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We study the null controllability of Kolmogorov-type equations ∂tf +

) in a rectangle Ω, under an additive control supported in an open subset ω of Ω.

For γ = 1, with periodic-type boundary conditions, we prove that null controllability holds in any positive time, with any control support ω.

, in which the control support was a horizontal strip.

With Dirichlet boundary conditions and a horizontal strip as control support, we prove that null controllability holds in any positive time if γ = 1, or if γ = 2 and ω contains the segment {v = 0}, and only in large time if γ = 2 and ω does not contain the segment {v = 0}.

, is based on 2 key ingredients: the observability of the Fourier components of the solution of the adjoint system, uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.

1 Introduction

Main result

We consider Kolmogorov-type equations

∂ t f + v γ ∂ x f -∂ 2 v f = u(t, x, v)1 ω (x, v), (t, x, v) ∈ (0, +∞) × Ω , (1) 
where γ ∈ N * , Ω = T × (-1, 1), T is the 1D-torus, ω is an open subset of Ω, 1 ω is the characteristic function of this set and u(t, x, v) is a source term located on the subdomain ω. It is a linear control system in which the state is f and the control u is supported in the subset ω.

Depending on the value of γ, we use dierent boundary conditions in variable v: periodic type boundary conditions when γ = 1 f (t, x -t, -1) = f (t, x + t, +1) , (t, x) ∈ (0, +∞) × T , ∂ v f (t, x -t, -1) = ∂ v f (t, x + t, 1) , (t, x) ∈ (0, +∞) × T , [START_REF] Alinhac | Uniqueness and nonuniqueness of the cauchy problem for hyperbolic operators with double characteristics[END_REF] or Dirichlet boundary conditions when γ ∈ N * f (t, x, -1) = f (t, x, +1) = 0 , (t, x) ∈ (0, +∞) × T .

(3)

We will also use initial data f (0, x, v) = f 0 (x, v), (x, v) ∈ Ω . 3)) is null controllable in time T if, for every f 0 ∈ L 2 (Ω), there exists u ∈ L 2 ((0, T ) × Ω) such that the solution of the Cauchy problem (1)-( 2)-(4) (resp. ( 1)-( 3)-( 4)) satises f (T, •, •) = 0.

When γ = 1 and ω = T×(a, b) for some a, b ∈ (-1, 1), the null controllability of system (1)-( 2) is proved in [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF]. The goals of this article are 1. to improve the strategy of [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF] in order to conclude with more general control supports, in the case of periodic-type boundary conditions when γ = 1 (i.e. for system (1)-( 2)), 2. to study the case of Dirichlet boundary conditions (i.e. system (1)-( 3)), [START_REF] Almog | The stability of the normal state of superconductors in the presence of electric currents[END_REF]. to give an indication about the possible critical parameter γ for the null controllability (possibly γ = 2), for system (1)-( 3), as for Grushin equations in [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF].

The main results of this paper are the following ones.

Theorem 1. 1. If γ = 1 and ω is an open subset of Ω, then the system (1)-( 2) is null controllable in any time T > 0.

2. If γ = 1 and ω = T × (a, b) with -1 < a < b < 1, then the system (1)-( 3) is null controllable in any time T > 0.

3. If γ = 2 and ω = T × (a, b) with 0 < a < b < 1 then there exists T * a 2 /2 such that

• the system (1)-( 3) is null controllable in any time T > T * ,

• the system (1)-( 3) is not null controllable in time T < T * .

4. If γ = 2 and ω = T × (a, b) with -1 < a < 0 < b < 1 then the system (1)-( 3) is null controllable in any time T > 0.

Note that in the third statement, the set {v = 0} is not contained in the control location ω, contrary to the fourth case. Theorem 1 emphasizes several behaviors: By duality, Theorem 1 is equivalent to observability results for the adjoint system

∂ t g -v γ ∂ x g -∂ 2 v g = 0 , (t, x, v) ∈ (0, +∞) × Ω , (5) 
associated to the following boundary conditions when γ = 1 g(t, x -T + t, -1) = g(t, x + T -t, 1) , (t, x) ∈ (0, +∞) × T , ∂ v g(t, x -T + t, -1) = ∂ v g(t, x + T -t, 1) , (t, x) ∈ (0, +∞) × T , [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coecient and applications to controllability and an inverse problem[END_REF] or the following ones for γ ∈ N * g(t, x, -1) = g(t, x, 1) = 0 , (t, x) ∈ (0, +∞) × T . [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratied media[END_REF] We will also use initial data g(0, x, v) = g 0 (x, v) , (x, v) ∈ Ω . [START_REF] Brézis | Analyse fonctionnelle, theorie et applications[END_REF] Denition 2 (Observability). Let T > 0 and γ ∈ N * . System ( 5)-( 6) (resp. System ( 5)-( 7)) is observable in ω in time T if there exists C > 0 such that, for every g 0 ∈ L 2 (Ω), the solution of the Cauchy problem ( 5)-( 6)-(8) (resp.

(5)-( 7)-( 8)) satises

Ω |g(T, x, v)| 2 dxdv C T 0 ω |g(t, x, v)| 2 dxdvdt .
Theorem 2. 1. If γ = 1 and ω is an open subset of Ω, then the system ( 5)-( 6) is observable in ω in any time T > 0.

2. If γ = 1 and ω = T × (a, b) with 0 < a < b < 1, then the system (5)-( 7) is observable in ω in any time T > 0.

3. If γ = 2 and ω = T×(a, b) with 0 < a < b < 1, then there exists T * a 2 /2 such that

• the system (5)-( 7) is observable in ω in any time T > T * ,

• the system (5)-( 7) is not observable in ω in time T < T * .

4. If γ = 2 and ω = T × (a, b) with -1 < a < 0 < b < 1 then the system (5)-( 7) is observable in ω in any time T > 0.

Remark 1. Let us emphasize that, when γ = 2, ω = T × (a, b) with 0 < a < b < 1 and T T * , then unique continuation holds for system (5)-( 7), i.e. any solution g of ( 5)-( 7) satises g ≡ 0 on (0, T ) × ω ⇒ g ≡ 0 on (0, T ) × Ω (see Proposition 9 for a proof ).

Motivation and bibliographical comments 1.2.1 Null controllability of the heat equation

The null and approximate controllability of the heat equation are essentially well understood subjects for both linear and semilinear equations, for bounded or unbounded domains (see, for instance, [START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF], [START_REF] Fabre | Approximate controllability of the semilinear heat equation[END_REF], [START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF], [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: The linear case[END_REF], [START_REF] Fernández-Cara | On the null controllability of the onedimensional heat equation with BV coecients[END_REF], [START_REF] González-Burgos | Some results on controllability for linear and nonlinear heat equations in unbounded domains[END_REF], [START_REF] Imanuvilov | Carleman estimate for a parabolic equation in sobolev spaces of negative order and its applications[END_REF], [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], [START_REF] Lopez | Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density[END_REF], [START_REF] Miller | On the null-controllability of the heat equation in unbounded domains[END_REF], [START_REF] Miller | On exponential observability estimates for the heat semigroup with explicit rates[END_REF], [START_REF] Zuazua | Approximate controllability of the semilinear heat equation: boundary control[END_REF], [START_REF] Zuazua | Finite dimensional null-controllability of the semilinear heat equation[END_REF]) and also with discontinuous (see, e.g. [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diusion coecients[END_REF], [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coecient and applications to controllability and an inverse problem[END_REF], [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratied media[END_REF], [START_REF] Rousseau | Carleman estimates and controllability results for the onedimensional heat equation with bv coecients[END_REF]) or singular ( [START_REF] Vancostenoble | Null controllability for the heat equation with singular inverse-square potentials[END_REF] and [START_REF] Ervedoza | Control and stabilization properties for a singular heat equation with an inverse-square potential[END_REF]) coecients.

In particular, the heat equation on a smooth bounded domain Ω of R d (d ∈ N * ), with a source term located on an open subset ω of Ω is null controllable in arbitrarily small time T and with an arbitrarily small control support ω. This result is due, for the case d = 1, to H. Fattorini and D. Russell [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]Theorem 3.3], and, for d 2, to O. Imanuvilov [START_REF] Imanuvilov | Boundary controllability of parabolic equations[END_REF], [START_REF] Imanuvilov | Controllability of parabolic equations[END_REF] (see also the book [START_REF] Fursikov | Controllability of evolution equations[END_REF] by A. Fursikov and O.Imanuvilov) and G. Lebeau and L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. It is then natural to wonder whether the same result holds for degenerate parabolic equations.

Boundary-degenerate parabolic equations

The null controllability of parabolic equations degenerating on the boundary of the domain in one space dimension is well-understood, much less so in higher dimension. Given 0 < a < b < 1 and γ > 0, let us consider the 1D equation

∂ t w + ∂ x (x 2γ ∂ x w) = u(t, x)1 (a,b) (x) , (t, x) ∈ (0, ∞) × (0, 1) ,
with suitable boundary conditions. Then, null controllability holds if and only if γ ∈ (0, 1) (see [START_REF] Cannarsa | Null controllability of degenerate heat equations[END_REF][START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF]), while, for γ ≥ 1, the best result one can show is regional null controllability(see [START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF]), which consists in controlling the solution within the domain of inuence of the control. Several extensions of the above results are available in one space dimension, see [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF][START_REF] Martinez | Carleman estimates for one-dimensional degenerate heat equations[END_REF] for equations in divergence form, [START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF][START_REF] Cannarsa | Null controllability of degenerate parabolic operators with drift[END_REF] for nondivergence form operators, and [START_REF] Cannarsa | Controllability of 1-d coupled degenerate parabolic equations[END_REF][START_REF] Flores | Carleman estimates for degenerate parabolic equations with rst order terms and applications[END_REF] for cascade systems.

Fewer results are available for multidimensional problems, mainly in the case of two dimensional parabolic operators which simply degenerate in the normal direction to the boundary of the space domain, see [START_REF] Cannarsa | Carleman estimates and null controllability for boundary-degenerate parabolic operators[END_REF].

Parabolic equations degenerating inside the domain

In [START_REF] Martinez | Regional null controllability of a linearized Crocco type equation[END_REF], the authors study linearized Crocco type equations

∂ t f + ∂ x f -∂ vv f = u(t, x, v)1 ω (x, v), (t, x, v) ∈ (0, T ) × T × (0, 1) , f (t, x, 0) = f (t, x, 1) = 0, (t, x) ∈ (0, T ) × T .
For a given strict open subset ω of T × (0, 1), they prove that null controllability does not hold: the optimal result is regional null controllability. Note that, for Kolmogorov equation [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF], the coupling between the diusion (in v) and the transport (in x at speed v) generates diusion both in variables x and v (see Propositions 2,10 and 17).

In [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF], we study Grushin-type equations

∂ t f -∂ 2 x f -|x| 2γ ∂ 2 y f = u(t, x, y)1 ω (x, y), (t, x, y) ∈ (0, T ) × Ω, f (t, x, y) = 0, (t, x, y) ∈ (0, T ) × ∂Ω , (9) 
where Ω := (-1, 1) × (0, 1), ω ⊂ (0, 1) × (0, 1), and γ > 0. Here, the parabolic operator degenerates along the line {0} × (0, 1). We prove that

• null controllability holds in any time T > 0 when γ ∈ (0, 1),

• null controllability does not hold (whatever T > 0) when γ > 1,

• when γ = 1 and ω = (a, b) × (0, 1) with 0 < a < b < 1, there exists T min a 2 /2 such that null controllability holds when T > T min and does not hold when T < T min .

Note that, contrary to Grushin-type equations [START_REF] Cannarsa | Controllability of 1-d coupled degenerate parabolic equations[END_REF], in Kolmogorov equations

(1), the parabolic operator degenerates everywhere on the domain.

Null controllability and hypoellipticity

It could be interesting to analyze the connections between null controllability and hypoellipticity.

We recall that a linear dierential operator P with C ∞ coecients in an open set Ω ⊂ R d is called hypoelliptic if, for every distribution u in Ω, u must be a C ∞ function in every open set where so is P u. The following sucient condition (which is also essentially necessary) for hypoellipticity is due to Hörmander (see [START_REF] Hörmander | Hypoelliptic second order dierential equations[END_REF]).

Theorem 3. Let P be a second order dierential operator of the form P = r j=1 X 2 j + X 0 + c, where X 0 , ..., X r denote rst order homogeneous dierential operators in an open set Ω ⊂ R n with C ∞ coecients, and c ∈ C ∞ (Ω). Assume that there exists n operators among

X j1 , [X j1 , X j2 ], [X j1 , [X j2 , X j3 ]], ..., [X j1 , [X j2 , [X j3 , [..., X j k ]...]]],
where j i ∈ {0, 1, ..., r}, which are linearly independent at any given point in Ω. Then, P is hypoelliptic.

The Kolmogorov operator K := v γ ∂ x + ∂ 2 v satises Hörmander condition for every γ ∈ N * . Indeed, K = X 0 + X 2 1 where

X 0 (x, v) := v γ 0 , X 1 (x, v) := 0 1 and [X 0 , X 1 ](x, v) = γv γ-1 0 , [X 1 , [X 1 , X 2 ]](x, v) = γ(γ -1)v γ-2 0 .
Thus, when γ = 1, the rst iterated Lie bracket is sucient, whereas when γ = 2, the second one the required (at v = 0), to satisfy Hörmander's condition.

First, we emphasize that hypoellipticity is not sucient for unique continuation. For instance, Alinhac and Zuily built a zero order C ∞ -perturbation of the Kolmogorov operator K for which unique continuation does not hold: there exists C ∞ -functions u(t, x, v) and a(t, x, v) on a neighborhood V of 0 in R 3 such that Ku + au = 0, u(t, x, v) = v(t, x, v) = 0 when v < 0, and 0 ∈ Supp(u) [START_REF] Alinhac | Uniqueness and nonuniqueness of the cauchy problem for hyperbolic operators with double characteristics[END_REF]. Therefore, hypoellipticity cannot be sucient neither for null controllability.

Let us recall that the Grushin operator G := ∂ 2 x + |x| 2γ ∂ 2 y is the hypoelliptic operator of type II associated to the vector eld (X 0 , X 1

) (i.e. G = X 2 0 + X 2 1 ),
whereas Kolmogorov operator K is the one of type I (i.e. K = X 0 + X 

Structure of the article

In Section 2, we state a global Carleman estimate, for 1D heat equations with parameters, which is a preliminary result for the whole article. In Section 3, we prove Theorem 1 for γ = 1 with periodic type boundary conditions. In Section 4, we study the well posedness and the Fourier decomposition of the solutions of ( 1)-( 3) when γ ∈ {1, 2}. In Section 5 (resp. 6), we prove Theorem 1 for γ = 2 (resp. γ = 1), with Dirichlet boundary conditions.

Preliminary

The goal of this section is the statement of a global Carleman estimate for the Fourier components (in x) of the solution of the adjoint system [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF]. For n ∈ Z and γ ∈ N * , we introduce the operator

P n,γ g := ∂ t g + inv γ g -∂ 2 v g.
Proposition 1. We assume γ ∈ N * (resp. γ = 1). Let a, b be such that

-1 < a < b < 1. There exist a weight function β ∈ C 1 ([-1, 1], R * + ), pos- itive constants C 1 , C 2 such that, for every n ∈ Z, γ ∈ {1, 2}, T > 0 and g ∈ C 0 ([0, T ], L 2 (-1, 1)) ∩ L 2 (0, T ; H 1 0 (-1, 1)) (resp. g ∈ C 0 ([0, T ], L 2 (-1, 1)) ∩ L 2 (0, T ; H 1 (-1, 1)) such that g(t, -1) = g(t, 1)e i2n(T -t) and ∂ v g(t, -1) = ∂ v g(t, +1)e i2n(T -t) ) the following inequality holds C 1 T 0 1 -1 M t(T -t) ∂g ∂v (t, v) 2 + M 3 (t(T -t)) 3 g(t, v) 2 e -M β(v) t(T -t) dvdt T 0 1 -1 |P n,γ g| 2 e -M β(v) t(T -t) dvdt + T 0 b a M 3 (t(T -t)) 3 |g(t, v)| 2 e -M β(v) t(T -t) dvdt (10) 
where M := C 2 max{T + T 2 ; |n|T 2 }.

The proof of this estimate is classical (see [START_REF] Fursikov | Controllability of evolution equations[END_REF]): our weight β is the usual one (see [START_REF] Miller | On the null-controllability of the heat equation in unbounded domains[END_REF], ( 37), ( 38) and ( 39)). We only track carefully the behavior with respect to n of the dierent constants. For sake of completeness, a proof is reproduced in Appendix, in the case of Dirichlet boundary conditions on g. For periodic-type boundary conditions, one may use a periodic weight function β,

as in [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF].
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Proof of Theorem 1 with γ = 1 and periodictype boundary conditions

In all this section, we take γ = 1.

Well posedness, Fourier decomposition and dissipation

We have the following well posedness result, for the Cauchy-problem ( 1)-( 2).

Proposition 2. Let T > 0, 1)-( 2)-( 4). Moreover, if u ≡ 0, the Fourier components

f 0 ∈ L 2 (Ω) and u ∈ L 2 ((0, T ) × Ω). There ex- ists a unique solution f ∈ C 0 ([0, T ], L 2 (Ω)) of the Cauchy problem (
f n (t, v) := T f (t, x, v)e -inx dx, t ∈ (0, +∞), v ∈ (-1, 1), n ∈ Z satisfy f n (t, .) L 2 (-1,1) f n (0, .) L 2 (-1,1) e -n 2 t 3 12 , ∀t > 0, n ∈ Z.

Proof of Proposition 2:

The function h(t, x, v) := f (t, x + vt, v) solves a linear equation with coecients depending only on t, and periodic boundary conditions. Thus, we have an explicit expression

h(t, x, v) = p,n∈Z f (n, p)e -(pπ) 2 t+npπt 2 -n 2 t 3 3 e i(nx+pπv) + p,n∈Z t 0 ŵ(τ, n, p)e (pπ) 2 τ -npπτ 2 +n 2 τ 3 3 e -(pπ) 2 t+npπt 2 -n 2 t 3 3 e i(nx+pπv)
where

f (n, p) := T 1 -1 f 0 (x, v)e -i(nx+pπv) dvdx, ŵ(τ, n, p) := T 1 -1 1 ω (x + vt, v)u(τ, x + vt, v)e -i(nx+pπv) dvdx.
The dissipation result is a consequence of the relation

-(pπ) 2 t + npπt 2 -n 2 t 3 3 = -t pπ - nt 2 2 - n 2 t 3 12 .
We refer to [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF] for more details. 2

Null controllability of initial data with a nite number of Fourier modes

The goal of this section is the proof of the following result.

Proposition 3. There exists C > 0 such that, for every T > 0, N ∈ N * and

f 0 ∈ L 2 (Ω) of the form f 0 (x, v) = |n| N f 0,n (v)e inx there exists a control u ∈ L 2 ((0, T ) × Ω) such that the solution of (1)-(2)-(4) satises f (T, ., .) = 0 and u L 2 ((0,T )×Ω) T e C(1+ 1 T +N ) f 0 L 2 (Ω) .
By duality, this null controllability result is equivalent to the following observability inequality.

Proposition 4. There exists C > 0 such that, for every T > 0, N ∈ N * and g 0 ∈ L 2 (Ω) of the form g 0 (x, v) = |n| N g 0,n (v)e inx the solution of ( 5)-( 6)-( 8)

satises

Ω |g(T, x, v)| 2 dxdv T 2 e C(1+ 1 T +N ) T 0 ω |g(t, x, v)| 2 dxdv.
For the proof of Proposition 4, we need the 2 following ingredients. The rst one is a classical inequality, proved, for example, in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] (see also [START_REF] Lebeau | Applications to unique continuation and control of parabolic equations[END_REF]).

Proposition 5. Let c, d ∈ R be such that c < d. There exists C > 0 such that,

for every N ∈ N * and (b n ) |n| N ∈ R 2N +1 , N n=-N |b n | 2 e CN d c N n=-N b n e inx 2 dx.
The second ingredient is an estimate of the observability constant for the Fourier components of g.

Proposition 6. Let a, b ∈ R be such that -1 < a < b < 1. There exists C > 0 such that, for every T > 0, n ∈ Z, g 0,n ∈ L 2 (-1, 1), the solution of        ∂ t g n + invg n -∂ 2 v g n = 0 , (t, v) ∈ (0, +∞) × (-1, 1) , g n (t, -1) = g n (t, +1)e i2n(T -t) , t ∈ (0, +∞) , ∂ v g n (t, -1) = ∂ v g n (t, +1)e i2n(T -t) , t ∈ (0, +∞) , g n (0, v) = g 0,n (v) , v ∈ (-1, 1) , (11) 
satises

1 -1 |g n (T, v)| 2 dv T 2 e C 1+ 1 T + √ |n| T 0 b a |g n (t, v)| 2 dvdt.
Proof of Proposition 6: For t ∈ (T /3, 2T /3), we have

4 T 2 1 t(T -t) 9 2T 2 and 1 -1 |g n (T, v)| 2 dv 1 -1 |g n (t, v)| 2 dv.
Thanks to Proposition 1, we get

C 1 64M 3 T 6 e -9M β * 2T 2 T 3 1 0 |g n (T, v)| 2 dv C 3 T 0 b a |g n (t, v)| 2 dvdt where β * := max{β(x); x ∈ [-1, 1]}, β * := min{β(x); x ∈ [-1, 1]} and C 3 := max{x 3 e -β * x ; x ∈ [-1, 1]}. Using the inequality M C 2 [T + T 2 ], we get 1 0 |g n (T, v)| 2 dv C 4 T 2 e c1 M T 2 T 0 b a |g n (t, v)| 2 dvdt ( 12 
)
for some constants c 1 , C 4 > 0 (independent of n, T and g 0,n ).

First case:

|n| < 1 + 1 T . Then, M = C 2 (T + T 2 ) thus 1 -1 |g n (T, v)| 2 dv C 4 T 2 e c1C2(1+ 1 T ) T 0 b a |g n (t, v)| 2 dvdt.
Second case:

|n| 1 + 1 T . Then, M = C 2 |n|T 2 , thus 1 0 |g n (T, v)| 2 dv C 4 T 2 e c1C2 √ |n| T 0 b a |g n (t, v)| 2 dvdt.
This gives the conclusion.
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Now, let us prove Proposition 4, thanks to Propositions 5 and 6.

Proof of Proposition 4: Let a, b, c, d ∈ R be such that a < b, c < d and (c, d) × (a, b) ⊂ ω. Let g n be the solution of [START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF] for n = -N, ..., N . Then

g(t, x, v) = |n| N g n (t, v)e n (x)
, where e n (x) := e inx . From the orthogonality of the family (e n ) n∈Z in L 2 (T), Propositions 6 and 5, we deduce

Ω g(T, x, v) 2 dxdv = |n| N 1 -1 |g n (T, v)| 2 dv T 2 e C(1+ 1 T + √ N ) |n| N T 0 b a |g n (t, v)| 2 dvdt T 2 e C(N + 1 T + √ N ) T 0 b a d c |n| N g n (t, v)e n (x) 2 dxdvdt T 2 e C(N + 1 T ) T 0 ω |g(t, x, v)| 2 dxdvdt
where the constant C may change from line to line. 2

Construction of the control function

The goal of this section is the proof of the statement 1 of Theorem 1. The construction of the control is the one of [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratied media[END_REF] (itself inspired from [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], see also [START_REF] Lebeau | Applications to unique continuation and control of parabolic equations[END_REF]).

For n ∈ Z, we dene e n (x) := e inx and H n := e n ⊗ L 2 (0, 1), which is a closed subspace of L 2 (Ω). For j ∈ N, we dene

E j := ⊕ |n| 2 j H n and Π Ej the orthogonal projection from L 2 (Ω) to E j . Let T > 0 and f 0 ∈ L 2 (Ω) and let us build a control u ∈ L 2 ((0, T ) × Ω) such that the solution of (1)-(3)-(4) satises f (T ) = 0. Let ρ ∈ R with 0 < ρ < 1 3 . ( 13 
)
Let K = K(ρ) > 0 be such that K ∞ j=1 2 -jρ = T . Let (a j ) j∈N be dened by a 0 = 0, a j+1 = a j + 2T j where T j := K2 -jρ for every j ∈ N. We now dene the control function u in the following way. On [a j , a j + T j ], we apply a control u such that Π Ej f (a j + T j ) = 0 and

u L 2 ((aj ,aj +Tj )×Ω) C j f (a j ) L 2 (Ω)
where C j := T j e

C 2 j + 1 T j (see Proposition 3). Then f (a j + T j ) L 2 (Ω) (1 + T j C j ) f (a j ) L 2 (Ω) .
On [a j + T j , a j+1 ], we apply no control, to take advantage of the dissipation of the solution proved in Proposition 2

f (a j+1 ) L 2 (Ω) e -2 2j T 3 j 12 f (a j + T j ) L 2 (Ω) .
Thus, we obtain

f (a j+1 ) L 2 (Ω) e 2 j k=1 ln(1+ √ T k C k )-2 2k T 3 k 12 f 0 L 2 (Ω) .
The choice of ρ ensures that the sum in the exponent tends to -∞ when j → +∞, this gives f (T ) = 0. Arguing in the same way, one proves that the control built above belongs to L 2 ((0, T ) × Ω). For f ∈ V, we dene 

|f | V := Ω |∂ v f (x, v)| 2 dxdv 1/2 and V := Adh |.| V (V). Observe that H 1 0 (Ω) ⊂ V ⊂ L 2 (Ω), thus V is dense in L 2 (Ω). We dene the operator A γ by D(A γ ) := {f ∈ V ; -∂ 2 v f + v γ ∂ x f ∈ L 2 (Ω)}, A γ f := -∂ 2 v f + v γ ∂ x f. Then D(A γ ) is dense in L 2 (Ω), (A γ , D(A γ ))
T > 0, u ∈ L 2 ((0, T ) × Ω), f 0 ∈ L 2 (Ω), the weak solution of (1)-(3)-(4) is f (t) = S γ (t)f 0 + t 0 S γ (t -s)(1 ω u)(s)ds
and the following existence and uniqueness result follows. Proposition 7. Let γ ∈ {1, 2}. For every T > 0, u ∈ L 2 ((0, T )×Ω), f 0 ∈ L 2 (Ω) there exists a unique weak solution f ∈ C 0 ([0, T ], L 2 (Ω)) ∩ L 2 ((0, T ), V ) of ( 1)-( 3)-( 4). Moreover, f (t) ∈ D(A γ ) and ∂ t f (t) ∈ L 2 (Ω) for a.e. t ∈ (0, T ).

Let us consider a solution of ( 5)-( 7)-( 8) in the sense above. Since g ∈ C 0 ([0, T ], L 2 (Ω)), the function x → g(t, x, v) belongs to L 2 (T) for almost every (t, v) ∈ [0, +∞) × (-1, 1), thus, it can be developed in Fourier series of x as follows

g(t, x, v) = n∈Z g n (t, v)e inx where g n (t, v) := T g(t, x, v)e -inx dx, ∀n ∈ Z. ( 14 
)
Proposition 8. For every n ∈ Z, g n is the unique solution of

   ∂ t g n -inv γ g n -∂ 2 v g n = 0, (t, v) ∈ (0, +∞) × (-1, 1), g n (t, ±1) = 0, t ∈ (0, +∞), g n (0, v) = g 0,n (v), v ∈ (-1, 1), (15) 
where g 0,n ∈ L 2 (-1, 1) is given by

g 0,n (v) := T g 0 (x, v)e -inx dx, v ∈ (-1, 1).
This result may be proved by following the same steps as in [4, Section 2.2].

Then, the following unique continuation property follows.

Proposition 9. Let γ ∈ {1, 2}, ω = T × (a, b) where 0 < a < b < 1, T > 0 and g ∈ C 0 ([0, T ], L 2 (Ω))∩L 2 ((0, T ), V ) a solution of ( 5)- [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratied media[END_REF]. If g ≡ 0 on (0, T )×ω, then g ≡ 0 on (0, T ) × Ω.

Proof of Proposition 9: Let n ∈ Z and g n be dened by [START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF]. Then g n ≡ 0

on (0, T ) × (a, b) and g n solves [START_REF] Cannarsa | Carleman estimates and null controllability for boundary-degenerate parabolic operators[END_REF]. Thus, Proposition 1 ensures that g n ≡ 0 on (0, T ) × (-1, 1). Therefore, g ≡ 0 on (0, T ) × Ω. In all this section, we take γ = 2 and ω = T × (a, b) where -1 < a < b < 1. In the rst 4 subsections, we prove the statement 3 of Theorem 1 and in the last subsection, we prove the statement 4.

Dissipation speed on (-1,1)

The goal of this section is the proof of the following dissipation property.

Proposition 10. There exists K, δ > 0 such that, for every n ∈ Z -{0} and g 0,n ∈ H 1 (-1, 1), the solution of (15) satises

1 -1 |g n (t, v)| 2 dv Ke -δ √ |n|t 1 -1 1 √ n |∂ v g 0,n (v)| 2 + √ n|vg 0,n (v)| 2 dv, ∀t > 0.
The proof of Proposition 10 relies on the following result.

Proposition 11. There exists A, B, C, δ > 0 with B 2 < AC such that, for every L > 0 and h 0 ∈ H 1 (-L, L), the solution of

   ∂ τ h = ∂ 2 y h + iy 2 h , (τ, y) ∈ (0, +∞) × (-L, L) , h(τ, ±L) = 0 , τ ∈ (0, +∞) , h(0, y) = h 0 (y) , y ∈ (-L, L) , (16) 
satises

L(t) L(0)e -δτ , ∀τ > 0, (17) 
where

L(τ ) = L -L |h(τ, y)| 2 + A|∂ y h(τ, y)| 2 -2B [yh(τ, y)∂ y h(τ, y)] + C|yh(τ, y)| 2 dy.
Proof of Proposition 11: This proof is inspired from [41]. Let A, B, C > 0 be such that

B 2 < AC and A 2 + C 2 < B 2 (18) 
(for instance A = Ã, B = B, C = C for any Ã, B, C, > 0 such that B2 < Ã C and ( Ã2 + C2 ) < B/2). Easy computations give

1 2 dL dτ = -3B yh 2 -∂ y h 2 -C y∂ y h 2 -A ∂ 2 y h 2 +C h 2 -2A L -L y∂ y hh -2B L -L y∂ 2 y h∂ y h .
where . is the usual L 2 ((-L, L), C)-norm, i.e.

f := L -L |f (y)| 2 dy.
Thanks to the following inequalities

C h 2 2C yh ∂ y h B 2 yh 2 + 2C 2 B ∂ y h 2 , -2A L 0 y∂ y hh B 2 yh 2 + 2A 2 B ∂ y h 2 , -2B L 0 y∂ 2 y h∂ y h A ∂ 2 y h 2 + B 2 A y∂ y h 2 ,
we get

1 2 dL dτ -2B yh 2 -1 - 2(A 2 + C 2 ) B ∂ y h 2 .
Thanks to [START_REF] Ervedoza | Control and stabilization properties for a singular heat equation with an inverse-square potential[END_REF], there exists δ > 0 (independent of L) such that dL dτ -δL, which gives the conclusion. 2

Proof of Proposition 10: One may assume that n > 0, otherwise, consider g n . In order to simplify the notations, we write g, instead of g n . The function h(τ, y) dened by

g(t, v) = h( √ nt, 4 √ nv)
satises ( 16) with L = 4

√ n and h 0 (y) := g 0,n (y/ 4 √ n). From the previous proposition, we know that

L(t) = 1 -1 |g(t, v)| 2 + A √ n |∂ v g(t, v)| 2 -2B [vg(t, v)∂ v g(t, v)]+C √ n|vg(t, v)| 2 dv
satises L(t) L(0)e -δ √ nt . Moreover, using (18) and

g 2 2 vg ∂ v g √ n vg 2 + 1 √ n ∂ v g 2 we get L(0) 1 -1 2A + 1 √ n |∂ v g 0 (v)| 2 + (2C + 1) √ n|vg 0 (v)| 2 dv. Thus 1 -1 |g n (t, v)| 2 dv L(t) L(0)e -δ √ nt K 1 -1 1 √ n |∂ v g 0 (v)| 2 + √ n|vg 0 (v)| 2 dve -δ √ nt
where K := max{2A + 1; 2C + 1}. 2

5.2 Null controllability in large time T when 0 < a < b < 1

In this section, we assume 0 < a < b < 1. Our goal is to prove the existence of a time T 1 > 0 such that, for every T > T 1 , the system ( 5)-( 7) is observable in ω in time T . The following uniform observability result gives the conclusion.

Proposition 12. There exists T 1 , C > 0 such that for every T > T 1 , n ∈ Z and g 0,n ∈ L 2 (-1, 1), the solution of ( 15) satises

1 -1 g n (T, v) 2 dv C T 0 b a g n (t, v) 2 dvdt.
Proof of Proposition 12: Working as in the proof of Proposition 6, we get

C 3 e -c * √ n 2T /3 T /3 1 -1 √ n|∂ v g| 2 + n 3/2 |g| 2 dvdt C 4 T 0 b a |g| 2 dvdt (19)
for n large enough, where In this section, we assume 0 < a < b < 1. The goal of this section is to prove that ( 5)-( 7) is not observable in ω in time T a 2 /2, which is equivalent to the following non uniform observability result.

C 3 := C 2 max{4C 1 ; (4C 1 ) 3 }, c * := 9 2 C 2 max{β(v); v ∈ [-1, 1]},

REPRENDRE ICI

1 -1 √ n|∂ v g(t, v)| 2 + n 3/2 |g(t, v)| 2 dv n 1 -1 1 √ n |∂ v g(t, v)| 2 + √ n|vg(t, v)| 2 dv n K e δ √ n T 3 1 -1 |g(T, v)| 2 dv.
Proposition 13. Let T a 2 /2. For every C > 0, there exists n ∈ Z, g 0,n ∈ L 2 (-1, 1) such that the solution of ( 15) satises

1 -1 g n (T, v) 2 dv > C T 0 b a g n (t, v) 2 dvdt.
Proof of Proposition 13:

First step: Approximate solution. Let > 0 be such that b < 1 -and θ ∈ C ∞ (R) be such that Supp(θ) ⊂ (-1 -, -1 + ) ∪ (1 -, 1 + ), θ(±1) = 1.
For n ∈ N * , we dene

gn (t, v) := 8 √ n e - √ in v 2 2 -e - √ in 2 θ(v) e - √ int
where √ i := e i π 4 . We have

∂ t gn + inv 2 gn -∂ 2 v gn = 8 √ ne - √ in 2 √ inθ + θ -inv 2 θ e - √ int , gn (t, ±1) = 0.
Let g n be the solution of

   ∂ t g n + inv 2 g n -∂ 2 v g n = 0, (t, v) ∈ (0, T ) × (0, 1), g n (t, ±1) = 0, t ∈ (0, T ), g n (0, v) = gn (0, v),
v ∈ (0, 1).

We have

1 2 d dt (g n -g n )(t) 2 L 2 (-1,1) = -∂ v (g n -g n )(t) 2 L 2 (-1,1) + 1 -1 8 √ ne - √ in 2 √ inθ(v) + θ (v) -inv 2 θ(v) e - √ int (g n -g n )(t, v)dv .
Thanks to Poincare and Cauchy-Schwarz inequalities, we get

d dt (g n -g n )(t) L 2 (-1,1) -C P (g n -g n )(t) L 2 (-1,1) + C 1 n 9/8 e - √ 2n 4 e - √ 2nt 2 
where C P is the Poincare constant on (-1, 1) and C 1 is a positive constant that depends only on θ. Thus

(g n -g n )(t) L 2 (-1,1) C 2 n 5/8 e - √ 2n 
4 , ∀t 0.

(
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where C 2 > 0 does not depend on n.

Second step: Conclusion. Let T a 2 /2. Working by contradiction, we assume that there exists C T > 0 such that, for every n ∈ N * ,

1 -1 g n (T, v) 2 dv C T T 0 b a g n (t, v) 2 dvdt.
Thanks to the triangular inequality and (20), we deduce that

gn (T ) L 2 (-1,1) C T T 0 b a |g n | 2 dvdt 1/2 + (g n -g n )(T ) L 2 (-1,1) + C T T 0 b a |g n -g n | 2 dvdt 1/2 C T T 0 b a |g n | 2 dvdt 1/2 + (1 + √ T C T )C 2 n 5/8 e - √ 2n 
4 .

However, there exists C 3 , C 4 > 0 such that, when n → +∞,

gn (T ) L 2 ∼ C 3 e - √ 2nT 2 T 0 b a |g n (t, v)| 2 dvdt 1/2 ∼ C 4 n 3/8 e - √ 2na 2 4 
, which gives a contradiction. 2

End of the proof of Theorems 1.3 and 2.3

Let us consider γ = 2 and ω = T × (a, b) with 0 < a < b < 1. From Proposition 12 and Bessel Parseval equality, we know that system ( 5)-( 7) is observable in ω in any time T > T 1 . From Proposition 13, we deduce that for any time T a 2 2 ,

(5)-( 7) is not observable in ω in time T . Thus, the quantity T * := inf{T > 0 ; system (5)( 7) is observable in ω in time T } is well dened and belongs to [ a 2 2 , +∞). Clearly, observability in some time T implies observability in any time T > T , so

• for every T > T * , ( 5)-( 7) is observable in ω in time T ,

• for every T < T * , ( 5)-( 7) is not observable in ω in time T .

Null controllability in any time

T > 0 when a < 0 < b
In this section, ω = T × (-a, a) where a > 0. We x β ∈ (0, a). Our goal is the proof of the statement 4 of Theorem 1, thanks to a cut-o argument.

Preliminary

We dene Ω 1 := T × (β, 1), ω 1 := T × (β, a) and we consider the system

∂ t f + v 2 ∂ x f -∂ 2 v f = u(t, x, v)1 ω1 (x, v), (t, x, v) ∈ (0, T ) × Ω 1 , f (t, x, β) = f (t, x, 1) = 0, (t, x) ∈ (0, T ) × T, (21) 
The goal of this section is the proof of the following result.

Proposition 14. The system ( 21) is null controllable in any time T > 0.

As in section 5.2, this is equivalent to the following observability result.

Proposition 15. There exists C > 0 such that, for every n ∈ Z and g 0,n ∈ L 2 (β, 1), the solution of

   ∂ t g n -inv 2 g n -∂ 2 v g n = 0, (t, v) ∈ (0, +∞) × (β, 1), g n (t, β) = g n (t, 1) = 0, t ∈ (0, +∞), g n (0, v) = g 0,n (v), v ∈ (β, 1), (22) 
satises 1

β |g n (T, v)| 2 dv C T 0 a β |g n (t, v)| 2 dvdt.
For the proof of Proposition 15, we need the following dissipation result.

Proposition 16. There exists K, δ > 0 such that, for every n ∈ Z, g 0,n ∈ H 1 (β, 1), the solution of ( 22) satises

1 β |g n (t, v)| 2 dv Ke -δ|n| 2/3 t 1 β |g 0,n (v)| 2 + 1 |n| 2/3 |∂ v g 0,n (v)| 2 dv.
Proof of Proposition 16: One may assume that n > 0, otherwise, consider g n . To simplify the notations, we write g, instead of g n . Let B, C > 0 be such that

B 2 < 2C and 3B > 4C 2 (23) 
(for instance B = √ C with C > 0 small enough). The function L(t) := 1 β |g(t, v)| 2 + B n 1/3 vg(t, v)∂ v g(t, v) + C n 2/3 |∂ v g(t, v)| 2 dv satises 1 2 dL dt = -3Bn 2/3 2 vg 2 -∂ v g 2 -C n 2/3 ∂ 2 v g 2 -2Cn 1/3 1 β vg∂ v g -B n 1/3 1 β v∂ v g∂ 2 v g . Thanks to -2Cn 1/3 1 β vg∂ v g 1 2 ∂ v g 2 + 2C 2 n 2/3 vg 2 , -B n 1/3 1 β v∂ v g∂ 2 v g C n 2/3 ∂ 2 v g 2 + B 2 4C ∂ v g 2 ,
we get

1 2 dL dt - 3B 2 -2C 2 n 2/3 β 2 g 2 - 1 2 - B 2 4C ∂ v g 2 .
Thanks to [START_REF] Fernández-Cara | On the null controllability of the onedimensional heat equation with BV coecients[END_REF], there exists δ > 0 (independent of n) such that dL dt -δn 2/3 L, which gives the conclusion. 2

Proof of Proposition 15: Working as in the proof of Proposition 12, we get

C 3 e -c * √ n 2T /3 T /3 1 β √ n|∂ v g| 2 + n 3/2 |g| 2 dvdt C 4 T 0 a β |g| 2 dvdt (24)
for n large enough. Moreover, thanks to Proposition 16, we have, for any t ∈ (T /3, 2T /3),

1 β √ n|∂ v g(t, v)| 2 + n 3/2 |g(t, v)| 2 dv n 7/6 1 β 1 n 2/3 |∂ v g(t, v)| 2 + |g(t, v)| 2 dv n 7/6 K e δn 2/3 T 3 1 β |g(T, v)| 2 dv.
Thus,

1 β |g(T )| 2 dv C 5 n 7/6 T e [c * √ n-δn 3/2 T /3] T 0 a β |g| 2 dvdt
where C 5 := 3KC 4 /C 3 , which gives the conclusion. 2

Cut-o strategy

Let ξ i ∈ C ∞ (R) for i = 1, 2, 3 such that 0 ξ i 1 and          ξ 1 + ξ 2 + ξ 3 ≡ 1 ξ 1 (v) = 0 if v ≤ β , ξ 1 (v) = 1 if v ≥ a ξ 2 (v) = 1 if v ≤ -a , ξ 2 (v) = 0 if v ≥ -β ξ 3 (v) = 1 if |v| ≤ β , ξ 3 (x) = 0 if |v| ≥ a (25)
By Proposition 14, there exists

u 1 ∈ L 2 ((0, T ) × Ω 1 ) such that the solution of    ∂ t f 1 + v 2 ∂ x f 1 -∂ 2 v f 1 = u 1 (t, x, v)1 ω1 (x, v) , (t, x, v) ∈ (0, T ) × Ω 1 , f 1 (t, x, β) = f 1 (t, x, 1) = 0 , (t, x) ∈ (0, T ) × T , f 1 (0, x, v) = f 0 (x, v) , (x, v) ∈ Ω 1 , (26) 
satises f 1 (T, ., .) = 0. Similarly, let Ω 2 := T × (-1, -β), ω 2 := T × (-a, -β); there exists u 2 ∈ L 2 ((0, T ) × Ω 2 ) such that the solution of

   ∂ t f 2 + v 2 ∂ x f 2 -∂ 2 v f 2 = u 2 (t, x, v)1 ω2 (x, v) , (t, x, v) ∈ (0, T ) × Ω 2 , f 2 (t, x, -1) = f 2 (t, x, -β) = 0 , (t, x) ∈ (0, T ) × T , f 2 (0, x, v) = f 0 (x, v) , (x, v) ∈ Ω 2 , (27) 
satises f 2 (T, ., .) = 0. Finally, let Ω 3 := T × (-β, β) and f 3 be the solution of

   ∂ t f 3 + v 2 ∂ x f 3 -∂ 2 v f 3 = 0 , (t, x, v) ∈ (0, T ) × Ω 3 , f 3 (t, x, ±β) = 0 , (t, x) ∈ (0, T ) × T , f 3 (0, x, v) = f 0 (x, v) , (x, v) ∈ Ω 3 . (28) 
We extend f j and u j by zero on (0,

T ) × [Ω -Ω j ] for j = 1, 2, 3. Then, the functions f (t, x, v) := ξ 1 (v)f 1 (t, x, v) + ξ 2 (v)f 2 (t, x, v) + T -t T ξ 3 (v)f 3 (t, x, v), u(t, x, v) := 2 j=1 ξ j (v)u j (t, x, v)1 ωj (x, v) -1 T ξ 3 (v)f 3 (t, x, v) - 3 j=1 2ξ j (v)∂ v f j (t, x, v) + ξ j (v)f j (t, x, v)
solve ( 1)-( 3)-( 4), as well as f (T, ., .) = 0 on Ω. Proposition 17. There exists K, δ > 0 such that, for every n ∈ Z -{0} and g 0,n ∈ H 1 (-1, 1), the solution of (15) satises g n (t) L 2 (-1,1) Ke -δ|n| 2/3 t g 0,n H 1 (-1,1) , ∀t > 0.

(
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Moreover, the power 2/3in the exponential rate is optimal as n → +∞, and necessarily δ µ 2 , where µ is the rst zero (from the right) of Airy function in the half line (-∞, 0).

The proof of Proposition 17 relies on the following result.

Proposition 18. There exists B, C, δ > 0 with B 2 < C such that, for every L > 0 and h 0 ∈ L 2 (-L, L), the solution of

   ∂ τ h = ∂ 2 y h + iyh , (τ, y) ∈ (0, +∞) × (-L, L) , h(τ, ±L) = 0 , τ ∈ (0, +∞) , h(0, y) = h 0 (y) , y ∈ (-L, L) , (30) 
satises L(τ ) L(0)e -δτ , ∀τ > 0, Proof of Proposition 18: Let B, C > 0 be such that

4B 2 < C and 2C 2 < B (32) 
(for instance, B = √ C/3 with C > 0 small enough). Easy computations show that 1 2

dL dτ = -B h 2 -C   L -L h∂ y h   -∂ y h 2 -2B   L -L ∂ 2 y h∂ y h   -C ∂ 2 y h 2 .
Thanks to

-2B L -L ∂ 2 y h∂ y h C ∂ 2 y h 2 + B 2 C ∂ y h 2 , -C L -L h∂ y h B 2 h 2 + C 2 2B ∂ y h 2 we get dL dτ - B 2 h 2 -1 - B 2 C - C 2 2B ∂ y h 2 .
Thanks to [START_REF] Lebeau | Applications to unique continuation and control of parabolic equations[END_REF], there exists δ > 0 such that dL/dt -δL, which gives the conclusion.2

Proof of Proposition 17:

First step: Proof of ( 29): One may assume that n > 0, otherwise, consider g n . In order to simplify the notation, we write g, instead of g n . The function h(τ, y) dened by g(t, v) = h(n

2 3 t, n 1 3 v)
satises [START_REF] Imanuvilov | Carleman estimate for a parabolic equation in sobolev spaces of negative order and its applications[END_REF] with L = n ). From the previous proposition, we know that

L(t) := 1 -1 |g(t, v)| 2 - 2B n 1 3 [g(t, v)∂ v g(t, v)] + C n 2 3 |∂ v g(t, v)| 2 dv
satises L(t) L(0)e -δn 2 3 t . Moreover, using B 2 < C we get

1 -1 |g n (t, v)| 2 dv 1 -B 2 C -1 L(t) 1 -B 2 C -1 L(0)e -δn 2 3 t Ke -δn 2/3 t g 0,n 2 
H 1 .
for some constant K > 0. , ∀y ∈ (0, +∞),

where λ := -e i 2π 3 µ, C > 0 (see [3, formulas (2.12) and (A.12)]).

Working by contradiction, we assume that there exists T > 0, n * ∈ N * , (r n ) n∈Z ∈ (0, +∞) Z such that

• any solution of (15) satises [λn 2/3 -in(v + 1)]θ(v) + θ (v) e -(λn 2/3 -in)t .

g n (t) L 2 (-1,1) Ke -rnt g 0,n H 1 (-1,1) , ∀t ∈ [0, T ], n ∈ Z, • r n > (λ r + δ)|n| 2/3 , ∀|n| n * ,
Thanks to [START_REF] Martinez | Carleman estimates for one-dimensional degenerate heat equations[END_REF], there exists C 1 > 0 such that, for every n ∈ N * and t ∈ R,

F n (t) H 1 C 1 n
11 12 e - 

C 3 e -rnt + R(n)e -4 √ n 3 e -λrn 2 3 t ,
where R is a rational fraction. We get a contradiction by considering the limit n → +∞ (with a xed t ∈ (0, T ]). This ends the proof of the optimality. 2 Remark 2. The optimality of n 2/3 in the exponential rate shows that, we cannot expect to prove the null controllability of ( 1)-( 3) in the same way as we did for (1)-( 2). Indeed, the dissipation in e -δn 2/3 t is not sucient to compensate for the constant e Cn of Proposition 5. Therefore, with Dirichlet boundary conditions, if the null controllability holds with arbitrarily small control supports ω, the proof requires another strategy.

Conclusion and open problems

In this article, we have studied the null controllability of Kolmogorov type equations (1), with γ ∈ {1, 2}, in the rectangle Ω = T × (-1, 1), with a distributed control localized on an open subset ω of Ω.

The following questions are still open.

1. When γ > 2, does null controllability hold? In [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF], the proof of the non uniform observability relies on a comparison argument (maximum principle), which cannot be used here because the 1D heat equation has complex valued coecients. 

A Proof of Proposition 1

Let a , b be such that -1 < a < a < b < b < 1. All the computations of the proof will be made assuming, rst, g ∈ H 1 (0, T ; L 2 (-1, 1)) ∩ L 2 (0, T ; H 2 ∩ H 1 0 (-1, 1)). Then, the conclusion of Proposition 1 will follow by a density argument.

Consider the weight function

α(t, v) := M β(v) t(T -t) , (t, v) ∈ (0, T ) × R , (35) 
where

β ∈ C 2 ([-1, 1]) satises β 1 on (-1, 1) , (36) 
|β | > 0 on [-1, a ] ∪ [b , 1] , (37) 
β (1) > 0 , β (-1) < 0 ,

β < 0 on [-1, a ] ∪ [b , 1] (38) 
and M = M (T, n, β) > 0 will be chosen later on. We also introduce the function z(t, v) := g(t, v)e -α(t,v) ,

that satises e -α P n g = P 1 z + P 2 z + P 3 z ,

where

P 1 z := -∂ 2 z ∂v 2 + (α t -α 2 v )z , P 2 z := ∂z ∂t -2α v ∂z ∂v + inv γ z , P 3 z := -α vv z . (42) 
We develop the classical proof (see [START_REF] Fursikov | Controllability of evolution equations[END_REF]), taking the L 2 (Q)-norm in the identity (41), then developing the double product, which leads to

Q [P 1 zP 2 z] - 1 2 |P 3 z| 2 dvdt Q |e -α P n g| 2 dvdt , (43) 
where Q := (0, T ) × (-1, 1) . After computations (see [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF] for details, we get

Q |z| 2 - 1 2 (α t -α 2 v ) t + [(α t -α 2 v )α v ] v - 1 2 α 2 vv dvdt + Q nγv γ-1 z ∂z ∂v -α vv ∂z ∂v 2 α vv dvdt Q |e -α P n g| 2 dvdt . (44)
Now, in the left hand side of (44) we separate the terms on (0, T ) × (a , b ) and those on (0,

T ) × [(-1, a ) ∪ (b , 1)]. One has -α vv (t, v) C 1 M t(T -t) ∀v ∈ [-1, a ] ∪ [b , 1] , t ∈ (0, T ) , |α vv (t, v)| C 2 M t(T -t)
∀v ∈ [a , b ] , t ∈ (0, T ) , 

- 1 2 (α t -α 2 v ) t + [(α t -α 2 v )α v ] v - 1 2 α 2 vv = 1 (t(T -t)) 3 M β(3T t -T 2 -3t 2 ) +M 2 (2t -T )(β β + 2β 2 ) - t(T -t)β 2 2 -3M 3 β β 2 .
Hence, owing to (37) and ( 39), there exist m 1 = m 1 (β) > 0 C 3 = C 3 (β) > 0 and C 4 = C 4 (β) > 0 such that, for every M M 1 and t ∈ (0, T ), 

- 1 2 (α t -α 2 v ) t + [(α t -α 2 v )α v ] v - 1 2 α 2 vv C 3 M 3 [t(T -t)] 3 ∀v ∈ [0, a ] ∪ [b , 1] , - 1 2 (α t -α 2 v ) t + [(α t -α 2 v )α v ] v - 1 2 α 2 vv C 4 M 3 [t(T -t)]

Denition 1 (

 1 Null controllability). Let T > 0 and γ ∈ N * . System (1)-(2) (resp. System (1)-(

  1. a sensitivity to boundary conditions (see the asymptotic behavior of Fourier components in Propositions 2, 10 and 17), 2. a nite speed of propagation through the set {v = 0} with γ = 2 and Dirichlet boundary conditions.

4

  With Dirichlet boundary conditions: well posedness, Fourier decomposition, unique continuation In this section γ ∈ {1, 2}. Let V := {f ∈ C ∞ (T × (-1, 1)); ∃K ⊂ (-1, 1) compact s.t. Supp(f ) ⊂ T × K}.

  is closed and both A γ and A * γ are dissipative, thus (A γ , D(A γ )) generates an strongly continuous semigroup S γ (t) of contractions of L 2 (Ω) (see Lumer-Phillips theorem [38, Corollary 4.4, Chapter 1, page 15], or HilleYosida theorem [8, Theorem VII.4, page 105]). For every

2 5

 2 Proof of Theorem 1 when γ = 2

  C 4 := max{x 3 e -β * x ; x 0} and β * := min{β(v); v ∈ (a, b)}. Moreover, thanks to Proposition 10, we have, for any t ∈ (T /3, 2T /3),

where C 5 := 3KC 4 /C 3 . 2 5. 3

 54323 This gives the conclusion with T 1 := 3c * /δ. No null controllability when 0 < a < b < 1 and T a 2 /2

2 6

 2 Proof of Theorem 1 with γ = 1 and Dirichlet boundary conditionsIn all this section, we take γ = 1 and ω = T × (a, b) where -1 < a < b < 1. Our goal is the proof of the statement 2 of Theorem 1. The strategy is the same as in the previous sections, it relies on the following dissipation property.

  y)| 2 -2B [h(τ, y)∂ y h(τ, y)] + C|∂ y h(τ, y)| 2 dy.

1 3

 1 and h 0 (y) := g 0,n (y/n 1 3

  Second step: Proof of the optimality. First, let us recall that the function ϕ(y) := Ai e i π 6 y + µ , satises -ϕ (y) + iyϕ(y) = λϕ(y), y ∈ (0, +∞) ϕ(0) = 0,

1 3 (v + 1 ) -ϕ 2n 1 3 θ

 113 where λ r := (λ) = |µ|/2 and δ > 0. Let us consider n ∈ N * and θ ∈ C ∞ c (R) such that θ(±1) = 1. Thanks to (33), the function gn (t, v) := ϕ n (v) e -(λn 2/3 -in)t satises ∂ t gn + invg n -∂ 2 v gn = F n , (t, v) ∈ (0, +∞) × (-1, 1) , gn (t, ±1) = 0 , t ∈ (0, +∞) , where F n (t, v) := ϕ 2n 1 3

2 .

 2 When γ = 2, what is the value of the minimal time T * ? We conjecture that T * = a 2 /2.

3 . 4 . 5 .

 345 What happens for γ ∈ (1, 2)? (with v replaced by |v|) With γ = 1 and Dirichlet boundary conditions in v, does null controllability hold with an arbitrary control support ω? Is it possible to extend these results to multidimensional congurations?The technique of this paper should possibly extend to cylindrical domains of the form T × (-1, 1) m . However, the generalization to more general congurations or boundary controls, is widely open.

C 1 =

 1 C 1 (β) := min{-β (x); x ∈ [-1, a ] ∪ [b , 1]} is positive thanks to the assumption (39) and C 2 = C 2 (β) := sup{|β (x)|; x ∈ [a , b ]}. Moreover,

  3 ∀v ∈ [a , b ] (46)whereM 1 = M 1 (T, β) := m 1 (β)(T + T 2 ).

C 3 2 + C 4 M 2 =T 2 |n|γ 4 4 √ C 1 C 3 .

 3242413 ), (45) and (46), we deduce, for everyM M 1 , M 3 (t(T -t)) 3 |z| 2 -|n|γ|v| γ-1 M 3 (t(T -t)) 3 |z| 2 + |n|γv γ-1 ∂z ∂v z dvdt + Q |e -α P n g| 2 dvdt . (48)Let M 2 (T, β) :=

( 2 , 3 C3M 3 γ 2 n 2 = 4 = 2 M 4 FromC 2 = 4 √ C 1 C 3 2 + C 6 2 + C 3 M 3 C 9 M 2 e 2 + C 3 M 3 2 e 2 eC 12 M 2 + C 3 M 3

 232424241326233922332212233 t(T -t)) 3 |z| 2 + C1M 2t(T -t) | ∂z ∂v | C1M 2t(T -t) (t(T -t)) 4 γ 2 n 2 C1C3M 4 C1M 2t(T -t) (T 2 /4) 4 γ 2 n 2 C1C3M C1M 2t(T -t)M 4 now on, we takeM = M (T, n, β) := C 2 max{T + T 2 ; |n|T 2 } C 2 (β) := max m 1 ; 1 4so that M M 1 and M 2 (see (47) and (49)). We have M3 (t(T -t))3 |z| 2 dvdt + Q |e -α P n g| 2 dvdt ,(52)whereC 6 = C 6 (β) := C 4 + C 3 /2, C 2 = C 2 (β) = C 2 + C 1 /2. Since for every > 0 (T -t)) 3 C 3 -C 1 (β ) 2 |g| 2 (53) |g| 2 4(t(T -t)) 3 e -2α dvdt Q |e -α P n g| 2 dvdt + 3 |g| 2 (t(T -t)) 3 + C 8 M t(T -t) ∂g ∂v -2α dvdt ,(54)whereC 7 = C 7 (β) := [1-1/(1+ )]C 1 /2, C 8 = C 8 (β) := 2C 2 and C 9 = C 9 (β) := C 6 + 2C 2 sup{β (x) 2 ; x ∈ [a , b ]}.Adding the same quantity in both sides, we get Q |g| 2 4(t(T -t)) 3 e -2α dvdt Q |e -α P n g| 2 dvdt + -2α dvdt , (55) where C 10 = C 10 (β) := C 8 + C 7 and C 11 = C 11 (β) := C 9 + C 3 /4. Thanks to a cut-o function ρ such that 0 ρ 1, ρ ≡ 1 on (a , b ), Supp(ρ) ⊂ (a, b) -2α dvdt Q |P n g| 2 e -2α dvdt + 3 |g| 2 e -2α (t(T -t)) 3 dvdt for some constant C 12 = C 12 (β) > 0. Combining (55) with the previous in-|g| 2 4(t(T -t)) 3 e -2α dvdt Q 2|e -α P n g| 2 dvdt + T 0 b a C 13 M 3 |g| 2 (t(T -t)) 3 e -2α dvdt , (56) where C 13 = C 13 (β, ρ) := C 11 + C 12 . Then, the global Carleman estimates (10) holds with C 1 = C 1 (β) := min{C 7 ; C 3 /4} max{2; C 13 } .

  Thanks to the Duhamel formula and (34) we get the following inequality, for every n n * and t ∈ [0, T ] gn (t) L 2 Ke -rnt gn (0) H 1 + C 2 n C 2 > 0. Thus, there exists a constant C 3 > 0 such that, for every n n * and t ∈ [0, T ]

		4 √ 3 -λrn n	2 3 t .
		11 12 e -4 √ n 3	t	e -rn(t-s)-λrn	2 3 s ds,
		0		
	e -λrn	2 3 t		

where
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