 Proof of Theorem 1 with γ = 1 and Dirichlet

boundary conditions

In all this section, we take γ = 1 and ω = T× (a, b) where −1 < a < b < 1. Our
goal is the proof of the statement 2 of Theorem 1. The strategy is the same as
in the previous sections, it relies on the following dissipation property.

Proposition 17. There exists K, δ > 0 such that, for every n ∈ Z − {0} and
g0,n ∈ H1(−1, 1), the solution of (15) satis�es

‖gn(t)‖L2(−1,1) 6 Ke−δ|n|
2/3t‖g0,n‖H1(−1,1), ∀t > 0. (29)

Moreover, the power �2/3�in the exponential rate is optimal as n → +∞, and
necessarily δ 6 µ

2 , where µ is the �rst zero (from the right) of Airy function in
the half line (−∞, 0).

The proof of Proposition 17 relies on the following result.

Proposition 18. There exists B,C, δ > 0 with B2 < C such that, for every
L > 0 and h0 ∈ L2(−L,L), the solution of

∂τh = ∂2
yh+ iyh , (τ, y) ∈ (0,+∞)× (−L,L) ,

h(τ,±L) = 0 , τ ∈ (0,+∞) ,
h(0, y) = h0(y) , y ∈ (−L,L) ,

(30)

satis�es
L(τ) 6 L(0)e−δτ ,∀τ > 0, (31)

where

L(τ) :=

∫ L

−L

(
|h(τ, y)|2 − 2B=[h(τ, y)∂yh(τ, y)] + C|∂yh(τ, y)|2

)
dy.

Proof of Proposition 18: Let B,C > 0 be such that

4B2 < C and 2C2 < B (32)

(for instance, B =
√
C/3 with C > 0 small enough). Easy computations show

that

1

2

dL
dτ

= −B‖h‖2 − C=

 L∫
−L

h∂yh

− ‖∂yh‖2 − 2B=

 L∫
−L

∂2
yh∂yh

− C‖∂2
yh‖2.

Thanks to

−2B=

[
L∫
−L

∂2
yh∂yh

]
6 C‖∂2

yh‖2 + B2

C ‖∂yh‖
2,

−C=

[
L∫
−L

h∂yh

]
6 B

2 ‖h‖
2 + C2

2B ‖∂yh‖
2

we get
dL
dτ

6 −B
2
‖h‖2 −

(
1− B2

C
− C2

2B

)
‖∂yh‖2.
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Thanks to (32), there exists δ > 0 such that dL/dt 6 −δL, which gives the
conclusion.2

Proof of Proposition 17:

First step: Proof of (29): One may assume that n > 0, otherwise, consider
gn. In order to simplify the notation, we write g, instead of gn. The function
h(τ, y) de�ned by

g(t, v) = h(n
2
3 t, n

1
3 v)

satis�es (30) with L = n
1
3 and h0(y) := g0,n(y/n

1
3 ). From the previous propo-

sition, we know that

L̃(t) :=

∫ 1

−1

(
|g(t, v)|2 − 2B

n
1
3

=[g(t, v)∂vg(t, v)] +
C

n
2
3

|∂vg(t, v)|2
)
dv

satis�es L̃(t) 6 L̃(0)e−δn
2
3 t. Moreover, using B2 < C we get∫ 1

−1
|gn(t, v)|2dv 6

(
1− B2

C

)−1

L̃(t)

6
(

1− B2

C

)−1

L̃(0)e−δn
2
3 t

6 Ke−δn
2/3t‖g0,n‖2H1 .

for some constant K > 0.

Second step: Proof of the optimality. First, let us recall that the function

ϕ(y) := Ai
(
ei
π
6 y + µ

)
,

satis�es {
−ϕ′′(y) + iyϕ(y) = λϕ(y), y ∈ (0,+∞)
ϕ(0) = 0,

(33)

|ϕ(y)| 6 C

y1/4
e−
√

2
3 y3/2 , ∀y ∈ (0,+∞), (34)

where λ := −ei 2π3 µ, C > 0 (see [3, formulas (2.12) and (A.12)]).

Working by contradiction, we assume that there exists T > 0, n∗ ∈ N∗,
(rn)n∈Z ∈ (0,+∞)Z such that

• any solution of (15) satis�es

‖gn(t)‖L2(−1,1) 6 Ke−rnt‖g0,n‖H1(−1,1), ∀t ∈ [0, T ], n ∈ Z,

• rn > (λr + δ)|n|2/3, ∀|n| > n∗, where λr := <(λ) = |µ|/2 and δ > 0.

Let us consider n ∈ N∗ and θ ∈ C∞c (R) such that θ(±1) = 1. Thanks to (33),
the function

g̃n(t, v) :=
(
ϕ
(
n

1
3 (v + 1)

)
− ϕ

(
2n

1
3

)
θ(v)

)
e−(λn2/3−in)t

satis�es {
∂tg̃n + invg̃n − ∂2

v g̃n = Fn , (t, v) ∈ (0,+∞)× (−1, 1) ,
g̃n(t,±1) = 0 , t ∈ (0,+∞) ,
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where

Fn(t, v) := ϕ
(

2n
1
3

)(
[λn2/3 − in(v + 1)]θ(v) + θ′′(v)

)
e−(λn2/3−in)t.

Thanks to (34), there exists C1 > 0 such that, for every n ∈ N∗ and t ∈ R,

‖Fn(t)‖H1 6 C1n
11
12 e−

4
√
n

3 −λrn
2
3 t.

Thanks to the Duhamel formula and (34) we get the following inequality, for
every n > n∗ and t ∈ [0, T ]

‖g̃n(t)‖L2 6 Ke−rnt‖g̃n(0)‖H1 + C2n
11
12 e−

4
√
n

3

∫ t

0

e−rn(t−s)−λrn
2
3 sds,

where C2 > 0. Thus, there exists a constant C3 > 0 such that, for every n > n∗

and t ∈ [0, T ]

e−λrn
2
3 t 6 C3

(
e−rnt +R(n)e−

4
√
n

3 e−λrn
2
3 t

)
,

where R is a rational fraction. We get a contradiction by considering the limit
n→ +∞ (with a �xed t ∈ (0, T ]). This ends the proof of the optimality. 2

Remark 2. The optimality of n2/3 in the exponential rate shows that, we cannot
expect to prove the null controllability of (1)-(3) in the same way as we did for

(1)-(2). Indeed, the dissipation in e−δn
2/3t is not su�cient to compensate for the

constant eCn of Proposition 5. Therefore, with Dirichlet boundary conditions, if
the null controllability holds with arbitrarily small control supports ω, the proof
requires another strategy.

7 Conclusion and open problems

In this article, we have studied the null controllability of Kolmogorov type equa-
tions (1), with γ ∈ {1, 2}, in the rectangle Ω = T × (−1, 1), with a distributed
control localized on an open subset ω of Ω.

The following questions are still open.

1. When γ > 2, does null controllability hold? In [4], the proof of the non
uniform observability relies on a comparison argument (maximum princi-
ple), which cannot be used here because the 1D heat equation has complex
valued coe�cients.

2. When γ = 2, what is the value of the minimal time T ∗? We conjecture
that T ∗ = a2/2.

3. What happens for γ ∈ (1, 2)? (with v replaced by |v|)

4. With γ = 1 and Dirichlet boundary conditions in v, does null controlla-
bility hold with an arbitrary control support ω?
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5. Is it possible to extend these results to multidimensional con�gurations?
The technique of this paper should possibly extend to cylindrical domains
of the form T × (−1, 1)m. However, the generalization to more general
con�gurations or boundary controls, is widely open.
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A Proof of Proposition 1

Let a′, b′ be such that −1 < a < a′ < b′ < b < 1. All the computations of
the proof will be made assuming, �rst, g ∈ H1(0, T ;L2(−1, 1)) ∩ L2(0, T ;H2 ∩
H1

0 (−1, 1)). Then, the conclusion of Proposition 1 will follow by a density
argument.

Consider the weight function

α(t, v) :=
Mβ(v)

t(T − t)
, (t, v) ∈ (0, T )× R , (35)

where β ∈ C2([−1, 1]) satis�es

β > 1 on (−1, 1) , (36)

|β′| > 0 on [−1, a′] ∪ [b′, 1] , (37)

β′(1) > 0 , β′(−1) < 0 , (38)

β′′ < 0 on [−1, a′] ∪ [b′, 1] (39)

andM = M(T, n, β) > 0 will be chosen later on. We also introduce the function

z(t, v) := g(t, v)e−α(t,v) , (40)

that satis�es
e−αPng = P1z + P2z + P3z , (41)

where

P1z := −∂
2z
∂v2 + (αt − α2

v)z , P2z := ∂z
∂t − 2αv

∂z
∂v + invγz ,

P3z := −αvvz .
(42)

We develop the classical proof (see [25]), taking the L2(Q)-norm in the iden-
tity (41), then developing the double product, which leads to∫

Q

(
<[P1zP2z]−

1

2
|P3z|2

)
dvdt 6

∫
Q

|e−αPng|2dvdt , (43)

where Q := (0, T )× (−1, 1) . After computations (see [5] for details, we get∫
Q

|z|2
{
− 1

2
(αt − α2

v)t + [(αt − α2
v)αv]v −

1

2
α2
vv

}
dvdt

+

∫
Q

{
nγvγ−1=

(
z
∂z

∂v

)
− αvv

∣∣∣∂z
∂v

∣∣∣2αvv}dvdt 6 ∫
Q

|e−αPng|2dvdt . (44)
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Now, in the left hand side of (44) we separate the terms on (0, T )× (a′, b′) and
those on (0, T )× [(−1, a′) ∪ (b′, 1)]. One has

−αvv(t, v) >
C1M

t(T − t)
∀v ∈ [−1, a′] ∪ [b′, 1] , t ∈ (0, T ) ,

|αvv(t, v)| 6 C2M

t(T − t)
∀v ∈ [a′, b′] , t ∈ (0, T ) ,

(45)

where C1 = C1(β) := min{−β′′(x);x ∈ [−1, a′] ∪ [b′, 1]} is positive thanks to
the assumption (39) and C2 = C2(β) := sup{|β′′(x)|;x ∈ [a′, b′]}. Moreover,

−1

2
(αt − α2

v)t + [(αt − α2
v)αv]v −

1

2
α2
vv =

1

(t(T − t))3

{
Mβ(3Tt− T 2 − 3t2)

+M2
[
(2t− T )(β′′β + 2β′2)− t(T − t)β′′2

2

]
− 3M3β′′β′2

}
.

Hence, owing to (37) and (39), there exist m1 = m1(β) > 0 C3 = C3(β) > 0
and C4 = C4(β) > 0 such that, for every M >M1 and t ∈ (0, T ),

− 1

2
(αt − α2

v)t + [(αt − α2
v)αv]v −

1

2
α2
vv >

C3M
3

[t(T − t)]3
∀v ∈ [0, a′] ∪ [b′, 1] ,∣∣∣− 1

2
(αt − α2

v)t + [(αt − α2
v)αv]v −

1

2
α2
vv

∣∣∣ 6 C4M
3

[t(T − t)]3
∀v ∈ [a′, b′] (46)

where
M1 = M1(T, β) := m1(β)(T + T 2). (47)

Using (44), (45) and (46), we deduce, for every M >M1,∫ T

0

∫
(−1,a′)∪(b′,1)

C1M

t(T − t)

∣∣∣∂z
∂v

∣∣∣2dvdt
+

∫ T

0

∫
(−1,a′)∪(b′,1)

[
C3M

3

(t(T − t))3
|z|2 − |n|γ|v|γ−1=

(
∂z

∂v
z

)]
dvdt

6
∫ T

0

∫ b′

a′

[
C2M

t(T − t)

∣∣∣∂z
∂x

∣∣∣2 +
C4M

3

(t(T − t))3
|z|2 + |n|γvγ−1=

(
∂z

∂v
z

)]
dvdt

+

∫
Q

|e−αPng|2dvdt . (48)

Let

M2 = M2(T, β) :=
T 2
√
|n|γ

4 4
√
C1C3

. (49)

When M >M2, we have∣∣∣nγvγ−1=
(
∂z
∂v z
) ∣∣∣ 6 1

2
C3M

3

(t(T−t))3 |z|
2 + 1

2
(t(T−t))3
C3M3 γ2n2

∣∣∣∂z∂v ∣∣∣2
6 1

2
C3M

3

(t(T−t))3 |z|
2 + C1M

2t(T−t) |
∂z
∂v |

2,
(50)

because
1
2

(t(T−t))3
C3M3 γ2n2 = C1M

2t(T−t)
(t(T−t))4γ2n2

C1C3M4

6 C1M
2t(T−t)

(T 2/4)4γ2n2

C1C3M4

= C1M
2t(T−t)

M4
2

M4

22



From now on, we take

M = M(T, n, β) := C2 max{T + T 2;
√
|n|T 2} (51)

where

C2 = C2(β) := max

{
m1;

1

4 4
√
C1C3

}
so that M >M1 and M2 (see (47) and (49)). We have∫ T

0

∫
(0−1,a′)∪(b′,1)

(
C1M

2t(T − t)

∣∣∣∂z
∂v

∣∣∣2 +
C3M

3

2(t(T − t))3
|z|2
)
dvdt

6
∫ T

0

∫ b′

a′

(
C ′2M

t(T − t)

∣∣∣∂z
∂v

∣∣∣2 +
C6M

3

(t(T − t))3
|z|2
)
dvdt+

∫
Q

|e−αPng|2dvdt ,

(52)

where C6 = C6(β) := C4 + C3/2, C
′
2 = C2(β) = C2 + C1/2. Since for every

ε > 0

C1M

2t(T − t)

∣∣∣∂g
∂x
− αxg

∣∣∣2 +
C3M

3

2(t(T − t))3
|g|2

>

(
1− 1

1 + ε

)
C1M

2t(T − t)

∣∣∣∂g
∂x

∣∣∣2 +
M3

2(t(T − t))3

(
C3 − εC1(β′)2

)
|g|2 (53)

and choosing

ε = ε(β) :=
C3

2C1‖β′‖2∞
,

from (52), (53) and (40) we deduce that∫ T

0

∫
(0,a′)∪(b′,1)

(
C7M

t(T − t)

∣∣∣∂g
∂v

∣∣∣2 +
C3M

3|g|2

4(t(T − t))3

)
e−2αdvdt

6
∫
Q

|e−αPng|2dvdt+

∫ T

0

∫ b′

a′

(
C9M

3|g|2

(t(T − t))3
+

C8M

t(T − t)

∣∣∣∂g
∂v

∣∣∣2) e−2αdvdt ,

(54)

where C7 = C7(β) := [1−1/(1+ε)]C1/2, C8 = C8(β) := 2C ′2 and C9 = C9(β) :=
C6 + 2C ′2 sup{β′(x)2;x ∈ [a′, b′]}. Adding the same quantity in both sides, we
get∫

Q

(
C7M

t(T − t)

∣∣∣∂g
∂v

∣∣∣2 +
C3M

3|g|2

4(t(T − t))3

)
e−2αdvdt 6

∫
Q

|e−αPng|2dvdt

+

∫ T

0

∫ b′

a′

(
C11M

3|g|2

(t(T − t))3
+

C10M

t(T − t)

∣∣∣∂g
∂v

∣∣∣2) e−2αdvdt , (55)

where C10 = C10(β) := C8 + C7 and C11 = C11(β) := C9 + C3/4. Thanks to a
cut-o� function ρ such that

0 6 ρ 6 1, ρ ≡ 1 on (a′, b′), Supp(ρ) ⊂ (a, b)
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it is classic to get∫ T

0

∫ b′

a′

C10M

t(T − t)

∣∣∣∂g
∂v

∣∣∣2e−2αdvdt

6
∫
Q

|Png|2e−2αdvdt+

∫ T

0

∫ b

a

C12M
3|g|2e−2α

(t(T − t))3
dvdt

for some constant C12 = C12(β) > 0. Combining (55) with the previous in-
equality, we get∫

Q

(
C7M

t(T − t)

∣∣∣∂g
∂v

∣∣∣2 +
C3M

3|g|2

4(t(T − t))3

)
e−2αdvdt

6
∫
Q

2|e−αPng|2dvdt+

∫ T

0

∫ b

a

C13M
3|g|2

(t(T − t))3
e−2αdvdt , (56)

where C13 = C13(β, ρ) := C11 +C12. Then, the global Carleman estimates (10)
holds with

C1 = C1(β) :=
min{C7;C3/4}
max{2;C13}

.
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