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Iterative convolution particle filtering for nonlinear parameter estimation and

data assimilation with application to crop yield prediction

Yuting CHEN ∗ Samis TREVEZAS ∗ Paul-Henry COURNEDE ∗

Abstract

The complexity of plant growth models and the scarcity of

experimental data make the application of conventional data

assimilation techniques rather difficult. In this paper, we

use the Convolution Particle Filter (CPF) and an iterative

adaptation, the Iterative Convolution Particle Filter (ICPF)

for nonlinear parameter estimation. Both methods provide

prior distributions in the Bayesian framework for data as-

similation. CPF is sequentially used to update state and pa-

rameter estimates in order to improve model prediction and

to assess the predictive uncertainty. The predictive perfor-

mances of the two methods are evaluated by an application

to the LNAS sugar beet growth model with three sets of real

measurements, one used for parameter estimation and the

two others used to test the model predictive capacity, both

with and without data assimilation. Despite the low accu-

racy and the scarcity of the early data used for assimilation,

the CPF-based data assimilation approach with the prior

distribution based on ICPF estimations showed promising

predictive capacities and provided robust confidence inter-

vals. The method can therefore be considered as a potential

candidate for yield prediction applications in agriculture.

1 Introduction

Given a dynamic model and corresponding experimental
observations, data assimilation techniques can be used
to update state and parameter estimates during the
system’s evolution through time in order to improve
model prediction.

Dynamic crop models are generally characterized
by complex interacting processes and a large number of
model parameters to describe plant growth and devel-
opment. When combined to data assimilation methods,
they can be considered as useful tools for yield predic-
tion and decision support [15]. However, as a specificity
of agricultural systems, experimental data acquisition
tends to be costly (when direct field data collections are
involved) or inaccurate (for indirect measurements such
as satellite images), and generally irregular. Therefore,
due to the nonlinear dynamics of the system equations,
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the restricted experimental data and the considerable
uncertainty of the inputs, the parameterization of these
models is generally regarded as a key issue which may
affect strongly the quality of model prediction. Efficient
and precise parameter estimation with proper assess-
ment of the parameter uncertainty is thus crucial to
assure reliable and satisfactory prediction performance.

In the past decade, data assimilation problems
have been commonly reformulated and studied with
a Bayesian probabilistic perspective, which allows the
simultaneous estimation of model states and param-
eters ([16], [17], [25]) in the framework of general-
ized state-space models. However, the most frequently
used approaches still rely on Kalman filter, such as the
Extended Kalman Filter (EKF) [12] or the Ensemble
Kalman Filter (EnKF) [13]. In the EKF approach, the
idea is to approximate locally the nonlinear system dy-
namics in order to infer recursively the state variables,
yet the local approximations may cause divergence [12].
As for the EnKF approach, the main constraint is the
Gaussian assumption of all the involved probability dis-
tributions [24]. These approximations often lead to crit-
ical filter divergence when the experimental data are not
frequent enough. Another alternative that can be used
for Baysian inference is the Sequential Importance Sam-
pling, also known as Particle Filtering ([14], [18]). Un-
like the Kalman filter related approaches, the advantage
of Monte-Carlo filtering methods has been well estab-
lished since they aim at providing better approximation
of the exact posterior distributions for data assimilation
in nonlinear systems. However, their main drawbacks
are potential sample degeneracy problems [1], which ac-
cording to [10] could be alleviated by increasing the
number of particles or resampling. Nevertheless, the re-
sampling procedure conducted by inappropriate process
noise can lead to sample impoverishment [14].

In this paper, we choose to adapt a new Bayesian as-
similation approach, the Convolution Particle Filtering
(CPF) [4], for sequential data assimilation, which allows
to circumvent the potential side effects of resampling
and proves to be very robust and easy to apply to plant
growth models. With the purpose of improving the
parametrization performance especially with stochastic



models and in the case of rare or irregular experimental
data, a conditional iterative version of the Convolution
Particle Filtering (ICPF) has as well been proposed [7].

The objective of this paper is to explore CPF-based
parameter estimation methods with an emphasis on the
sequential data assimilation for a plant growth model
with constrained observations. An illustrative applica-
tion is provided using the LNAS model of sugar beet
growth [9] and three years of experimental data obtained
in comparable but different situations. One dataset is
used for parameter estimation and the two others are
used to test model prediction, with assimilation of the
early experimental measurements. The properties and
performances of the CPF and ICPF estimation methods
are investigated, specifically regarding their abilities to
provide reliable a priori estimates for data assimilation
and prediction purposes.

In Section 2, the principles of Convolution Parti-
cle Filtering are recalled and an iterative version for
parameter estimation is introduced. In Section 3, we
detail the test case by describing the LNAS model, the
experimental datasets, the calibration and assimilation
procedures. The results are presented and discussed in
Section 4 before drawing the conclusions.

2 Methods

Plant growth models or crop models are generally writ-
ten in a state-space form and considered as determinis-
tic. In rarer cases, modelling and measurement noises
are introduced to build a stochastic model. In both situ-
ations, they can be used by the statistical framework of
sequential data assimilation aiming to estimate the time
evolving state variables. The major challenge for yield
prediction is to develop an appropriate data assimila-
tion method to overcome the uneven and irregular data
problems and thus to integrate the available information
to a complex nonlinear dynamic model.

In this paper, we consider cases in which no satis-
fying prior distributions are available for the considered
parameters, so that a first calibration step is performed
on a full dataset to provide the prior distributions. Af-
terwards, the obtained prior distributions are used for
data assimilation configurations during which the early
experimentation data are assimilated to improve model
prediction for the measurements of later dates.

The proposed approach consists of three steps. In
the first selection step, the least influential model pa-
rameters are screened using sensitivity analysis meth-
ods [5] and are thus fixed. In the second step, the other
parameters are estimated with the CPF approach based
on a given experimental dataset. The posterior distri-
butions obtained can thus be used to assess the uncer-
tainty of the estimates. Meanwhile, the modelling and

measurement noises can as well be evaluated. An al-
ternative approach that we propose for parameter es-
timation relies on the iterative CPF approach. The
CPF is iterated until convergence using the posterior
distribution of iteration k as prior distribution for iter-
ation k + 1. However, the obtained final distributions
are no longer representative of the uncertainty of the
estimates, since they are influenced by the regulariza-
tion effect and the empirical estimation of the modelling
and measurement noises. Under these circumstances, a
parametric bootstrap can be carried out to assess the
uncertainty of the estimates. During the third assim-
ilation phase, a new comparable experimental dataset
(for instance same crop, but from a different year, or
at different location, or of different genotype ...) with
few early measurements is used. The CPF approach is
anew implemented this time with the prior distributions
provided by the previous calibration step. After a short
recalibration period while model parameters and state
variables are updated based on the available measure-
ments, the particles (simulations) continue to propagate
in order to predict the system evolution and to evaluate
the related uncertainty.

In this section, we first recall the general state-space
model framework used for parameter estimation and
data assimilation in this study. Then the Convolution
Particle Filter is presented followed by its iterative
version that we proposed for parameter estimation.

2.1 General State-Space Models: The statistical
framework for crop data assimilation is provided by the
discrete nonlinear general state-space model with a state
function and an observation function:

(2.1)

{

X(t+ 1) = f (X(t),Θ, η(t), t)
Y (t) = g (X(t),Θ, ξ(t), t)

The evolution equation is embodied in the function f ,
which is time dependent. X(t) represents the state vari-
ables at time t, Θ is a vector of parameters of dimen-
sion p and the modelling noise is represented with the
random variables η(t) (corresponding to model imper-
fections or uncertainty in the model inputs). The obser-
vation equation incorporates observations on the state
variables of interest. Y (t) is the outcome vector which
is related to the state variable vector X(t) through the
function g. Y (t) consists of state variables that can be
observed experimentally and usually differ from X(t)
(for instance, biomasses of some plant organs can be
measured while the daily biomass production cannot).
Measurement noises are denoted by ξ(t). (η(t))t and
(ξ(t))t are considered as sequences of independent and
identically distributed random variables. Since exper-
imental observations are usually limited due to high



costs, observations are only available at irregular times.
Let (t1, t2, ...tN ) be the N measurement time steps. For
all n ∈ [1;N ], we set: Xn := X(tn), Yn := Y (tn) and
Y1:n := (Y (t1) , Y (t2) , . . . , Y (tn)).

2.2 Convolution Particle Filter for Bayesian

Parameter Estimation: Particle filtering is a recur-
sive Bayesian filter based on Monte Carlo simulations
[1]. The basic idea is the recursive approximation of
the filtering distribution by a time evolving weighted
sample.

Inspired by the Post-Regularized Particle Filter
[23], the objective of the Convolution Particle Filter [4]
is to estimate jointly the parameters and the hidden
states of the dynamic system by processing the data
online. A possible way to incorporate the vector pa-
rameter Θ in the state equation is by considering Θn

with a constant evolution. An augmented state vector
Xa

n = (Xn,Θn) is thus defined which contains Xn the
true hidden state at time tn and Θn the vector of un-
known parameters. In the following, if X represents a
random variable with values in X , then for all x ∈ X ,
p(x) will denote the probability density of X in x. The
first-order hidden Markov model is characterized by the
transition density p(xa

n|x
a
n−1) corresponding to the state

equation, the observation density p(yn|x
a
n) correspond-

ing to the observation equation and the initial density
p(xa

0).
In the initialization step of our implementation,

the parameters are initialized from either informative
distributions (p(xa

0)) or non-informative distributions
for all the particles. Particle weights are assigned
uniformly. Each filtering step is performed recurrently
in two stages and occurs only at time steps when the
observation is available [4]:

Prediction: The objective is to provide a
kernel estimator of p(xa

n+1, yn+1|y0:n) denoted by

p̂(xa
n+1, yn+1|y0:n). M particles {x̃a

n
(i), i = 1, . . . ,M}

are sampled from the distribution with conditional den-
sity p̂(xa

n|y0:n). TheM particles are propagated through
the evolution model until the next available measure-
ment to obtain the predicted states {x̃a

n+1−
(i), i =

1, . . . ,M} . The updating scheme relies directly on
Bayes’ law. The particle weights are calculated based
on the experimental measurements and the predictions,
and then normalized. The empirical kernel approxima-
tion of the probability density of (Xa

n+1, Yn+1) condi-
tional to Y0:n can thus be deduced using the Parzen-
Rosenblatt kernel KX

hX
M

, with bandwidth parameter hX
M :

p̂(xa
n+1, yn+1|y0:n) =

1

M

M
∑

i=1

KX
hX
M

(

xa
n+1 − x̃a

n+1−
(i)
)

· p
(

yn+1|x̃
a
n+1−

(i)
)

.

(2.2)

Correction: The a posteriori form of the estima-
tion is deduced from Bayes’ law and the kernel approx-
imation for p(xa

n+1|y1:n+1) is given by:

p̂(xa
n+1|y1:n+1) =

1
M
∑

i=1

p(yn+1|x̃
a
n+1−

(i))

·
M
∑

i=1

KX
hX
M

(xa
n+1 − x̃a

n+1−
(i))p(yn+1|x̃

a
n+1−

(i)).

(2.3)

The part p(yn+1|x̃
a
n+1−

(i))/
∑M

i=1p(yn+1|x̃
a
n+1−

(i))

can be considered as the normalized weight w̃
(i)
n+1

associated to the particle x̃a
n+1−

(i). In the case
that the analytic form of the observation density
p(yn|xn) is unknown, an observation kernel can sim-
ilarly be introduced [4]. The new set of par-
ticles

{

xa
n+1

(i), 1 ≤ i ≤ M
}

are then sampled from
p̂(xa

n+1|y1:n+1).

2.3 Iterative Convolution Particle Filter: In the
case of off-line estimation with a finite number of ob-
servations, in order to determine the prior distribu-
tions for data assimilation, an iterative version of CPF
can hence be applied. At iteration k, the particles
xa
0
(i) are obtained as follows: the initial state vectors

{x̃0
(i), i = 1, . . . ,M} are selected in the same way as for

the classical filtering process (sampled from p(x0)), and

the vectors of unknown parameters {Θ̃
(i)
0 , i = 1, . . . ,M}

are sampled from the multivariate Gaussian distribu-
tion defined by the mean and covariance matrix of
{Θ̃N

(i), i = 1, . . . ,M} at iteration k − 1.
Due to the stochastic nature of this method [6],

a burn-in period of K iterations is defined. Averaged
estimators are built to decrease the fluctuations. If we
denote Θ̂(l) and x̂

(l)
n the estimates of the parameters and

the hidden state variables at the l-th filtering iteration
respectively, then for l > K :
(2.4)

¯̂
Θ(l) =

1

l −K

l
∑

j=K+1

Θ̂(j) and ¯̂x(l)
n =

1

l −K

l
∑

j=K+1

x̂(j)
n ,

if we use a constant number of particles.

2.4 Conditional ICPF for Uncertainty Assess-

ment: In order to estimate the noise parameters and to



evaluate the uncertainty related to the estimates of the
ICPF approach, we partition Θn: Θn = (Θ1,Θ2). Θ1

denotes the parameters from the deterministic part of
the model (state equation and measurement equation)
and Θ2 denotes those of the noise model (the parameters
of the distributions of η and ξ in (2.1)). A conditional
ICPF algorithm proposed by [7] is thus implemented.

In the first place, the estimation of the hidden
states and of Θ1 is performed by considering that Θ2 is
known. In practice, small initial variances for the noises
seem helpful to ensure the convergence of the algorithm
towards satisfactory estimation results for the hidden
states and for Θ1. From this first estimation of Θ1 and
of the hidden states, we can estimate the parameters
of the distributions of the modelling and measurement
noises Θ2 from the results. Conditionally to the new
estimated Θ2, the ICPF approach is then carried out
again to estimate Θ1 together with the hidden states.
In this way, the algorithm can be iterated until the
convergence of both Θ1 and Θ2, which is claimed by a
standard stopping rule when the relative change in the
estimates from three successive iterations is reasonably
small [3].

However, since the posterior distributions of the pa-
rameters is no longer representative of the estimates’
uncertainty because of the regularization effect from the
successive iterations of the filtering process, parametric
bootstrap [11] is implemented to calculate the related
confidence intervals. New observation vectors are hence
randomly generated with Θ̂ and the conditional ICPF
algorithm estimation is performed for each of them. The
uncertainty related to the estimation Θ̂ can thus be eval-
uated properly. Moreover, we highlight that the algo-
rithmic uncertainty (linked to the stochastic algorithm)
can also be assessed by applying the conditional ICPF
approach to the same experimental data set a large num-
ber of times as presented by [8]. Tests based on simu-
lated data are detailed in [7].

3 Application

In this section, we illustrate the application of the two
CPF-based methods to a dynamic crop model based on
real experimental data of sugar beet. The parameter
estimation and data assimilation related problems are
addressed. A simple stochastic model, the Log Normal
Allocation and Senescence (LNAS) daily crop model is
introduced for this purpose.

3.1 LNAS Model of Plant Growth The equations
are specifically derived for the sugar beet, per unit
surface area, with two kinds of organ compartments
taken into account: foliage and root system.

Biomass production: Q(t) is the biomass produc-
tion on day t per unit surface area (g.m−2) which can
be obtained by generalizing the Beer-Lambert law [21]:
(

1− e−λ·Qg(t)
)

represents the fraction of intercepted ra-
diation, with λ (g−1.m2) a parameter and Qg(t) the
total mass of green leaves on day t (in g.m−2). The
biomass production of the whole plant is then deduced
by multiplying the total amount of absorbed photosyn-
thetically active radiation per unit surface area (PAR,
in MJ.m−2) and an energetic efficiency µ (in g ·MJ−1·):

(3.5) Q(t) =
(

µ · PAR(t)
(

1− e−λQg(t)
))

· (1+ηQ(t))

with the modelling noise ηQ ∼ N (0, σ2
Q).

Allocation for the foliage and root system com-
partments:

Qf (t+ 1) = Qf (t) + γ(t) ·Q(t)(3.6)

Qr(t+ 1) = Qr(t) + (1− γ(t)) ·Q(t)(3.7)

(3.8) γ(t) = (γ0 + (γf − γ0) ·Ga(τ(t))) · (1 + ηγ(t))

with τ(t) the thermal time, which corresponds to
the accumulated daily temperature since emergence day,
Ga the cumulative distribution function of a log-normal
law parameterized by its median µa and standard
deviation sa, and the modelling noise (process noise)
denoted by ηγ(t) ∼ N (0, σ2

γ).
Senescence: The senescent foliage mass Qs is a

proportion of the accumulated foliage mass given by the
cumulative distribution of a log-normal law of median
µs and standard deviation ss:

(3.9) Qs(t) = Gs(τ(t)− τsen)Qf (t)

with τsen the thermal time at which the senescence
process initiates. The green foliage mass Qg can be
hence obtained easily:

(3.10) Qg(t) = Qf (t)−Qs(t)

Observations: The observation variables poten-
tially available from field measurements are:

(3.11) Y (t) =

(

Qg(t) · (1 + ǫg(t))
Qr(t) · (1 + ǫr(t))

)

with measurement noises: ǫg(t)) ∼ N (0, σ2
g), and

ǫr(t) ∼ N (0, σ2
r).

3.2 Experimental Data The data used for this
study were obtained by the French institute for sugar
beet research (ITB, Paris, France) in 2006, 2008 and
2010 with slightly different cultivars and in different
locations (details of the experimental protocols can



be found in [2] and [20]). For the test case, we
choose 2010 as the dataset for calibration since more
observation points are available compared to the
other two datasets (of course, in real applications,
the most aged datasets are supposed to be used for
the calibration). Dry matter of root and leaves were
collected on 50 plants at 12 different dates: O2010 =
{54, 68, 76, 83, 98, 104, 110, 118, 125, 132, 145, 160} ,
whereas for the two datasets used for assimilation, the
same type of observations were made only at 7 different
dates: O2006 = {54, 59, 66, 88, 114, 142, 198} ,O2008 =
{39, 60, 67, 75, 88, 122, 158} . For each plant, the green
foliage mass denoted by Qg and the root compartment
mass denoted by Qr were measured. The observation
vector Yn is obtained by averaging each data on all the
samples and extrapolated at m2 level by multiplying
by the observed density.

3.3 The Three Steps of the Analysis:

3.3.1 Parameter Screening by Sensitivity Anal-

ysis: When a model contains a large number of param-
eters, as it is often the case for plant growth models,
parametric estimation from experimental data can be
difficult leading to large estimates uncertainty. There-
fore, sensitivity analysis is classically applied to select
the parameters to be estimated among those identified
as the most influential ones while those screened as the
least influential ones can be fixed to any values in their
domains. In the context of sensitivity analysis, this
method is called ”screening” or ”factor fixing” [5].

With this objective, we use the algorithm proposed
by [26] to compute Sobol’s indices (first order and total
order) of all the functional parameters, choosing as
output a generalized least-square criteria.

As indicated by Fig. 1, we screen the parameters
sa, µsen, ssen and fix them to their mean values of the
variation interval, as their total order indexes are all
below 0.02 . For the five other parameters, their total
order effects cannot be neglected and thus should be
estimated from experimental data.

3.3.2 Parameter Estimation: Based on the sen-
sitivity analysis results, the unknown parameter vec-
tor for the deterministic part of the model is Θ1 =
(µ, λ, µa, γ0, γf ) and the unknown noise parameter vec-
tor is Θ2 = (σQ, σγ , σg, σr). For the CPF approach,
500000 particles were initialized with non-informative
prior distributions, while as for the conditional ICPF
approach, 8000 particles were drawn from the same non-
informative prior distributions. The conditional ICPF
estimation process began with the estimation of Θ1

given Θ2, then Θ2 was estimated empirically based on

Figure 1: Comparison of the first and total order indexes
for µ, λ, γ0, γf , µa, sa, µsen and ssen.

the estimates of the hidden states. The estimation then
proceeded with the new value of Θ2 and iterated. Fi-
nally, 3 repetitions of the conditional version of ICPF
were implemented in our test, each of them contains
about 200 filtering iterations. A parametric bootstrap
was also achieved to evaluate the estimates’ uncertainty.
Standard deviations and confidence intervals were hence
obtained from 200 bootstrap samples. The correspond-
ing results are given in Table 1.

Parameter ICPF CPF
Estimates Std. Estimates Std.

µ 3.55 0.16 3.50 0.01
λ 56.6 3.9 57.7 7.7
γ0 0.925 0.091 0.864 0.104
γf 0.104 0.027 0.099 0.013
µa 553.9 86.5 678.7 26.1
σQ 0.011 - 0.021 -
σγ 0.013 - 0.080 -
σg 0.098 - 0.102 -
σr 0.070 - 0.072 -

Table 1: Estimated values and approximated standard
deviations for the ICPF and CPF estimation for 5
functional parameters and 4 noise parameters of LNAS
model.

3.3.3 Data Assimilation with CPF: In the cali-
bration step, the CPF and the conditional ICPF ap-
proaches were applied to the LNAS model in order to es-
timate jointly the unknown parameters and the hidden
state variables based on the 2010 experimental dataset.
On one hand, the posterior distribution of the CPF es-
timation, and on the other hand, the parametric boot-
strap results of the ICPF estimation, were used as prior
information of the CPF method in the assimilation step
(we considered a normal prior). For both the 2006 and



2008 datasets, 500000 particles were simulated, all but
the last two measurements were used to update the pa-
rameter and state estimates. For the 2006 dataset, af-
ter day 114 (resp. day 88 for the 2008 dataset), the
propagation of particles through the stochastic dynamic
model continued. The simulated values of the state vari-
ables Qg and Qr on day 142 and 198 (resp. day 122 and
158 for the 2008 dataset) of all the particles as well as
their associated weight were used to build the posterior
distributions of the prediction.

In order to provide reference values of the prediction
without assimilation, Uncertainty Analysis (UA) is also
performed. 500000 simulations were initialized in the
same way as in the CPF approach, which indicates that
samples of Θ1 were drawn from the distributions defined
by the covariance matrix and the mean estimates given
by the calibration phase. The independent simulations
of these samples in the stochastic dynamic system can
thus provide the distribution of the model outputs of
interest.

4 Results and Discussion

Based on the parameter estimation results from the 2010
data, we compare the predictive capacity of the model
for the 2006 and the 2008 experiments, with and without
data assimilation, for the two last dates of observations
(t142 and t198 for 2006 and t122 and t158 for 2008).

Although the three experiments are quite different
(different locations, in different years, on slightly differ-
ent cultivars) the two CPF-based approaches were able
to provide fair predictions in most cases and managed
to reduce the prediction errors compared to the results
obtained with UA (without data assimilation), see Fig.
2. It is particularly spectacular for the leaf mass (Qg)
prediction.

Table 2 illustrates the prediction results of the
three methods. The average estimates are given with
their corresponding standard errors. The prediction
results are clearly improved both in terms of mean
prediction and confidence intervals for the two CPF-
based approaches compared to UA. In fact, as suggested
by Fig. 2, the 95% confidence interval provided by
the UA can be considered non-reliable since it does not
always contain the real measurement values in several
cases. Remarks have been made that the confidence
intervals proposed by the two CPF-based approaches
are narrower than those of UA, which is evident if the
assimilation did help to reduce the uncertainty.

Concerning the comparison between the two CPF-
based methods, the predictions obtained from the condi-
tional ICPF estimates are closer to the real values com-
pared to the predictions based on the CPF estimates
in most cases, except for the root yield prediction Qr

Figure 2: Comparison of the predictions for 2006. a:
The predictions of Qg given by Data Assimilation based
on ICPF estimates and the predictions given by UA. b:
The predictions of Qr given by Data Assimilation based
on CPF estimates and the predictions given by UA.

Figure 3: Comparison of the predictions of Qg in 2008
given by Data Assimilation based on CPF and ICPF
estimates.

in 2006 (Table 2 and Table 3). Fig. 3 presents a com-
parison of the posterior distribution of the prediction of
Qg in 2008 obtained after data assimilation based on
the estimates obtained with CPF and ICPF. Although



Real Data 2006 ICPF estimates Std. UA estimates Std. CPF estimates Std.
(relative error in %) (relative error in %) (relative error in %)

Qb (t142) 355.2 348.1 (2.01%) 44.7 507.8 (42.96%) 69.7 480.6 (35.30%) 52.5
Qb (t198) 320.6 301.3 (6.04%) 41.1 435.7 (35.90%) 62.5 406.4 (26.76%) 44.1
Qr (t142) 1459.2 1716.2 (17.61%) 144.1 1930.7 (32.31%) 163.9 1630.1 (11.71% ) 183.8
Qr (t198) 2400.0 2644.3 ( 10.18%) 217.4 2942.9 (22.62%) 243.9 2634.9 (9.79%) 232.7

Table 2: Comparison of model prediction with and without data assimilation based on the 2006 dataset.

Real Data 2008 ICPF estimates Std. UA estimates Std. CPF estimates Std.
(relative error in %) (relative error in %) (relative error in %)

Qb (t122) 373.5 417.8 (11.86%) 51.5 527.1 (41.14%) 73.2 522.0 (39.76%) 51.7
Qb (t158) 380.6 399.2 (4.88%) 52.2 502.9 (32.12%) 71.6 496.1 (30.34%) 49.0
Qr (t122) 1559.1 1531.1 (1.80%) 127.8 1656.4 (6.24%) 141.3 1476.8 (5.28% ) 115.5
Qr (t158) 2327.7 2192.9 ( 5.79%) 180.8 2352.4 (1.1%) 196.0 2164.9 (6.99%) 159.5

Table 3: Comparison of model prediction with and without data assimilation based on the 2008 dataset.

the predictions based on CPF estimates generally have
narrower confidence intervals, they failed to contain all
the real observation values as in the case of prediction
for 2008 Qg. It is probably related to the fact that the
covariance matrix used to initialize the particles in the
two cases were quite different. As illustrated by Table 1,
ICPF gave more important evaluation of the uncertain-
ties compared to CPF. This result indicates that prior
information is crucial to quantify the predictive uncer-
tainty. Since the obtained posterior distributions based
on the CPF estimates seem to have underestimated the
predictive uncertainty, it implies that the assessment
of the parameter uncertainty provided by the CPF ap-
proach in the calibration step might not be adequate.
Moreover, another possible explanation could be that
the level of uncertainty obtained from the estimation
in 2010 could not characterize properly the level of un-
certainty in 2006 and in 2008 since the experimental
conditions are slightly different.

Another interesting point concerns the noise vari-
ances. Although the modelling noises are quite low
(around 1%), which should imply a good adaptation of
the model, we have noticed that the observation noises
are rather important (10% and 7%, cf. Table 1). There-
fore, the prediction gain with data assimilation remains
rather limited since the observations may not be reliable
enough to update parameters and state variables. Sev-
eral tests showed that the results were quite sensitive to
the level of the observation noises and these may also
vary a lot in different experimental situations, so that
their proper evaluation is a key issue which requires fur-
ther studies.

5 Conclusion

Sequential data assimilation techniques offer the possi-
bility to improve model predictive capacities while as-

sessing different sources of uncertainty. However, in the
context of plant growth models, traditional approaches
are commonly not able to cope with the model complex-
ity combined to the scarcity of experimental data and
their general lack of accuracy. This explains why de-
spite the various data assimilation approaches and their
proven benefits for uncertainty analysis and model pre-
diction, only few applications to plant growth model and
crop yield prediction have been published ([22], [19]).

In this context, among the existing approaches con-
volution particle filtering appears to be one of the most
suitable ones, principally due to two of its features: no
approximation needs to be made for nonlinear state-
space models and being capable of preserving the vari-
ability of updated state variables and parameters while
confronting irregular limited data, both of which are de-
sirable when dealing with the plant growth sequential
data assimilation problems.

In this paper, we illustrated the implementation
of CPF-based methods both for parameter estimation
and data assimilation problems while facing real data
of sugar beet with the LNAS model. The methods can
explicitly account for different sources of uncertainty
during the calibration process, and the estimates pro-
vided by the traditional CPF method or its iterative ver-
sion (ICPF) can be used as a priori distributions for the
data assimilation step sequentially performed by CPF.
State variables and parameters are assimilated to im-
prove model prediction and the predictive uncertainty.
Although the experimental conditions of the 3 datasets
are quite different (different locations, different years,
slightly different cultivars), the CPF-based approaches
were able to provide fair predictions after a short period
of adjustment in most cases and managed to reduce sig-
nificantly the prediction errors. The estimates provided
by the conditional ICPF estimation method showed bet-
ter performances during the prediction phase, both in



terms of mean prediction error and robustness of the
provided confidence interval. This method can hence
be regarded as a potential candidate for yield predic-
tion applications in agriculture, since it appears to be
flexible enough to be adapted to various contexts with
different types of models and measurements.
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