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Null controllability of Grushin-type operators in dimension two

Introduction

Main result

We consider the Grushin-type equation

∂ t f -∂ 2 x f -|x| 2γ ∂ 2 y f = u(t,
x, y)1 ω (x, y) (t, x, y) ∈ (0, ∞) × Ω , f (t, x, y) = 0 (t, x, y) ∈ (0, ∞) × ∂Ω ,

where Ω := (-1, 1) × (0, 1), ω ⊂ Ω, and γ > 0. Problem (1) is a linear control system in which

• the state is f ,

• the control u is supported in the subset ω.

It is a degenerate parabolic equation, since the coecient of ∂ 2 y f vanishes on the line {x = 0}. We will investigate the null controllability of (1).

Denition 1 (Null controllability). Let T > 0. System (1) is null controllable in time T if, for every f 0 ∈ L 2 (Ω), there exists u ∈ L 2 ((0, T ) × Ω) such that the solution of

   ∂ t f -∂ 2
x f -|x| 2γ ∂ 2 y f = u(t, x, y)1 ω (x, y) (t, x, y) ∈ (0, T ) × Ω , f (t, x, y) = 0 (t, x, y) ∈ (0, T ) × ∂Ω , f (0, x, y) = f 0 (x, y)

(x, y) ∈ Ω , (2) 
satises f (T, •, •) = 0. System (1) is null controllable if there exists T > 0 such that it is null controllable in time T .

The main result of this paper is the following one.

Theorem 1. Let ω be an open subset of (0, 1) × (0, 1).

1. If γ ∈ (0, 1), then system (1) is null controllable in any time T > 0.

2. If γ = 1 and ω = (a, b) × (0, 1) where 0 < a < b 1, then there exists

T * a 2
2 such that • for every T > T * system (1) is null controllable in time T ,

• for every T < T * system (1) is not null controllable in time T . 3. If γ > 1, then (1) is not null controllable.

By duality, the null controllability of (1) is equivalent to an observability inequality for the adjoint system ∂ t g -∂ 2

x g -|x| 2γ ∂ 2 y g = 0 (t, x, y) ∈ (0, ∞) × Ω , g(t, x, y) = 0 (t, x, y) ∈ (0, ∞) × ∂Ω .

(

Denition 2 (Observability). Let T > 0. System (3) is observable in ω in time T if there exists C > 0 such that, for every g 0 ∈ L 2 (Ω), the solution of

   ∂ t g -∂ 2
x g -|x| 2γ ∂ 2 y g = 0 (t, x, y) ∈ (0, T ) × Ω , g(t, x, y) = 0 (t, x, y) ∈ (0, T ) × ∂Ω , g(0, x, y) = g 0 (x, y) (x, y) ∈ Ω , System (3) is observable in ω if there exists T > 0 such that it is observable in ω in time T . Theorem 2. Let ω be an open subset of (0, 1) × (0, 1).

1. If γ ∈ (0, 1), then system (4) is observable in ω in any time T > 0. 2 such that • for every T > T * system (4) is observable in ω in time T ,

• for every T < T * system (4) is not observable in ω in time T . 3. If γ > 1, then system (4) is not observable in ω.

Remark 1. When γ = 1, the geometric restriction on the control domain ω only aects our positive result. Indeed, Theorem 1 trivially implies that (1) fails to be null controllable (if γ = 1 and T is small) when ω is any connected open set at positive distance from the degeneracy region {x = 0}. It is also straightforward to observe that, if ω contains a strip containing {x = 0}, then null controllability holds for any γ > 0 thanks to standard localization arguments (see the Appendix).

1.2

Motivation and bibliographical comments

Null controllability of the heat equation

The null and approximate controllability of the heat equation are essentially well understood subjects for both linear and semilinear equations, and for bounded or unbounded domains (see, for instance, [START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF], [START_REF] Fabre | Approximate controllability of the semilinear heat equation[END_REF], [START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF], [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: The linear case[END_REF], [START_REF] Fernández-Cara | On the null controllability of the onedimensional heat equation with BV coecients[END_REF], [START_REF] González-Burgos | Some results on controllability for linear and nonlinear heat equations in unbounded domains[END_REF], [START_REF] Imanuvilov | Carleman estimate for a parabolic equation in sobolev spaces of negative order and its applications[END_REF], [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], [START_REF] Lopez | Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density[END_REF], [START_REF] Miller | On the null-controllability of the heat equation in unbounded domains[END_REF], [START_REF] Miller | On exponential observability estimates for the heat semigroup with explicit rates[END_REF], [START_REF] Zuazua | Approximate controllability of the semilinear heat equation: boundary control[END_REF], [START_REF] Zuazua | Finite dimensional null-controllability of the semilinear heat equation[END_REF]). Let us summarize one of the existing main results.

Consider the linear heat equation    ∂ t f -∆f = u(t, x)1 ω (x) (t, x) ∈ (0, T ) × Ω , f (t, x) = 0 (t, x) ∈ (0, T ) × ∂Ω , f (0, x) = f 0 (x)

x ∈ Ω ,

where Ω is an open subset of R d , d ∈ N * , and ω is a subset of Ω. The following theorem is due, for the case d = 1, to H. Fattorini and D. Russell [20, Theorem 3.3], and, for d 2, to O. Imanuvilov [START_REF] Imanuvilov | Boundary controllability of parabolic equations[END_REF], [START_REF] Imanuvilov | Controllability of parabolic equations[END_REF] (see also the book [START_REF] Fursikov | Controllability of evolution equations[END_REF] by A. Fursikov and O.Imanuvilov) and G. Lebeau and L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] (see also [START_REF] Lebeau | On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations[END_REF]).

Theorem 3. Let Ω be a bounded connected open set with boundary of class C 2 and ω be a nonempty open subset of Ω. Then the control system (5) is null controllable in any time T > 0.

So, the heat equation on a smooth bounded domain is null controllable

• in arbitrarily small time;

• with an arbitrarily small control support ω.

Recently, null controllability results have also been obtained for uniformly parabolic operators with discontinuous (see, e.g. [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diusion coecients[END_REF], [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coecient and applications to controllability and an inverse problem[END_REF], [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratied media[END_REF], [START_REF] Rousseau | Carleman estimates and controllability results for the onedimensional heat equation with bv coecients[END_REF]) or singular ( [START_REF] Vancostenoble | Null controllability for the heat equation with singular inverse-square potentials[END_REF] and [START_REF] Ervedoza | Control and stabilization properties for a singular heat equation with an inverse-square potential[END_REF]) coecients.

It is then natural to wonder whether null controllability also holds for degenerate parabolic equations such as [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF]. Let us compare the known results

for the heat equation with the results proved in this article. The rst dierence concerns the geometry of Ω: a more restrictive conguration is assumed in Theorem 1 than in Theorem 3. The second dierence concerns the structure of the controllability results. Indeed, while the heat equation is null controllable in arbitrarily small time, the same result holds for the Grushin equation only when degeneracy is not too strong (i.e. γ ∈ (0, 1)). On the contrary, when degeneracy is too strong (i.e. γ > 1), null controllability does not hold any more. Of special interest is the transition regime (γ = 1), where the `classical' Grushin operator appears: here, both behaviors live together, and a positive minimal time is required for the null controllability.

Boundary-degenerate parabolic equations

The null controllability of parabolic equations degenerating on the boundary of the domain in one space dimension is well-understood, much less so in higher dimension. Given 0 < a < b < 1 and γ > 0, let us consider the 1D equation

∂ t w + ∂ x (x 2γ ∂ x w) = u(t, x)1 (a,b) (x) , (t, x) ∈ (0, ∞) × (0, 1) ,
with suitable boundary conditions. Then, it can be proved that null controllability holds if and only if γ ∈ (0, 1) (see [START_REF] Cannarsa | Null controllability of degenerate heat equations[END_REF][START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF]), while, for γ ≥ 1, the best result one can show is regional null controllability(see [START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF]), which consists in controlling the solution within the domain of inuence of the control. Several extensions of the above results are available in one space dimension, see [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF][START_REF] Martinez | Carleman estimates for one-dimensional degenerate heat equations[END_REF] for equations in divergence form, [START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF][START_REF] Cannarsa | Null controllability of degenerate parabolic operators with drift[END_REF] for nondivergence form operators, and [START_REF] Cannarsa | Controllability of 1-d coupled degenerate parabolic equations[END_REF][START_REF] Flores | Carleman estimates for degenerate parabolic equations with rst order terms and applications[END_REF] for cascade systems. Fewer results are available for multidimensional problems, mainly in the case of two dimensional parabolic operators which simply degenerate in the normal direction to the boundary of the space domain, see [START_REF] Cannarsa | Carleman estimates and null controllability for boundary-degenerate parabolic operators[END_REF]. Note that, similarly to the above references, also for the Grushin equation null controllability holds if and only if the degeneracy is not too strong.

Parabolic equations degenerating inside the domain

In [START_REF] Martinez | Regional null controllability of a linearized Crocco type equation[END_REF], the authors study linearized Crocco type equations

   ∂ t f + ∂ x f -∂ vv f = u(t, x, v)1 ω (x, v) (t, x, v) ∈ (0, T ) × (0, L) × (0, 1) , f (t, x, 0) = f (t, x, 1) = 0 (t, x) ∈ (0, T ) × (0, L) , f (t, 0, v) = f (t, L, v) (t, v) ∈ (0, T ) × (0, 1) .
For a given open subset ω of (0, L) × (0, 1), they prove regional null controllability. Notice that, in the above equation, diusion (in v) and transport (in x)

are decoupled.

In [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF], the authors study the Kolmogorov equation

∂ t f + v∂ x f -∂ vv f = u(t, x, v)1 ω (x, v) , (x, v) ∈ (0, 1) 2 , (6) 
with periodic type boundary conditions. They prove null controllability in arbitrarily small time, when the control region ω is a strip, parallel to the x-axis.

We note that the above Kolmogorov equation degenerates on the whole space domain, unlike Grushin's equation. However, dierently from the linearized Crocco equation, transport (in x at speed v) and diusion (in v) are coupled. This is why the null controllability results are also dierent for these equations.

Unique continuation and approximate controllability

It is well-known that, for evolution equations, approximate controllability can be equivalently formulated as unique continuation (see [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF]). The unique continuation problem for the elliptic Grushin-type operator

A = ∂ 2 x + |x| 2γ ∂ 2 y
has been widely investigated. In particular, in [START_REF] Garofalo | Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension[END_REF] (see also the references therein) unique continuation is proved for every γ > 0 and every open set ω. For the parabolic Grushin-type operator studied in this paper, unique continuation holds for every γ > 0, T > 0, and any open set ω ⊂ Ω (see Proposition 3).

Null controllability and hypoellipticity

It could be interesting to analyze the connections between null controllability and hypoellipticity. We recall that a linear dierential operator P with C ∞ coecients in an open set Ω ⊂ R n is called hypoelliptic if, for every distribution u in Ω, we have sing suppu = sing suppP u , that is, u must be a C ∞ function in every open set where so is P u. The following sucient condition (which is also essentially necessary) for hypoellipticity is due to Hörmander (see [START_REF] Hörmander | Hypoelliptic second order dierential equations[END_REF]).

Theorem 4. Let P be a second order dierential operator of the form

P = r j=1 X 2 j + X 0 + c ,
where X 0 , ..., X r denote rst order homogeneous dierential operators in an open set Ω ⊂ R n with C ∞ coecients, and c ∈ C ∞ (Ω). Assume that there exists n operators among

X j1 , [X j1 , X j2 ] , [X j1 , [X j2 , X j3 ]] , . . . , [X j1 , [X j2 , [X j3 , [..., X j k ]...]]] ,
where j i ∈ {0, 1, ..., r}, which are linearly independent at any given point in Ω.

Then, P is hypoelliptic.

Hörmander's condition is satised by the Grushin operator A = ∂ 2 x + |x| 2γ ∂ 2 y for every γ ∈ N * (for other values of γ, the coecients are not C ∞ ). Indeed, set

X 1 (x, y) := 1 0 , X 2 (x, y) := 0 x γ .
Then,

[X 1 , X 2 ](x, y) = 0 γx γ-1 , [X 1 , [X 1 , X 2 ]](x, y) = 0 γ(γ -1)x γ-2
, . . .

Thus, if γ = 1, Hörmander's condition is satised with X 1 and [X 1 , X 2 ]. In general, if γ ≥ 1, γ iterated Lie brackets are required.
Theorem 1 emphasizes that hypoellipticity is not sucient for null controllability: Grushin's operator is hypoelliptic ∀γ ∈ N * , but null controllability holds only when γ = 1.

A general result which relates null controllability to the number of iterated Lie brackets that are necessary to satisfy Hörmander's condition would be very interesting, but remainsfor the time beinga challenging open problem.

Sensitivity to singular lower order terms

In [START_REF] Boscain | The Laplace-Beltrami operator in almost-Riemannian Geometry[END_REF], the authors study the Laplace Beltrami operator on a 2D-compact manifold endowed with a 2D almost Riemannian structure. Under very general assumptions, they prove that this operator is essentially selftadjoint. In the particular case of the Grushin metric, their result implies that any solution of Section 3 is devoted to the proof of the negative statements of Theorem 2, (and, equivalently, of Theorem 1), when γ > 1 or γ = 1 and T is small.

∂ t f -∂ 2 x f -x 2 ∂ 2 y f - 1 x ∂ x f = 0, x ∈ R, y ∈ T such that f (0, ., .) is supported in R * + × T stays
In Section 3.1 we present the strategy for the proof, which relies on uniform observability estimates with respect to Fourier frequencies. Then, we show the negative statements of Theorem 2, thanks to appropriate test functions to falsify uniform observability, in Section 3.2 for γ < 1 and in Section 3.3 for γ = 1.

Section 4 is devoted to the proof of the positive statements of Theorem 1, (and equivalently of Theorem 2) when γ ∈ (0, 1) or γ = 1 and T is large. In Section 4.1 we prove a useful Carleman inequality for 1D heat equations with parameters. In Section 4.2, we obtain observability for such equations, uniformly with respect to the parameter. In Section 4.3, we prove Theorem 2 when γ > 1.

Then, in Section 4.4, we conclude the proof of Theorem 2.

Finally, in Section 5, we shortly outline some open problems related to this

paper. An appendix devoted to the case of {x = 0} ⊂ ω completes the analysis.

2 Well posedness and Fourier decomposition 

(f, g) := Ω f x g x + |x| 2γ f y g y dxdy (7) 
for every f , g in C ∞ 0 (Ω), and set V = C ∞ 0 (Ω)

| • | V , where |f | V := (f, f ) 1/2 . Observe that H 1 0 (Ω) ⊂ V ⊂ H, thus V is dense in H. Consider the bilinear form a on V dened by a(f, g) = -(f, g) ∀f, g ∈ V . (8) Moreover, set D(A) = {f ∈ V : ∃ c > 0 such that |a(f, h)| ≤ c h H ∀h ∈ V } , (9) Af, h = a(f, h) ∀h ∈ V . (10) 
Then, we can apply a result by Lions [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF] (see also Theorem 1.18 in [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF]) to conclude that (A, D(A)) generates an analytic semigroup S(t) of contractions on H. Note that A is selfadjoint on H, and [START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF] implies that

Af = ∂ 2 x f + |x| 2γ ∂ 2 y f
a.e. in Ω .

So, system (2) can be recast in the form

f (t) = Af (t) + u(t) t ∈ [0, T ] , f (0) = f 0 , (11) 
where T > 0, u ∈ L 2 (0, T ; H) and f 0 ∈ H.

Let us now recall the denition of weak solutions to [START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF].

Denition 3 (Weak solution). Let T > 0, u ∈ L 2 (0, T ; H) and

f 0 ∈ H. A function f ∈ C([0, T ]; H) ∩ L 2 (0, T ; V )
is a weak solution of [START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF] if for every h ∈ D(A) the function f (t), h is absolutely continuous on [0, T ] and for a.e.

t ∈ [0, T ] d dt f (t), h = f (t), Ah + u(t), h . (12) 
Note that, as showed in [START_REF] Lions | Équations diérentielles opérationnelles et problèmes aux limites[END_REF], condition ( 12) is equivalent to the denition of solution by transposition, that is,

Ω [f (t * , x, y)ϕ(t * , x, y) -f 0 (x, y)ϕ(0, x, y)]dxdy = t * 0 Ω f ∂ t ϕ + ∂ 2 x ϕ + |x| 2γ ∂ 2 y ϕ + u1 ω ϕ dxdydt for every ϕ ∈ C 2 ([0, T ] × Ω) and t * ∈ (0, T ).
Let us recall that, for every T > 0 and u ∈ L 2 (0, T ; H), the mild solution of ( 11) is dened as

f (t) = S(t)f 0 + t 0 S(t -s)u(s)ds , t ∈ [0, T ] . (13) 
From [START_REF] Ball | Strongly continuous semigroups, weak solutions, and the variation of constants formula[END_REF], we have that the mild solution to ( 11) is also the unique weak solution in the sense of Denition 3. The following existence and uniqueness result follows.

Proposition 1. For every f 0 ∈ H, T > 0 and u ∈ L 2 (0, T ; H), there exists a unique weak solution of the Cauchy problem [START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF]. This solution satises

f (t) H f 0 H + √ T u L 2 (0,T ;H) ∀t ∈ [0, T ] . (14) 
Moreover, f (t) ∈ D(A) and f (t) ∈ H for a.e. t ∈ (0, T ).

Proof: [START_REF] Cannarsa | Carleman estimates and null controllability for boundary-degenerate parabolic operators[END_REF] follows from [START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF]. Moreover, since S(•) is analytic, t → S(t)f 0 belongs to C 1 ((0, T ]; H) ∩ C 0 ((0, T ]; D(A)), and t → t 0 S(t -s)u(s)ds belongs to H 1 (0, T ; H) ∩ L 2 (0, T ; D(A)). In particular f (t) ∈ D(A) and f (t) ∈ H for a.e. t ∈ (0, T ) (see, e.g., [START_REF] Bensoussan | Representation and Control of Innite Dimensional Systems[END_REF]). 2

Fourier decomposition and unique continuation

Let us consider the solution of (4) in the sense of Denition 3, that is, the solution of system [START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF] with u = 0. Since g belongs to C([0, T ]; L 2 (Ω)), the function y → g(t, x, y) belongs to L 2 (0, 1) for a.e. (t, x) ∈ (0, T ) × (-1, 1), thus it can be developed in Fourier series with respect to y as follows

g(t, x, y) = n∈N * g n (t, x)ϕ n (y) , (15) 
where

ϕ n (y) := √ 2 sin(nπy) ∀n ∈ N * and g n (t, x) := 1 0 g(t, x, y)ϕ n (y)dy ∀n ∈ N * . ( 16 
)
Proposition 2. For every n ≥ 1, g n is the unique weak solution of

   ∂ t g n -∂ 2 x g n + (nπ) 2 |x| 2γ g n = 0 (t, x) ∈ (0, T ) × (-1, 1) , g n (t, ±1) = 0 t ∈ (0, T ) , g n (0, x) = g 0,n (x) x ∈ (-1, 1) , (17) 
where g 0,n ∈ L 2 (-1, 1) is given by g 0,n (x) := 1 0 g 0 (x, y)ϕ n (y)dy.

For the proof we need the following characterization of the elements of V . We denote by L 2 γ (Ω) the space of all square-integrable functions with respect to the measure dµ = |x| 2γ dxdy.

Lemma 1. For every

g ∈ V there exist ∂ x g ∈ L 2 (Ω), ∂ y g ∈ L 2 γ (Ω) such that Ω g(x, y)∂ x φ(x, y) + |x| 2γ g(x, y)∂ y φ(x, y) dxdy = - Ω ∂ x g(x, y) + |x| 2γ ∂ y g(x, y) φ(x, y)dxdy (18)
for every φ ∈ C ∞ 0 (Ω).

Proof: Let g ∈ V , and consider a sequence

(g n ) n≥1 in C ∞ 0 (Ω) such that g n → g in V , that is Ω (g n -g) 2 x + |x| 2γ (g n -g) 2 y dxdy → 0 as n → +∞ . Thus, (∂ x g n ) n≥1 is a Cauchy sequence in L 2 (Ω) and (∂ y g n ) n≥1 is a Cauchy sequence in L 2 γ (Ω). So, there exist h ∈ L 2 (Ω) and k ∈ L 2 γ (Ω) such that ∂ x g n → h in L 2 (Ω) and ∂ y g n → k in L 2 γ (Ω). Hence, Ω g n ∂ x φ + |x| 2γ g n ∂ y φ dxdy = - Ω ∂ x g n φ + |x| 2γ ∂ y g n φ dxdy     Ω g∂ x φ + |x| 2γ g∂ y φ dxdy = - Ω hφ + |x| 2γ kφ dxdy
as n → +∞. This yields the conclusion with ∂ x g = h and ∂ y g = k.

2

For any n ≥ 1, system ( 17) is a rst order Cauchy problem, that admits the unique weak solution

gn ∈ C 0 ([0, T ]; L 2 (-1, 1)) ∩ L 2 (0, T ; H 1 0 (-1, 1)) which satises d dt 1 -1 gn (t, x)ψ(x)dx + 1 -1 gn,x (t, x)ψ x (x) + (nπ) 2 |x| 2γ gn (t, x)ψ(x) dx = 0 (19)
for every ψ ∈ H 1 0 (-1, 1). 2

Proof of Proposition 2: In order to verify that the nth Fourier coecient of g, dened by ( 16), satises system [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF], observe that

g n (0, •) = g 0,n (•) , g n (t, ±1) = 0 ∀t ∈ (0, T ) and g n ∈ C 0 ([0, T ]; L 2 (-1, 1)) ∩ L 2 (0, T ; H 1 0 (-1, 1)
) . Thus, it is sucient to prove that g n fullls condition [START_REF] Fabre | Approximate controllability of the semilinear heat equation[END_REF]. Indeed, using the identity ( 16), for all ψ ∈ H 1 0 (-1, 1) we obtain, for a.e. t ∈ [0, T ],

d dt 1 -1 g n ψdx + 1 -1 g n,x ψ x + (nπ) 2 |x| 2γ g n ψ dx = 1 -1 1 0 g t ϕ n ψ + g x ϕ n ψ x + (nπ) 2 |x| 2γ gϕ n ψ dydx . ( 20 
)
Observe that Proposition 1 ensures g t (t, •) ∈ L 2 (Ω) and g(t, •) ∈ D(A) for a.e. t ∈ (0, T ). So, multiplying g t -Ag by h(x, y) = ψ(x)ϕ n (y) ∈ V and integrating over Ω we obtain, for a.e. t ∈ (0, T ),

0 = 1 0 1 -1 (g t -Ag)ψϕ n dxdy = 1 0 1 -1 g t ψϕ n dxdy + 1 0 1 -1 g x ψ x ϕ n + |x| 2γ g y ψϕ n,y dxdy = 1 0 1 -1 g t ψϕ n dxdy + 1 0 1 -1 g x ψ x ϕ n + (nπ) 2 |x| 2γ gψϕ n dxdy , (21) 
where (in the last identity) we have used Lemma 1. Combining ( 20) and ( 21) completes the proof.

2

Proposition 3. Let T > 0, γ > 0, let ω be a bounded open subset of (0, 1) × (0, 1), and let g ∈ C([0, T ]; H) ∩ L 2 (0, T ; V ) be a weak solution of (3). If g ≡ 0 on (0, T ) × ω, then g ≡ 0 on (0, T ) × Ω.

Proof: Let > 0 be such that ω ⊂ ( , 1) × (0, 1). By unique continuation for uniformly parabolic 2D equation, we deduce that g ≡ 0 on (0, T ) × ( , 1) × (0, 1). Thus, g n ≡ 0 on (0, T ) × ( , 1) for every n ∈ N * . Then, by unique continuation for the uniformly parabolic 1D equation ( 17), we deduce that g n ≡ 0 on (0, T ) × (-1, 1) for every n ∈ N * . 2

Dissipation speed

Let us introduce, for every n ∈ N * , γ > 0, the operator A n,γ dened on L 2 (-1, 1)

by

D(A n,γ ) := H 2 ∩ H 1 0 (-1, 1) , A n,γ ϕ := -ϕ + (nπ) 2 |x| 2γ ϕ . (22) 
The smallest eigenvalue of A n,γ is given by

λ n,γ = min 1 -1 v (x) 2 + (nπ) 2 |x| 2γ v(x) 2 dx 1 -1 v(x) 2 dx ; v ∈ H 1 0 (-1, 1), v = 0 . ( 23 
)
We are interested in the asymptotic behavior (as n → +∞) of λ n,γ , which quanties the dissipation speed of the solution of ( 17).

Lemma 2. Problem

-v n,γ (x) + (nπ) 2 |x| 2γ v n,γ (x) = λ n,γ v n,γ (x) x ∈ (-1, 1) , v n,γ (±1) = 0 , (24) 
admits a unique positive solution with L 2 (-1, 1)-norm one. Moreover, v n,γ is even.

Proof: Since ( 24) is a Sturm-Liouville problem, it is well-known that its rst eigenvalue is simple, and the associated eigenfunction has no zeros. Thus, we can choose v n,γ to be strictly positive everywhere. Moreover, by normalization, we can nd a unique positive solution satisfying the condition v n,γ L 2 (-1,1) = 1.

Finally, v n,γ is even. Indeed, if not so, let us consider the function w(x) = v n,γ (|x|). Then, w still belongs to H 1 0 (-1, 1), it is a weak solution of (24) and it does not increase the functional in [START_REF] Fernández-Cara | On the null controllability of the onedimensional heat equation with BV coecients[END_REF], i.e.

1 -1 w (x) 2 + (nπ) 2 |x| 2γ w(x) 2 dx 1 -1 w(x) 2 dx ≤ 1 -1 v n,γ (x) 2 + (nπ) 2 |x| 2γ v n,γ (x) 2 dx 1 -1 v n,γ (x) 2 dx
.

The coecients of the equation in [START_REF] Flores | Carleman estimates for degenerate parabolic equations with rst order terms and applications[END_REF] being regular, we deduce that w is a classical solution of [START_REF] Flores | Carleman estimates for degenerate parabolic equations with rst order terms and applications[END_REF]. Since λ n,γ is simple, it follows v n,γ (x) = v n,γ (|x|). 2

The following result turns out to be a key point of the proof of Theorem 1.

Proposition 4. For every γ > 0, there are constants

c * = c * (γ), c * = c * (γ) > 0 such that c * n 2 1+γ λ n,γ c * n 2 1+γ ∀ n ∈ N * .
Proof: First, we prove the lower bound. Let τ n := n

1 1+γ . With the change of variable φ(x) = √ τ n ϕ(τ n x), we get λ n,γ = inf 1 -1 φ (x) 2 + (nπ) 2 |x| 2γ φ(x) 2 dx; φ ∈ C ∞ c (-1, 1), φ L 2 (-1,1) = 1 = τ 2 n inf τn -τn ϕ (y) 2 + π 2 |y| 2γ ϕ(y) 2 dy; ϕ ∈ C ∞ c (-τ n , τ n ), ϕ L 2 (-τn,τn) = 1 c * τ 2 n where c * := inf R ϕ (y) 2 + π 2 |y| 2γ ϕ(y) 2 dy; ϕ ∈ C ∞ c (R), ϕ L 2 (R) = 1
is positive (see [START_REF] Reed | Methods of modern mathematical physics. I. Functional analysis[END_REF] for the case of γ = 1). Now, we prove the upper bound in Proposition 4. For every k > 1 let us consider the function ϕ k (x) := (1 -k|x|) + , that belongs to H 1 0 (-1, 1). Easy computations show that

1 -1 ϕ k (x) 2 dx = 2 3k , 1 -1 ϕ k (x) 2 dx = 2k , 1 -1 |x| 2γ ϕ k (x) 2 dx = 2c(γ)k -1-2γ , where c(γ) := 1 2γ + 1 - 1 γ + 1 + 1 2γ + 3
.

Thus, λ n,γ f n,γ (k) := 3[k 2 + (πn) 2 c(γ)k -2γ ] for all k > 1. Since f n,γ attains its minimum at k = c(γ)n 1 γ+1 , we have λ n,γ f n,γ ( k) = C(γ)n 2 γ+1 .
2

3 Proof of the negative statements of Theorem 2

The goal of this section is the proof of the following results:

• if γ = 1, ω ⊂ (a, 1) × (0, 1)
for some a > 0 and T < a 2 2 , then system (4) is not observable in ω in time T ,

• if γ > 1 and T > 0, then system (4) is not observable in ω in time T .

Without loos of generality, one may assume that ω = (a, b) × (0, 1) with 0 < a < b < 1.

Strategy for the proof

Let g be the solution of (4). Then, g can be represented as in [START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF], and we emphasize that, for a.e. t ∈ (0, T ) and every -1

a 1 < b 1 1, (a1,b1)×(0,1) |g(t, x, y)| 2 dxdy = ∞ n=1 b1 a1 |g n (t, x)| 2 dx
(Bessel-Parseval equality). Thus, in order to prove Theorem 2, it is sucient to study the observability of system [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF] uniformly with respect to n ∈ N * .

Denition 4 (Uniform observability). Let 0 < a < b 1 and T > 0. System ( 17) is observable in (a, b) in time T uniformly with respect to n ∈ N * if there exists C > 0 such that, for every n ∈ N * , g 0,n ∈ L 2 (-1, 1), the solution of ( 17) satises

1 -1 |g n (T, x)| 2 dx C T 0 b a |g n (t, x)| 2 dx .
System [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF] is observable in (a, b) uniformly with respect to n ∈ N * if there exists T > 0 such that it is observable in (a, b) in time T uniformly with respect to n ∈ N * .

The negative parts of the conclusion of Theorem 2 follow from the result below.

Theorem 5. Let 0 < a < b 1.

1. If γ = 1 and T < a 2 2 , then system ( 17) is not observable in (a, b) in time T uniformly with respect to n ∈ N * . 2. If γ > 1, then system [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF] is not observable in (a, b) uniformly with respect to n ∈ N * .

The proof of Theorem 5 relies on the use of appropriate test functions that falsify uniform observability. This is proved thanks to a well adapted maximum principle (see Lemma 3) and explicit supersolutions (see [START_REF] Hörmander | Hypoelliptic second order dierential equations[END_REF]) for γ > 1, and thanks to direct computations for γ = 1.

3.2

Proof of Theorem 5 for γ > 1

Let γ ∈ [1, +∞) be xed and T > 0. For every n ∈ N * , we denote by λ n (instead of λ n,γ ) the rst eigenvalue of the operator A n,γ dened in Section 2.3, and by v n the associated positive eigenvector of norm one, which satises

   -v n (x) + [(nπ) 2 |x| 2γ -λ n ]v n (x) = 0 , x ∈ (-1, 1) , n ∈ N * , v n (±1) = 0 , v n ≥ 0 , v n L 2 (-1,1) = 1 .
Then, for every n ≥ 1, the function

g n (t, x) := v n (x)e -λnt ∀(t, x) ∈ R × (-1, 1)
, solves the adjoint system [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF]. Let us note that

1 -1 g n (T, x) 2 dx = e -2λnT , T 0 b a g n (t, x) 2 dxdt = 1 -e -2λnT 2λ n b a v n (x) 2 dx .
So, in order to prove that uniform observability fails, it suces to show that

e 2λnT λ n b a v n (x) 2 dx → 0 when n → +∞ . ( 25 
)
The above convergence will be obtained comparing v n with an explicit supersolution of the problem on a suitable subinterval of [-1, 1].

Lemma 3. Let 0 < a < b < 1. For every n ∈ N * , set [START_REF] Garofalo | Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension[END_REF] and let

x n := λ n (nπ) 2 1 2γ
W n ∈ C 2 ([x n , 1], R) be a solution of    -W n (x) + [(nπ) 2 x 2γ -λ n ]W n (x) 0 , x ∈ (x n , 1) , W n (1) 0 , W n (x n ) < - √ x n λ n . (27) 
Then there exists n * ∈ N * such that, for every

n n * , b a v n (x) 2 dx b a W n (x) 2 dx .
Proof: First, observe that, thanks to Proposition 4, x n → 0 as n → +∞.

In particular, there exists n * 1 such that x n a for every n n * . Now, let us prove that |v n (x n )| √ x n λ n for all n n * . Indeed, by Lemma 2, we have v n (x) = v n (-x), thus v n (0) = 0. Hence, thanks to the Cauchy-Schwarz inequality and the relation v n L 2 (-1,1) = 1,

|v n (x n )| = xn 0 v n (s)ds = xn 0 [(nπ) 2 |s| 2γ -λ n ]v n (s)ds xn 0 [(nπ) 2 |s| 2γ -λ n ] 2 ds 1/2 xn 0 v n (s) 2 ds 1/2 √ x n λ n .
Furthermore, we claim that v n (x)

W n (x) for every x ∈ [x n , 1], n n * . Indeed, if not, there would exist x * ∈ [x n , 1] such that (W n -v n )(x * ) = min{(W n -v n )(x); x ∈ [x n , 1]} < 0 . Since (W n -v n )(1) 0 and (W n -v n ) (x n ) < 0, we have x * ∈ (x n , 1). Moreover, the function W n -v n has a minimum at x * , thus (W n -v n ) (x * ) = 0 and (W n -v n ) (x * ) 0. Therefore, -(W n -v n ) (x * ) + [(nπ) 2 |x * | 2γ -λ n ](W n -v n )(x * ) < 0 ,
which is a contradiction. Our claim follows and the proof is complete.

2

In order to apply Lemma 3, we need an explicit supersolution W n of (27) of the form

W n (x) = C n e -µnx γ+1 , ( 28 
)
where C n , µ n > 0. Notice that, in particular, W n (1) 0.

First step: let us prove that, for an appropriate choice of µ n , the rst inequality of ( 27) holds. Since

W n (x) = -µ n (γ + 1)x γ W n (x) , W n (x) = [-µ n γ(γ + 1)x γ-1 + µ 2 n (γ + 1) 2 x 2γ ]W n (x)
, the rst inequality of ( 27) holds if and only if, for every x ∈ (x n , 1),

[(nπ) 2 -µ 2 n (γ + 1) 2 ]x 2γ + µ n γ(γ + 1)x γ-1 λ n . (29) 
In particular, it holds when µ n nπ γ + 1 [START_REF] Imanuvilov | Controllability of parabolic equations[END_REF] and

[(nπ) 2 -µ 2 n (γ + 1) 2 ]x 2γ n + µ n γ(γ + 1)x γ-1 n λ n . (31) 
Indeed, in this case, the left hand side of ( 29) is an increasing function of x. In view of [START_REF] Garofalo | Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension[END_REF], and after several simplications, inequality (31) can be recast as

µ n γ γ + 1 (nπ) 2 λ n 1 2 + 1 2γ
.

So, recalling [START_REF] Imanuvilov | Controllability of parabolic equations[END_REF], in order to satisfy the rst inequality of ( 27) we can take

µ n := min nπ γ + 1 ; γ γ + 1 (nπ) 2 λ n 1 2 + 1 2γ . ( 32 
)
For the following computations, it is important to notice that, thanks to [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and Proposition 4, for n large enough µ n is of the form

µ n = C 1 (γ)n . ( 33 
)
Second step: let us prove that, for an appropriate choice of C n , the third inequality of ( 27) holds. Since

W n (x n ) = -C n µ n (γ + 1)x γ n e -µnx γ+1 n ,
the third inequality of ( 27) is equivalent to

C n > λ n e µnx γ+1 n (γ + 1)µ n x γ-1 2 n
.

Therefore, it is sucient to choose

C n := 2λ n e µnx γ+1 n (γ + 1)µ n x γ-1 2 n . (34) 
Third step: let us prove condition [START_REF] Fursikov | Controllability of evolution equations[END_REF]. Thanks to Lemma 3, ( 28), [START_REF] Lebeau | On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations[END_REF] By identities ( 26), [START_REF] Lebeau | On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations[END_REF] and Proposition 4, we have

µ n x γ+1 n C 2 (γ) ∀n ∈ N * , thus e 2λnT λ n b a v n (x) 2 dx e 2n( λn n T -C1(γ)a 1+γ ) 4λ n e 2C2(γ) (γ + 1) 2 µ 2 n x 2γ-1 n . ( 35 
)
Since γ > 1, we deduce from Proposition 4 that λ n n → 0 as n → +∞ .

So, for every T > 0, there exists n n * such that, for every n n ,

λ n n T -C 1 (γ)a 1+γ < - 1 2 C 1 (γ)a 1+γ . (36) 
Then, inequality [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF] yields condition (25) (since the term that multiplies the exponential behaves like a rational fraction of n).

3.3

Proof of Theorem 5 for γ = 1

In this section, we take γ = 1 and keep the abbreviated forms λ n , v n for λ n,γ , v n,γ introduced in Section 2.3. Moreover, given two real sequences α n 0 and β n > 0, we write α n ∼ β n to mean that lim n α n /β n = 1.

With the above notation in mind, we have the following result.

Lemma 4. Let a and b be real numbers such that 0 < a < b 1. Then

λ n ∼ nπ (37) and b a v n (x) 2 dx ∼ e -a 2 nπ 2aπ √ n . ( 38 
)
as n → +∞.

When T < a 2 2 , we can easily deduce from the above lemma that (25) holds;

thus, system ( 17) is not observable in (a, b) uniformly with respect to n ∈ N * .

Proof of Lemma 4: The proof relies on the explicit expression

G(x) := e -x 2 2 4
√ π of the rst eigenvector of the harmonic oscillator on the whole line, i.e.,

-G (x) + x 2 G(x) = G(x) x ∈ R R G(x) 2 dx = 1.
First step: Let us construct an explicit approximation, k n , of v n . Fix > 0

with 1 + (1 -) 2 > 2a 2 , (39) 
and let θ ∈ C ∞ (R) be such that

θ(±1) = 1 and supp(θ) ⊂ (-1 -, -1 + ) ∪ (1 -, 1 + ) . (40) 
Dene

k n (x) = 4 √ nπG( √ nπx) -4 √ ne -nπ 2 θ(x) C n , x ∈ [-1, 1] , where C n > 0 is such that k n L 2 (-1,1) = 1. Note that C 2 n = C n,1 + C n,2 + C n,3
where

C n,1 = √ n 1 -1 e -nπx 2 dx = 1 + O e -nπ √ n , C n,2 = √ ne -nπ 1 -1 θ(x) 2 dx C n,3 = -2 √ ne -nπ 2 1 -1 e -nπx 2 2 θ(x)dx = O( √ ne -nπ 2 (1+(1-) 2 ) ).
Thus,

C n = 1 + O( √ ne -nπ 2 [1+(1-) 2 ] ). (41) 
We have

-k n (x) + (nπx) 2 k n (x) = nπk n (x) + E n (x) , x ∈ (-1, 1) , k n (±1) = 0, where E n (x) := 4 √ ne -nπ 2 C n θ (x) -(nπx) 2 θ(x) + nπθ(x) .
Second step: Let us prove [START_REF] Martinez | Carleman estimates for one-dimensional degenerate heat equations[END_REF]. As in the proof of Proposition 4, we have

λ n nπ. Moreover, λ n 1 -1 k n (x) 2 + (nπx) 2 k n (x) 2 dx = nπ + 1 -1 k n (x)E n (x)dx nπ + O(n 9 4 e -nπ 2 ) ,
which proves [START_REF] Martinez | Carleman estimates for one-dimensional degenerate heat equations[END_REF].

Third step: Let us prove that

b a k n (x) 2 dx ∼ e -a 2 nπ 2aπ √ n . (42) 
Indeed, the left-hand side of ( 42) is the sum of three terms (I j ) 1 j 3 , that satisfy, thanks to ( 41)

I 1 := 1 √ πC 2 n b √ nπ a √ nπ e -y 2 dy = e -a 2 nπ 2aπ √ n + O e -a 2 nπ n 3 2 , I 2 := √ ne -nπ C 2 n b a θ(x) 2 dx = O( √ ne -nπ ), I 3 := - 2 √ ne -nπ 2 C 2 n b a e -nπx 2 θ(x)dx = O( √ ne -nπ 2 [1+(1-) 2 ]
).

So, (42) follows thanks to [START_REF] Miller | On the null-controllability of the heat equation in unbounded domains[END_REF].

Fourth step: Let us prove that

v n -k n 2 L 2 (-1,1) = O(n 9 2 e -nπ ), (43) 
which ends the proof of [START_REF] Martinez | Regional null controllability of a linearized Crocco type equation[END_REF]. Let A n be the operator dened by

D(A n ) = H 2 ∩ H 1 0 (-1, 1) , A n ϕ(x) =: -ϕ (x) + (nπx) 2 ϕ(x) ,
and let (λ j n ) j∈N * be its eigenvalues, with associated eigenvectors

(v j n ) j∈N * , that is, A n v j n = λ j n v j n . We have k n = ∞ j=1 z j v j n where z j = E n , v j n /(λ j n -nπ) for all j 2. Thus, ∞ j=2 z 2 j C E n 2 L 2 (-1,1) = O(n 9 2 e -nπ ) and z 1 = 1 - ∞ j=2 z 2 j = 1 + O(n 9 
2 e -nπ ) .

We can then recover (43 The goal of this section is the proof of the following results:

) since v n -k n 2 L 2 (-1,1) = (1 -z 1 ) 2 + ∞ j=2 z 2 j .
• if γ ∈ (0, 1), then system (1) is null controllable in any time T > 0,

• if γ = 1 and ω = (a, b) × (0, 1), with 0 < a < b 1, then there exists T 1 > 0 such that system (1) is null controllable in any time T > T 1 or, equivalently, system (3) is observable in ω in any time T > T 1 .

The proof of these results relies on a new global Carleman estimate for solutions of ( 17), stated and proved in the next section.

A global Carleman estimate

For n ∈ N * , we introduce the operator

P n g := ∂g ∂t - ∂ 2 g ∂x 2 + (nπ) 2 |x| 2γ g.
Proposition 5. Let γ ∈ (0, 1] and let a, b ∈ R be such that 0 < a < b 1.

Then there exist a weight function

β ∈ C 1 ([-1, 1]; R * + ) and positive constants C 1 , C 2 such that for every n ∈ N * , T > 0, and g ∈ C 0 ([0, T ]; L 2 (-1, 1)) ∩ L 2 (0, T ; H 1 0 (-1, 1)) the following inequality holds C 1 T 0 1 -1 M t(T -t) ∂g ∂x (t, x) 2 + M 3 (t(T -t)) 3 g(t, x) 2 e -M β(x) t(T -t) dxdt T 0 1 -1 |P n g| 2 e -M β(x) t(T -t) dxdt + T 0 b a M 3 (t(T -t)) 3 |g(t, x)| 2 e -M β(x) t(T -t) dxdt (44) 
where M := C 2 max{T + T 2 ; nT 2 }.

Remark 2. In the case of γ ∈ [1/2, 1], our weight β will be the classical one (see [START_REF] Zuazua | Finite dimensional null-controllability of the semilinear heat equation[END_REF], ( 47), ( 48) and ( 49)). On the other hand, for γ ∈ (0, 1/2) we will follow the strategy of [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF][START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF][START_REF] Martinez | Carleman estimates for one-dimensional degenerate heat equations[END_REF], adapting the weight β to the nonsmooth coecient |x| 2γ (see [START_REF] Zuazua | Finite dimensional null-controllability of the semilinear heat equation[END_REF], ( 47), ( 48), ( 77) and ( 78)).

Proof of Proposition 5: Without loss of generality, we may assume that b < 1. Let a , b be such that a < a < b < b. All the computations of the proof will be made assuming, rst, g ∈ H 1 (0, T ;

L 2 (-1, 1)) ∩ L 2 (0, T ; H 2 ∩ H 1 0 (-1, 1)).
Then, the conclusion of Proposition 5 will follow by a density argument.

First case

: γ ∈ [1/2, 1] Consider the weight function α(t, x) := M β(x) t(T -t) , (t, x) ∈ (0, T ) × R , ( 45 
)
where β ∈ C 2 ([-1, 1]) satises β 1 on (-1, 1) , ( 46 
)
|β | > 0 on [-1, a ] ∪ [b , 1] , (47) 
β (1) > 0 , β (-1) < 0 , (48)

β < 0 on [-1, a ] ∪ [b , 1] (49) 
and M = M (T, n, β) > 0 will be chosen later on. We also introduce the function z(t, x) := g(t, x)e -α(t,x) ,

that satises e -α P n g = P 1 z + P 2 z + P 3 z ,

where

P 1 z := -∂ 2 z ∂x 2 + (α t -α 2 x )z + (nπ) 2 |x| 2γ z , P 2 z := ∂z ∂t -2α x ∂z ∂x , P 3 z := -α xx z . (52)
We develop the classical proof (see [START_REF] Fursikov | Controllability of evolution equations[END_REF]), taking the L 2 (Q)-norm in the identity (51), then developing the double product, which leads to

Q P 1 zP 2 z - 1 2 |P 3 z| 2 dxdt Q |e -α P n g| 2 dxdt , (53) 
where Q := (0, T ) × (-1, 1) and we compute precisely each term, paying attention to the behaviour of the dierent constants with respect to n and T .

Terms concerning -∂ 2

x z: Integrating by parts, we get

- Q ∂ 2 z ∂x 2 ∂z ∂t dxdt = Q ∂z ∂x ∂ 2 z ∂t∂x dxdt = T 0 1 2 d dt 1 -1 ∂z ∂x 2 dxdt = 0 , (54) 
because ∂ t z(t, ±1) = 0 and z(0) ≡ z(T ) ≡ 0, which is a consequence of assumptions (50), ( 45) and [START_REF] Zuazua | Finite dimensional null-controllability of the semilinear heat equation[END_REF]. Moreover, Terms concerning (α t -α 2

Q ∂ 2 z ∂x 2 2α x ∂z ∂x dxdt = - Q ∂z ∂x 2 α xx dxdt + T 0 α x (t,
x )z: Again integrating by parts, we have

Q (α t -α 2 x )z ∂z ∂t dxdt = - 1 2 Q (α t -α 2 x ) t |z| 2 dxdt . (56) 
Indeed, the boundary terms at t = 0 and t = T vanish because, thanks to (50), ( 45), [START_REF] Zuazua | Finite dimensional null-controllability of the semilinear heat equation[END_REF],

|(α t -α 2 x )|z| 2 | 1 [t(T -t)] 2 e -M t(T -t) |M (T -2t)β + (M β ) 2 | • |g| 2 tends to zero when t → 0 and t → T , for every x ∈ [-1, 1]. Moreover, -2 Q (α t -α 2 x )zα x ∂z ∂x dxdt = Q [(α t -α 2 x )α x ] x |z| 2 dxdt , (57) 
thanks to an integration by parts in the space variable.

Terms concerning (nπ) 2 |x| 2γ z: First, since z(0) ≡ z(T ) ≡ 0,

Q (nπ) 2 |x| 2γ z ∂z ∂t dxdt = 1 2 T 0 d dt 1 -1 (nπ) 2 |x| 2γ |z| 2 dxdt = 0 . ( 58 
)
Furthermore, thanks to an integration by parts in the space variable, -2

Q (nπ) 2 |x| 2γ zα x ∂z ∂x dxdt = Q [n 2 π 2 |x| 2γ α x ] x z 2 dxdt . (59) 
Combining ( 53), ( 54), ( 55), ( 56), ( 57), ( 58) and ( 59), we conclude that

Q |z| 2 - 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x + n 2 π 2 [|x| 2γ α x ] x - 1 2 α 2 xx dxdt + T 0 α x (t, 1) ∂z ∂x (t, 1) 2 -α x (t, -1) ∂z ∂x (t, -1) 2 dt - Q ∂z ∂x 2 α xx dxdt Q |e -α P n g| 2 dxdt . ( 60 
)
In view of (48), we have α x (t, 1) 0 and α x (t, -1) 0, thus (60) yields

Q |z| 2 - 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x - 1 2 α 2 xx + n 2 π 2 [|x| 2γ α x ] x dxdt - Q ∂z ∂x 2 α xx dxdt Q |e -α P n g| 2 dxdt . (61)
Now, in the left hand side of (61) we separate the terms on (0, T ) × (a , b ) and those on (0,

T ) × [(-1, a ) ∪ (b , 1)]. One has -α xx (t, x) C 1 M t(T -t) ∀x ∈ [-1, a ] ∪ [b , 1] , t ∈ (0, T ) , |α xx (t, x)| C 2 M t(T -t) ∀x ∈ [a , b ] , t ∈ (0, T ) , (62) 
where

C 1 = C 1 (β) := min{-β (x); x ∈ [-1, a ] ∪ [b , 1]} is positive thanks to the assumption (49) and C 2 = C 2 (β) := sup{|β (x)|; x ∈ [a , b ]}. Moreover, - 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x - 1 2 α 2 xx = 1 (t(T -t)) 3 M β(3T t -T 2 -3t 2 ) +M 2 (2t -T )(β β + 2β 2 ) - t(T -t)β 2 2 -3M 3 β β 2 .
Hence, owing to (47) and ( 49), there exist

m 1 = m 1 (β) > 0 C 3 = C 3 (β) > 0 and C 4 = C 4 (β) > 0 such that, for every M M 1 and t ∈ (0, T ), - 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x - 1 2 α 2 xx C 3 M 3 [t(T -t)] 3 ∀x ∈ [-1, a ] ∪ [b , 1] , - 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x - 1 2 α 2 xx C 4 M 3 [t(T -t)] 3 ∀x ∈ [a , b ] (63)
where 

M 1 = M 1 (T, β) := m 1 (β)(T + T 2 ).
C 1 M t(T -t) ∂z ∂x 2 dxdt + T 0 (-1,a )∪(b ,1) C 3 M 3 (t(T -t)) 3 |z| 2 + (nπ) 2 [|x| 2γ α x ] x |z| 2 dxdt T 0 b a C 2 M t(T -t) ∂z ∂x 2 + C 4 M 3 (t(T -t)) 3 |z| 2 -(nπ) 2 [|x| 2γ α x ] x |z| 2 dxdt + Q |e -α P n g| 2 dxdt . (65)
Moreover, for every x ∈ (-1, 1), we have

|(nπ) 2 [|x| 2γ α x ] x | = M (nπ) 2 t(T -t) 2γsign(x)|x| 2γ-1 β (x)+|x| 2γ β (x) C 5 n 2 M t(T -t) where C 5 = C 5 (β) := π 2 max{2γ|x| 2γ-1 |β (x)| + |x| 2γ |β (x)|; x ∈ [-1, 1]} is nite because 2γ -1 0. Let M 2 = M 2 (T, n, β) be dened by M 2 = M 2 (T, n, β) := 2C 5 C 3 n T 2 2 . (66) 
From now on, we take

M = M (T, n, β) := C 2 max{T + T 2 ; nT 2 } (67) 
where

C 2 = C 2 (β) := max m 1 ; C 5 8C 3 
so that M M 1 and M 2 (see (64) and (66)). From M M 2 , we deduce that

|(nπ) 2 [|x| 2γ α x ] x | C 3 M 3 2[t(T -t)] 3 ∀(t, x) ∈ Q . We have T 0 (-1,a )∪(b ,1) C 1 M t(T -t) ∂z ∂x 2 + C 3 M 3 2(t(T -t)) 3 |z| 2 dxdt T 0 b a C 2 M t(T -t) ∂z ∂x 2 + C 6 M 3 (t(T -t)) 3 |z| 2 dxdt + Q |e -α P n g| 2 dxdt , (68) where C 6 = C 6 (β) := C 4 + C 3 /2. Since for every > 0 C 1 M t(T -t) ∂g ∂x -α x g 2 + C 3 M 3 2(t(T -t)) 3 |g| 2 1 - 1 1 + C 1 M t(T -t) ∂g ∂x 2 + M 3 (t(T -t)) 3 C 3 2 -C 1 (β ) 2 |g| 2 . (69) 20 
Hence, choosing

= (β) := C 3 4C 1 β 2 ∞ , from (68) 
, ( 69) and (50) we deduce that T 0 (-1,a )∪(b ,1) (73)

C 7 M t(T -t) ∂g ∂x 2 + C 3 M 3 |g| 2 4(t(T -t)) 3 e -2α dxdt T 0 b a C 9 M 3 |g| 2 (t(T -t)) 3 + C 8 M t(T -t) ∂g ∂x 2 e -2α dxdt + Q |e -α P n g| 2 dxdt , (70) where C 7 = C 7 (β) := [1 -1/(1 + )]C 1 , C 8 = C 8 (β) := 2C 2 and C 9 = C 9 (β) := C 6 + 2C 2 sup{β (x) 2 : x ∈ [a , b ]}. So, adding the same quantity to both sides, Q C 7 M t(T -t) ∂g ∂x 2 + C 3 M 3 |g| 2 4(t(T -t)) 3 e -2α dxdt Q |e -α P n g| 2 dxdt + T 0 b a C 11 M 3 |g| 2 (t(T -t)) 3 + C 10 M t(T -t)
We have

Q (P n g) gρe -2α t(T -t) dxdt = T 0 1 -1 ∂g ∂t - ∂ 2 g ∂x 2 + (nπ) 2 |x| 2γ g gρe -2α t(T -t) dxdt.
Integrating by parts with respect to time and space, we obtain

Q 1 2 ∂(g 2 ) ∂t ρe -2α t(T -t) dxdt = Q 1 2 |g| 2 ρ 2α t t(T -t) + T -2t (t(T -t)) 2 e -2α dxdt and - Q ∂ 2 g ∂x 2 gρe -2α t(T -t) dxdt = Q ρe -2α t(T -t) ∂g ∂x 2 dxdt - Q |g| 2 e -2α 2t(T -t) ρ -4ρ α x + ρ(4α 2 x -2α xx ) dxdt . (74) Thus, Q P n g gρe -2α t(T -t) dxdt Q ρe -2α t(T -t) ∂g ∂x 2 dxdt - Q |g| 2 e -2α 2t(T -t) ρ -4ρ α x + ρ 4α 2 x -2α xx -2α t - T -2t t(T -t) dxdt . (75) Therefore, T 0 b a C 10 M t(T -t) ∂g ∂x 2 e -2α dxdt Q C 10 M ρ t(T -t) ∂g ∂x 2 e -2α dxdt Q P n g C 10 M gρe -2α t(T -t) dxdt + Q C 10 M |g| 2 e -2α 2t(T -t) ρ -4ρ α x + ρ 4α 2 x -2α xx -2α t - T -2t t(T -t) dxdt Q |P n g| 2 e -2α dxdt + T 0 b a C 12 M 3 |g| 2 e -2α (t(T -t)) 3 dxdt
for some constant C 12 = C 12 (β, ρ) > 0. Combining (71) with the previous inequality, we get

Q C 7 M t(T -t) ∂g ∂x 2 + C 3 M 3 |g| 2 4(t(T -t)) 3 e -2α dxdt Q 2|e -α P n g| 2 dxdt + T 0 b a C 13 M 3 |g| 2 (t(T -t)) 3 e -2α dxdt , (76) 
where C 13 = C 13 (β, ρ) := C 11 + C 12 . Then, the global Carleman estimates [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF] holds with

C 1 = C 1 (β) := min{C 7 ; C 3 /4} max{2; C 13 } .
Second case: γ ∈ (0, 1/2) The previous strategy does not apply to γ ∈ (0, 1/2)

because the term (nπ) 2 [|x| 2γ α x ] x (that diverges at x = 0) in (65) can no longer be bounded by C3M 3

(t(T -t)) 3 (which is bounded at x = 0). Note that both terms are of the same order as M 3 , because of the dependence of M with respect to n in (67). In order to deal with this diculty, we adapt the choice of the weight β and the dependence of M with respect to n.

Let β ∈ C 1 ([-1, 1]) ∩ C 2 ([-1, 0) ∪ (0, 1]) be such that β < 0 on [-1, 0) ∪ (0, a ] ∪ [b , 1] (77)
and β has the following form on a neighborhood (-, ) of 0

β(x) = C 0 - x 0 sign(s)|s| 2γ + C 1 ds ∀x ∈ (-, ) , (78) 
where C 0 , C 1 are large enough to ensure that β(x) 1, and sign(s

)|s| 2γ + C 1 ≥ 0 on (-, ). Notice that β (x) = -sign(x)|x| 2γ + C 1 ∀x ∈ (-, ) , (79) 
thus β diverges at x = 0. Performing the same computations as in the previous case, we get to inequality (61). Notice that one obtains (59) even if γ ∈ (0, 1/2): the boundary terms vanish and x → |x| 2γ-1 is integrable at x = 0. Then, owing to (47) and (77), there exist m 1 = m 1 (β) > 0, C 3 = 1/2 and C 4 = C 4 (β) > 0 such that, for every M M 1 and t ∈ (0, T ),

- 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x - 1 2 α 2 xx C 3 M 3 [t(T -t)] 3 |β (x)| β (x) 2 ∀x ∈ [-1, 0) ∪ (0, a ] ∪ [b , 1] ,
and

- 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x - 1 2 α 2 xx C 4 M 3 [t(T -t)] 3 ∀x ∈ [a , b ] ,
where M 1 = M 1 (T, β) is dened by (64). In view of ( 61) and (77), for every M M 1 , T 0 (-1,a )∪(b ,1)

C 3 M 3 (t(T -t)) 3 |β (x)| β (x) 2 |z| 2 + (nπ) 2 (|x| 2γ α x ) x |z| 2 dxdt T 0 b a C 2 M t(T -t) ∂z ∂x 2 + C 4 M 3 (t(T -t)) 3 |z| 2 dxdt -(nπ) 2 T 0 b a (|x| 2γ α x ) x |z| 2 dxdt . (80) Moreover, |(nπ) 2 (|x| 2γ α x ) x | = (nπ) 2 M t(T -t) 2γsign(x)|x| 2γ-1 β (x) + |x| 2γ β (x) C 5 n 2 M t(T -t) |x| 2γ-1 |β (x)| + |x| 2γ |β (x)| ∀x ∈ (-1, 0) ∪ (0, 1) ,
where C 5 = π 2 (2γ + 1).

From now on, we take

M = M (T, n, β) := C 2 max{T + T 2 ; nT 2 } , (81) 
where

C 2 = C 2 (β) := max m 1 , 1 
λ
and λ = λ(β) is a (small enough) constant, that will be chosen later on. From M nT 2 /λ, we deduce that, for every x ∈ (-1, 0) ∪ (0, 1),

|(nπ) 2 (|x| 2γ α x ) x | C 6 λ 2 M 3 (t(T -t)) 3 |x| 2γ-1 |β (x)| + |x| 2γ |β (x)| ,
where C 6 = C 6 (γ) > 0. Let us verify that, for λ = λ(β) > 0 small enough and for every x ∈ (-1, 0) ∪ (0, a ) ∪ (b , 1), we have

C 6 λ 2 M 3 (t(T -t)) 3 |x| 2γ-1 |β (x)| C 3 M 3 4(t(T -t)) 3 |β (x)| β (x) 2 , C 6 λ 2 M 3 (t(T -t)) 3 |x| 2γ |β (x)| C 3 M 3 4(t(T -t)) 3 |β (x)| β (x) 2 ,
or, equivalently, for every x ∈ (-1, 0) ∪ (0, a ) ∪ (b , 1),

C 6 λ 2 |x| 2γ-1 C 3 4 |β (x)| • |β (x)| , C 6 λ 2 |x| 2γ C 3 4 β (x) 2 . ( 82 
)
The second inequality is easy to satisfy for λ = λ(β) small enough, because

|β | > 0 on [-1, a ] ∪ [b , 1]
. Thanks to (79), for every x ∈ (-, ),

β (x) 2 = sign(x)|x| 2γ + C 1 , so β (x)β (x) = γ|x| 2γ-1 .
Therefore, for every x ∈ (-, ) \ {0}, the rst inequality in (82) is equivalent to

C 6 λ 2 C 3 4 γ ,
which is trivially satised when λ = λ(β) is small enough. Moreover, the rst inequality of (82) holds for every Then there exists C > 0 such that for every T > 0, n ∈ N * , and g 0,n ∈ L 2 (-1, 1) the solution of (17) satises

x ∈ [-1, -] ∪ [ , a ] ∪ [b , 1] when λ = λ(β) is small enough,
C 3 M 3 2(t(T -t)) 3 |β (x)| β (x) 2 |z| 2 dxdt T 0 b a C 2 M t(T -t) ∂z ∂x 2 + C 5 M 3 (t(T -t)) 3
C 6 M 3 2(t(T -t)) 3 |z| 2 dxdt T 0 b a C 2 M t(T -t) ∂z ∂x 2 + C 5 M 3 (t(T -t)) 3
1 -1 g n (T, x) 2 dx T 2 e C 1+T - 1+γ 1-γ T 0 b a g n (t, x) 2 dxdt.
Let us recall that explicit bounds on the observability constant of the heat equation with a potential are already known.

Theorem 6. Let -1 < a < b < 1. There exists c > 0 such that, for every T > 0, α, β ∈ L ∞ ((0, T ) × (-1, 1)), g 0 ∈ L 2 (-1, 1), the solution of

   ∂ t g -∂ 2 x g + β∂ x g + αg = 0 (t, x) ∈ [0, T ] × (-1, 1) , g(t, ±1) = 0 t ∈ [0, T ] , g(0, x) = g 0 (x) x ∈ (-1, 1) , satises 1 -1 |g(T, x)| 2 dx e cH(T, α ∞ , β ∞ ) T 0 b a |g(t, x)| 2 dxdt ,
where H(T, A, B)

:= 1 + 1 T + T A + A 2/3 + (1 + T )B 2 .
For the proof of the above result we refer to [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: The linear case[END_REF]Theorem 1.3] in the case of β ≡ 0, and to [15, Theorem 2.3] for β ≡ 0. The optimality of the power 2/3 of A in H(T, A, B) has been proved in [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF].

Proposition 6 may be seen as an improvement of the above estimate (relatively to the asymptotic behavior as n → +∞), in the special case of [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF].

Proof of Proposition 6: We derive an explicit observability constant from the Carleman estimate of Proposition 5. For t ∈ (T /3, 2T /3), we have 4

T 2 1 t(T -t) 9 2T 2 and 1 -1 g(T, x) 2 dx 1 -1 g(t, x) 2 dxe -λn T 3 .
Thus, for some constants c 1 , c 2 , C 4 > 0 (independent of n, T and g).

C 1 64M 3 T 6 e -9M β * 2T 2 T 3 e λn T

First case:

n < 1 + 1 T . Then, M = C 2 (T + T 2 ) thus 1 -1 g(T, x) 2 dx C 4 T 2 e c1C2(1+ 1 T ) T 0 b a g(t, x) 2 dxdt. Second case: n 1 + 1 T . Then, M = C 2 nT 2 . The maximum value of the function x → c 1 C 2 x -c 2 x 2 1+γ T on (0, +∞) is of the form c 3 T -1+γ 1-γ for some constant c 3 > 0 (independent of T ). Thus, 1 -1 g(T, x) 2 dx C 4 T 2 e c3T -1+γ 1-γ T 0 b a g(t, x) 2 dxdt.
This gives the conclusion.

2

In the case of γ = 1, we also have the following result.

Proposition 7. Assume γ = 1. Let a, b ∈ R be such that 0 < a < b < 1. Then there exists T 1 > 0 such that, for every T > T 1 , system [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF] is observable in (a, b) in time T uniformly with respect to n ∈ N * . Proof: One can follow the lines of the previous proof until (85). Then, for

n 1 + 1 T , we have M = C 2 nT 2 . Thus, 1 -1 g(T, x) 2 dx C 4 T 2 e [c1C2-c2T ]n T 0 b a g(t, x) 2 dxdt.
This proves Proposition 7 with T

1 := c 1 C 2 /c 2 . 2 4.3
Construction of the control function for γ ∈ (0, 1)

The goal of this section is the proof of null controllability in any time T > 0 for γ ∈ (0, 1). Our construction of the control steering the initial state to zero is the one of [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratied media[END_REF], which is in turn inspired by [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] (see also [START_REF] Lebeau | On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations[END_REF]).

For n ∈ N * , we dene ϕ n (y) := √ 2 sin(nπy) and H n := L 2 (-1, 1) ⊗ ϕ n , which is a closed subspace of L 2 (Ω). For j ∈ N, we dene E j := ⊕ n 2 j H n and denote by Π Ej the orthogonal projection onto E j . Proposition 8. Let γ ∈ (0, 1), and let a, b, c, d ∈ R be such that 0 < a < b < 1 and 0 < c < d < 1. Then there exists a constant C > 0 such that for every T > 0, every j ∈ N * , and every g 0 ∈ E j the solution of (4) satises where ω := (a, b) × (c, d).

For the proof of Proposition 8 we shall need the following inequality obtained in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] (see also [START_REF] Lebeau | On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations[END_REF]).

Proposition 9. Let c, d ∈ R be such that c < d. There exists C > 0 such that, for every

L ∈ N * and (b k ) 1 k L ∈ R L , L k=1 |b k | 2 e CL d c L k=1 b k ϕ k (y) 2 dy. Proof of Proposition 8: Let (g 0,n ) 1 n 2 j ∈ L 2 (-1, 1) 2 j be such that g 0 (x, y) = 2 j n=1 g 0,n (x)ϕ n (y) .
Then the solution of ( 4) is given by g(t, x, y) =

2 j n=1 g n (t, x)ϕ n (y)
where, for every n ∈ N * , g n is the solution of ( 17). Applying Propositions 6 and 9, and recalling that (ϕ n ) n∈N * is an orthonormal sequence of L 2 (0, 1), we deduce Ω g(T, x, y) 2 dxdy =

2 j n=1 1 -1 g n (T, x) 2 dx T 2 e C 1+T - 1+γ 1-γ 2 j n=1 T 0 b a g n (t, x) 2 dxdt T 2 e C 2 j +T - 1+γ 1-γ T 0 b a d c 2 j n=1 g n (t, x)ϕ k (y) 2 dydxdt = T 2 e C 2 j +T - 1+γ 1-γ T 0 ω g(t, x, y) 2 dxdydt ,
where the constant C may change from line to line. 2

Let T > 0 and f 0 ∈ L 2 (Ω). We now proceed to construct a control u ∈ L 2 (0, T ; L 2 (Ω)) such that the solution of (2) satises f (T,

•) ≡ 0. Fix ρ ∈ R with 0 < ρ < 1 -γ 1 + γ (86) 
and let K = K(ρ) > 0 be such that K ∞ j=1 2 -jρ = T . Let (a j ) j∈N be dened by a 0 = 0 a j+1 = a j + 2T j , j 0 , where T j := K2 -jρ for every j ∈ N. We now dene the control u in the following way. On [a j , a j + T j ], we apply a control u such that Π Ej f (a j + T j , •) = 0 and u L 2 (aj ,aj +Tj ;L 2 (Ω)) C j f (a j , •) L 2 (Ω)

where, in view of Proposition 8,

C j := e C 2 j +T -1+γ 1-γ j .

Observe that, in light of [START_REF] Cannarsa | Carleman estimates and null controllability for boundary-degenerate parabolic operators[END_REF], f (a j + T j , •) L 2 (Ω) (1 + T j C j ) f (a j , •) L 2 (Ω) .

Then, on the interval [a j + T j , a j+1 ] we apply no control in order to take advantage of the natural exponential decay of the solution, thus obtaining f (a j+1 , •) L 2 (Ω) e -λ 2 j Tj f (a j + T j , •) L 2 (Ω) , where λ n is dened in [START_REF] Fernández-Cara | On the null controllability of the onedimensional heat equation with BV coecients[END_REF]. Combining the above inequalities, we conclude that f (a j+1 , •) L 2 (Ω) exp

2 j k=1 ln(1 + T k C k ) -C(2 k ) 2 1+γ T k f 0 L 2 (Ω) .
The choice of ρ ensures that the sum in the exponential diverges to -∞ as j → +∞, forcing f (T, •) ≡ 0. The fact that u ∈ L 2 (0, T ; L 2 (Ω)) can be checked by similar arguments. Let us consider γ = 1 and ω = (a, b) × (0, 1). From Proposition 7, we deduce that (3) is observable in ω in any time T > T 1 . From Theorem 5, we deduce that for any time T < a 2 2 , (3) is not observable in ω in time T . Thus, the quantity T * := inf{T > 0 ; system (3) is observable in ω in time T } is well dened and belongs to [ a 2 2 , +∞). Clearly, observability in some time T implies observability in any time T > T , so

• for every T > T * , ( 4) is observable in ω in time T ,

• for every T < T * , (4) is not observable in ω in time T .

Conclusion and open problems

In this article we have studied the null controllability of the Grushin type equation (1), in the rectangle Ω = (-1, 1)×(0, 1), with a distributed control localized on an open subset ω of (0, 1) × (0, 1). We have proved that null controllability:

• holds in any positive time, when degeneracy is not too strong, i.e. γ ∈ (0, 1),

• holds only in large time, when γ = 1 and ω is a strip parallel to the y-axis,

• does not hold when degeneracy is too strong, i.e. γ > 1.

Null controllability when γ = 1, T is large enough, and the control region ω is more general is an open problem. When γ = 1, it would be interesting to characterize the minimal time T * required for null controllability and possibly connect it with the associated diusion process. We conjecture that T * = a 2

.

The technique of this paper should possibly extend to higher dimensional cylindrical domains of the form (-1, 1) × (0, 1) m . However, the generalization of this result to other muldimensional congurations (including x ∈ (-1, 1) n , y ∈ (0, 1) m with m, n 1) or boundary controls, is widely open.

A The case when {x = 0} ⊂ ω

In this appendix we briey explain why null controllability holds when degeneracy occurs inside the control region. Consider the control system    ∂ t f -∂ 2

x f -|x| 2γ ∂ 2 y f = u(t, x, y)1 ω (x, y) (t, x, y) ∈ (0, T ) × Ω f (t, x, y) = 0 (t, x, y) ∈ (0, T ) × ∂Ω f (0, x, y) = f 0 (x, y) (x, y) ∈ Ω (87)

with ω = (-a, a) × (0, 1) , 0 < a ≤ 1. Fix b ∈ (0, a) and choose cut-o functions ξ i ∈ C ∞ (R) , i = 0, 1, 2, such that 0 ≤ ξ i ≤ 1 and

         ξ 0 + ξ 1 + ξ 2 ≡ 1 ξ 0 (x) = 1 if |x| ≤ b , ξ 0 (x) = 0 if |x| ≥ a ξ 1 (x) = 0 if x ≤ b , ξ 0 (x) = 1 if x ≥ a ξ 2 (x) = 1 if x ≤ -a , ξ 2 (x) = 0 if x ≥ -b (88)
Let ω 1 = (b, a) × (0, 1) and let Ω 1 = (b, 1) × (0, 1). There exists a control u 1 ∈ L 2 ((0, T ) × Ω 1 ) such that the solution f 1 of

   ∂ t f -∂ 2
x f -|x| 2γ ∂ 2 y f = u 1 (t, x, y)1 ω1 (x, y) (t, x, y) ∈ (0, T ) × Ω 1 f (t, x, y) = 0 (t, x, y) ∈ (0, T ) × ∂Ω 1 f (0, x, y) = f 0 (x, y) ( x f -|x| 2γ ∂ 2 y f = 0 (t, x, y) ∈ (0, T ) × Ω 0 f (t, x, y) = 0 (t, x, y) ∈ (0, T ) × ∂Ω 0 f (0, x, y) = ξ 0 (x)f 0 (x, y) (x, y) ∈ Ω 0 .

Then f (t, x, y) := ξ 1 (x)f 1 (t, x, y) + ξ 2 (x)f 2 (t, x, y) + T -t T f 0 (t, x, y) satises (87) for a suitable control u, as well as f (T, •) ≡ 0 on Ω.

Ω

  |g(T, x, y)| 2 dxdy C T 0 ω |g(t, x, y)| 2 dxdydt .

2 2 .

 2 If γ = 1 and ω = (a, b) × (0, 1) where 0 < a < b 1, then there exists T * a 2

2 4

 2 Proof of the positive statements of Theorem 1

  ), (62) and (63), we deduce, for every M M 1 ,

∂g 2 e

 2 -2α dxdt , (71) where C 10 = C 10 (β) := C 8 + C 7 and C 11 = C 11 (β) := C 9 + C 3 /4. Let us prove that the third term of the right hand side may be dominated by terms similar to the other two. We consider ρ ∈ C ∞ (R; R + ) such that 0 ≤ ρ ≤ 1 and ρ ≡ 1 on (a , b ) , (72) ρ ≡ 0 on (-1, a) ∪ (b, 1) .

  since |β β | > 0 on this compact set. Finally, we have T 0 (-1,a )∪(b ,1)

  |z| 2 dxdt , (83) where C 5 = C 5 (β) > 0. Since the function |β |(β ) 2 is bounded from below by some positive constant on [-1, a ] ∪ [b , 1], we also have T 0 (-1,a )∪(b ,1)

  |z| 2 dxdt , (84) where C 6 = C 6 (β) > 0. The rest of the proof goes as for γ ∈ [1/2, 1].

2

 2 

  of Proposition 5 allows to prove the following uniform observability result. Proposition 6. Let γ ∈ (0, 1) and let a, b ∈ R be such that 0 < a < b < 1.

1 - 1 gT 2

 112 , x) 2 dxdt where β * := max{β(x) : x ∈ [-1, 1]}, β * := min{β(x) : x ∈ [-1, 1]} and C 3 := max{x 3 e -β * x }. Using the inequality M C 2 [T + T 2 ] and Proposition 4, we get (T, x) 2 dx C 4 T 2 e c1 M

2 4. 4 End of the proof of Theorems 1 and 2 Let 3 (

 2423 ω be an open subset of (0, 1) × (0, 1). There exists a, b, c,d ∈ R with 0 < a < b < 1, 0 < c < d < 1 such that (a, b) × (c, d) ⊂ ω.The rst (resp. third) statement of Theorem 2 has been proved in Section 4.resp. Section 3); let us prove the second one.

, y) ∈ Ω 1 satises f 1 (

 11 T, •) ≡ 0 on Ω 1 . Similarly, let ω 2 = (-a, -b) × (0, 1) and let u 2 ∈ L 2 ((0, T ) × Ω 2 ), where Ω 2 = (-1, -b) × (0, 1), be such that the solution f 2 of    ∂ t f -∂ 2 x f -|x| 2γ ∂ 2 y f = u 2 (t, x, y)1 ω2 (x, y) (t, x, y) ∈ (0, T ) × Ω 2 f (t, x, y) = 0 (t, x, y) ∈ (0, T ) × ∂Ω 2 f (0, x, y) = f 0 (x, y) (x, y) ∈ Ω 2satises f 2 (T, •) ≡ 0 on Ω 2 . Finally, let Ω 0 = (-a, a) × (0, 1) and let f 0 be the solution of   ∂ t f -∂ 2

Acknowledgements

The authors are grateful to the referees for their constructive comments that helped improve the exposition. They also warmly thank Gilles Lebeau, Luc Hillairet, and Vilmos Komornik for their stimulating remarks.

framework of the GDRE CONEDP. The authors wish to thank Institut Henri Poincaré (C.I.M.E. course `The rst author was partially supported by the Projet Blanc C-QUID number BLAN-3-139579 and Projet Blanc EMAQS number ANR-2011-BS01-017-01.