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1 Introduction

The slip velocity effect at the wall interface becomes important
when the Knudsen number is above 10�3. In most problems, the
Maxwell slip model is used based on the tangential momentum
accommodation coefficient (TMAC), a gas–wall couple constant.
The original Maxwell slip theory is isotropic which is not suitable
for strongly anisotropic surfaces.

We present a synthesis of our recent works as a multiscale anal-
ysis of the anisotropic slip phenomenon which includes three
stages: (i) the ab initio determination of a gas–wall interaction
potential, (ii) molecular dynamic (MD) computation of the iso-
tropic/anisotropic TMAC coefficients on different surfaces, and
(iii) MD simulation of gas flows using an anisotropic surface
model and comparison with the slip theory. The interaction
between an Ar gas atom and a solid Pt fcc (111) slab is carried
out using CRYSTAL 09 software and PBE functional for solids
(PBEsol). The ab initio-based results including equilibrium dis-
tance and adsorption energy are in good agreement with empirical

results in literature. The gas–wall potential is then decomposed to
pairwise potentials for MD simulation.

Next, the TMAC coefficients are computed using MD method
with the pairwise potential. The gas atoms are projected onto the
solid slabs with different arriving angles and relative momentum
changes are measured to determine the TMAC coefficients for
smooth surfaces and anisotropic surfaces with stripes. The phan-
tom layer technique is used to maintain the bulk solid atoms at
constant temperature allowing the study of the temperature effect.
The orientation dependency of TMACs is computed and analyzed
in comparison with isotropic/anisotropic scattering kernel models.

Finally, we use MD method to simulate gas flows in nanochan-
nel. Instead of describing explicitly the solid atomic wall, an
effective anisotropic gas wall collision mechanism with TMAC
coefficients determined previously is adopted. A special MD wall
boundary condition is proposed to mimic the mechanism. It is
shown that the extension of the Maxwell model using two TMAC
parameters can describe quite well the anisotropic slip effect in
the slip regime.

2 Choice of the Gas–Wall Potential

In our multiscale approach, the first step consists in the determi-
nation of the pair potentials necessary to the MD simulations.
Most Pt–Ar potentials found in the literature were obtained
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empirically due to the lack of accurate and efficient ab initio com-
putational method. Consequently, the CRYSTAL 09 [1] code based
on the DFT was used to analyze the interaction between an Ar
atom and a large three-layer periodic Pt(111) slab [2]. The pseu-
dopotential and the basis sets developed by Doll [3] and Nada
et al. [4] are used to describe the Pt and Ar atoms.

To compute the interaction, the Ar atom was placed at the a
fcc-hollow site with varying distance z and the resulting energies
were fitted by a sum of pairwise functions over all Pt atoms

VPtð111Þ�ArðzÞ ¼
X

i

VPt�ArðrPti�ArÞ (1)

where rPti�Ar is the distance between a Pt and the Ar atoms.
For most of the pairwise potentials studied in this work, the

pairwise interaction can be neglected for rPt�Ar > 8:0 Å. The con-
vergence of the recomposed potential VPtð111Þ�ArðzÞ relative to the
number of Pt atoms has been checked, in particular the addition of
a fourth layer has a negligible contribution in the sum of Eq. (1).

Figure 1 and Table 1 present the Pt(111)–Ar potential computed
by the ab initio approach together with empirical results in the lit-
erature. Four types of potentials can be distinguished. The first
ones are the Lennard–Jones potentials established by Maruyama
and Kimura [7] and by Spijker et al. [8]. They depict a relatively
weak value of Ve, close to �40 meV, and a short equilibrium
ze < 3 Å. The second group of potentials includes those of Head-
Gordon et al. [9] and Svanberg and Pettersson [10]. They repro-
duce correctly the experimental value of Ve, but with relatively

large values of ze compared with the other potentials. Addition-
ally, we can mention the potential of Yamamoto [11], based on
the parameters derived by Head-Gordon et al. [9], but with
2r ¼ 3:2 Å�2 instead of 2r ¼ 1:6 Å�2. The resulting potential
depicts a weak value for Ve and a relatively large equilibrium dis-
tance. The third group concerns the potentials deduced by Smith
et al. [12] and Lahaye et al. [13]. Both use global van der Waals
attractive part of the potential between Ar and the Pt surface.
They are not decomposed into a pairwise sum. The corresponding
Ve are lower than �100meV and the ze are � 3 Å.

The last group includes the present potential, and those of
Kulginov et al. [5] and Ramseyer et al. [6]. Our Ve value well
reproduces the experimental value of approximately �80meV. It
is also ranged between the Kulginov and Ramseyer potentials.
The ze¼ 3.35 Å deduced from our potential is also consistent with
those of about 3.25 Å from the Kulginov or Ramseyer potentials.
Experimentally, no information exists about the equilibrium dis-
tance between the Ar atom and the Pt surface but, such values
around 3.2 and 3.4 Å should be correct since the last group of
potentials reproduce properly as well the experimental equilib-
rium interaction energy as the experimental vertical Pt(111)–Ar
harmonic vibrational frequency. The values of xe of this group of
potentials are indeed very close to the experimental value of
5meV [14].

The empirical pairwise potential derived by Kulginov et al. [5]
has the form

VPt�ArðrPt�ArÞ ¼ V0e
�aðrPt�Ar�r0Þ � C6

r6Pt�Ar

(2)

with the following parameters V0 ¼ 20; 000 eV, a ¼ 3:3 Å�1,
r0 ¼ �0:75 Å, and C6 ¼ 68:15 eV Å6. As it includes the
long-range interaction between atoms and agrees quite well with
the ab initio results, it will be used in the MD simulation.

3 Surface Anisotropy and Directional Accommodation
Coefficients

3.1 Atomistic Wall Models. In terms of the potential
between the Pt atoms, the multibody quantum Sutton-Chen [15]
potential is used. For a system of N Pt-atoms, the potential is
given by the following expression:

Vpot;Pt ¼ ePt
1

2
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N
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j 6¼i

a

rij
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(3)

where a is the lattice constant, rij the distance between atom i
and j and the local electron density qi of atom i. The parameters e,
a, c are given as follows: ePt ¼ 9:7894� 10�3 eV, c¼ 71.336,
a¼ 3.9163 Å.

In this work, two types of surfaces are considered: smooth
surfaces and periodic nanotextured surfaces. The orientation of
their free surfaces is (100) according to the Miller index. Initially,
the Pt atoms are arranged in layers and the two lowest ones are
used to fix the system and for the thermostat purpose. The remain-
ing Pt atoms are free to interact with other solid atoms and gas
atoms.

A smooth surface model is a system composed of 768 atoms
arranged in six layers, all of which are in perfect crystal order.
The nanotextured models are constructed from the smooth surface
model by adding successively atom layers to create pyramids with
the slope angle 45 deg. The base of the pyramid is an infinite strip
(Fig. 2), so that anisotropic effects can be considered. In this

Fig. 1 Pt(111)–Ar interaction potentials

Table 1 Equilibrium interaction energy (Ve in meV), equilibrium
distance (ze in Å), and estimated vertical harmonic vibrational
frequency (xe in meV) of the Pt(111)–Ar interaction potentials

Potential Ve/meV ze/Å xe/meV

Present �81.3 3.35 4.8
Kulginov et al. [5] �89.7 3.24 4.8
Ramseyer et al. [6] �72.8 3.22 5.0

Maruyama and Kimura [7] �38.4 2.93 3.9
Spijker et al. [8] �43.2 2.76 8.1

Head-Gordon et al. [9] �76.0 4.11 5.7
Svanberg and Pettersson [10] �77.2 3.89 4.4
Yamamoto [11] �41.8 4.28 8.8

Smith et al. [12] �104.0 3.00 5.6
Lahaye et al. [13] �103.4 2.98 8.7

Exp. [9,14] �80.0a 5.0b

aEstimated V0 value.
bAnharmonic vibrational frequency.
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work, the highest peak, varying with the number of atoms layers
added on the surfaces, ranges from 2 to 6 Å.

3.2 MD Simulation of Gas/Wall Collision. The simulations
are three-dimensional [16,17]: an Ar atom is projected into a
Pt(100) surface with different incident angles h and with different
approaching u-planes. In spherical coordinate system, ðh;uÞ are
the polar and azimuthal angles, respectively (see Fig. 2). The
directional TMAC rdirt ðh;uÞ is given by

rdirt ðh;uÞ ¼ hvini � hvrni
hvini

(4)

where vin and vrn are the projections of the incident and the
reflected velocities on the vector n, respectively. The averages
hvini; hvrni in Eq. (4) are taken over a large number of collisions.
The approach is similar to Refs. [17,18] but here we also consider
the dependence of azimuthal angle for anisotropic surfaces.

We assume first that an Ar atom only interacts with the Pt wall
within a cut-off distance rc¼ 10 Å, which is higher than the com-
mon value, around 8.5 Å, used by MD simulations of argon.
Beyond that distance, the potential is less than 1% of its well
depth (see Fig. 1) and the interaction is negligible. At the begin-
ning of each simulation, an Ar atom is inserted randomly at the
height rc above the wall surface with initial incident velocity vi. A
collision is considered as finished when the atom bounces back
beyond the cut-off distance. Then the reflected velocity vr is
recorded for the statistical purpose and another Ar atom is rein-
serted randomly in order to continue the process. After approxi-
mately 10,000 collisions (simulations), converged values of rt
values were assumed to be obtained.

Throughout the simulations, periodic boundary conditions were
applied along the x, y directions. At each time step, the velocities
and positions of the gas and solid atoms are calculated by the
usual Leapfrog–Verlet integration scheme. To control the temper-
ature Tw of the system, the phantom technique is used: the Lange-
vin thermostat [19] is applied to the atom layer above the fixed
layer. The motion of an atom i belonging to this layer is governed
by the equation

msi

dvsiðtÞ
dt

¼ �nvsiðtÞ þ f iðtÞ þ RiðtÞ (5)

In Eq. (5), vsi is the velocity of the atom i, f i is the resulting force
acting on it by the surrounding ones, msi is the atomic mass, and n
is the damping coefficient. The third term Ri in the right hand side
of Eq. (5) is the random force applied on the atom. In the simula-
tion, it is sampled after every time step dt from a Gaussian distri-
bution, with zero average and mean deviation of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6nkBTw=dt
p

.
The simulations were carried out by setting time step and damping
factor at the following values:

dt ¼ 2fs; n ¼ 5:184� 10�12 kg=s (6)

The wall temperature Tw was kept at 200K, 300K, and 400K and
the gas beam temperature Tg was kept at a slightly higher value
than Tw, i.e., Tg ¼ 1:1Tw.

3.3 Results for Anisotropic Surfaces. In the framework of
the kinetic theory, Dadzie and Meolans [20] proposed a new
scattering kernel that accounts for surface anisotropy. Their for-
mulation is based on three independent accommodation coeffi-
cients ax; ay; az along the three directions x, y, z. The coefficients
ax; ay represent the tangential accommodation coefficients and az
is the normal accommodation coefficient. The tangential accom-
modation coefficient an in direction n is then computed by the
expression

rant ðuÞ ¼ an ¼ ax cos
2 uþ ay sin

2 u (7)

We remark that by substituting u ¼ 0 deg and u ¼ 90 deg, the
accommodation values ax and ay along x and y directions can be
recovered. In this subsection, we study the anisotropy effect using
MD and the directional rt definition in Eq. (4) and examine
Eq. (7). It is noted that Eq. (7) based on the kinetic theory model
is more restrictive than Eq. (4): the accommodation coefficient is
independent from the angle h. MD computation based on Eq. (4)
showed that the h dependency may be significant at high h [16].
As a result, there is no unique way to determine the model param-
eters in Eq. (7) with Eq. (4). One can determine rant ðuÞ by fixing
the angle h or averaging over all possible h, etc. In this paper, for
the modeling purpose, we shall be content with the first method,
i.e., calculation of rt at h ¼ 45 deg while assuming that to some
extent, rt varies little with h around this mean value.

The anisotropy effect can be seen from Fig. 3: the rdirt variation
with u is nonuniform for rough surfaces. The accommodation
process along the two directions x, y is highly different. The rdirt is
minimum when the atoms are projected along the longitudinal
direction of the strip (u ¼ 90 deg), since the surface may be con-
sidered as almost smooth in that direction (see Fig. 2). This rt
value corresponds to ay in the model of Ref. [20]. The maximal rt
values recorded for u ¼ 0 deg and h> 0 can be attributed to the
largest roughness effect in that direction and correspond to ax in
the model [20]. Moreover, Figure 3 shows an increase of anisot-
ropy effect as the roughness increases: the difference between the
highest and the smallest rt value increases with the roughness
height whereas the rt results depend very little on the beaming
direction for a smooth surface. This could be explained by the fact
that the smooth surface can be considered isotropic.

Fig. 2 Nanotextured surface with strips and gas beaming
direction h, u in cartesian coordinate system. The geometric
parameters are l1 511:76 Å, l2 519:6 Å, l3 5 7:84 Å,
h5 0� 5:88 Å.

Fig. 3 rdirt computed for striped walls versus azimuth angle u
for different roughnesses (Tw5 300K, h ¼ 45deg). The solid,
dashed, dashed-dotted lines are the analytical expressions (7)
used to fit the present numerical results.
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For anisotropic surfaces, the reflected flux is not always lying
in the same plane as the arriving one. Consequently, in addition to
Eq. (4), we should account for the ratio of the reflected flux
components along two orthogonal directions m, n: hvrmi=hvrni.
According to the anisotropic model, this ratio can be computed by
the expression

hvrmi=hvrni ¼
ðax � ayÞ cosu sinu

1� ax cos2 u� ay sin
2 u

(8)

By observing the surface structure, we can deduce that hvrmi=hvrni
must vanish for impinging fluxes parallel to the planes of symme-
try of the anisotropic surface. That remark is in good agreement
with Eq. (8) where hvrmi=hvrni ¼ 0 at u ¼ 0 deg; 90 deg. Our MD
simulation confirms this remark and also shows that the ratio is
nonzero at u 6¼ 0. Numerical results show that at u ¼ 45 deg, the
ratio is significant and increases from 0 to 0.67 as the roughness
height increases, i.e., the anisotropic effect is enhanced.

4 Anisotropic Slippage in Gaseous Flows

4.1 Simplified Slip Model Based on Anisotropic
Accommodation Coefficients. The original paper of Dadzie and
Meolans [20] showed a linear relationship between the incoming
momentum fluxes ðUþ

x ;U
þ
y Þ and outgoing tangential momentum

fluxes ðU�
x ;U

�
y Þ at the wall. Since ðUþ

x ;U
þ
y Þ and ðU�

x ;U
�
y Þ are

components of tangential momentum vector fluxes Uþ
t and U�

t

expressed in the same basis, we rewrite the linear relation in ten-
sorial form [21]

U
þ
t ¼ ðI� AÞU�

t (9)

where I is the identity tensor and A is the accommodation tensor
admitting the diagonal form in the current basis

A ¼ ax 0

0 ay

� �

(10)

Finally, we note the following relation which results from Eq. (9):

ðUþ
t þU�

t Þ ¼ NðU�
t �Uþ

t Þ; N ¼ 2A�1 � I (11)

In the current basis Oxy, tensor N is reduced to the matrix

N ¼ ð2� axÞ=ax 0

0 ð2� ayÞ=ay

� �

(12)

In what follows, we consider gas flows over a periodic nanotex-
tured surface (see Fig. 2) and assume that it is possible to replace
it by a nominally flat surface and an equivalent gas–wall interac-
tion model. The derivation of the following slip model for the
equivalent surface relies essentially on the momentum equation
and its associated properties in Eqs. (9)–(12). A similar methodol-
ogy based on the flux approximation can be found in the previous
work [21,22] and books on microfluidics [23–25]. We consider a
control surface near and parallel to the immobile wall and study
the collisions at this surface. During a unit period of time, there
are N gas atoms crossing the surface: N� atoms go downward and
Nþ atoms go upward with the tangential velocity v0t ¼ ðv0x; v0yÞ and
vt ¼ ðvx; vyÞ (see Fig. 4). The gas velocity us at the wall can be
obtained by the average

mgNus ¼ mgN
þhvti þ mgN

�hv0ti (13)

The notation h i indicates the average over the gas atoms. It is
clear that mgN

þhvti and mgN
�hv0ti are equivalent to the tangential

momentum vector fluxes Uþ
t and U�

t

U
þ
t ¼ mgN

þhvti; U
�
t ¼ mgN

�hv0ti (14)

Using the linear relation (9) and (13), we can write

mgNus ¼ mgN
�ð2I� AÞhv0ti (15)

Since the velocity of a gas atom is unchanged between collisions,
it is possible to think that hv0ti is equal to the velocity average at
one mean free path k from the wall, hence the stream velocity uk
at that location. By assuming that N� ¼ Nþ ¼ N=2, the slip
velocity us can be deduced as follows:

2us ¼ ð2I� AÞuk (16)

We remark that the Taylor development of u at the wall yields the
expression

uk ¼ us þ k
@u

@z
þ k2

2

@2u

@z2
þ � � � (17)

Considering the first order k approximation, i.e., uk ¼ us
þ kð@u=@zÞ, the final slip equation becomes

us ¼ kð2A�1 � IÞ @u
@z

¼ kN
@u

@z
(18)

The term standing before @u=@z is equivalent to the slip length
tensor b ¼ kN. The latter can be made dimensionless with a
characteristic length, for example the channel height H

�b

Kn
¼ N; with Kn ¼ k

H
(19)

where Kn is the Knudsen number. We must also notice that the
slip models are based on the validity of Navier–Stokes–Fourier
equations at the wall, which is not true. However, as shown in pre-
vious works and from our MD results reported in Sec. 3.2, these
models can describe reasonably well the slip effects near the wall.
Furthermore, errors can be dealt with using empirical coefficients
or higher order models, etc.

4.2 Analytical Solutions for Poiseuille Flows. We consider
confined gas flows between two immobile parallel textured walls.
The (dimensionless) slip tensors of each wall are denoted, respec-
tively, �b

þ
(upper wall) and �b

�
(lower wall). The flows can be

driven by either pressure difference or body force field. As shown
in previous works [22,26–28] relevant to isotropic surfaces, Pois-
euille parabolic solution can describe well the velocity profile
even in nanosized channels and at high Knudsen numbers. These

Fig. 4 Collision between gas atoms and a solid wall. The
number of gas atoms going downward (velocity v0 ) and upward
(velocity v) within one time unit are denoted N2 and N1, respec-
tively. If there is no gas accumulation at the wall, Nþ

5N� .
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results suggest that we can adopt the following equation for the
case under consideration [29]:

u ¼ H2

4g

1

2
1� 2z

H

� �2
" #

Iþ Jþ 2z

H

� �

K

( )

g (20)

with g being the driving force, equivalent to the pressure gradient
or to the body force. Tensors J;K are defined by

J ¼ C� DðIþ CÞ�1D; K ¼ ðIþ CÞ�1D;

C ¼ �b
þ þ �b

�
; D ¼ �b

þ � �b
� (21)

In the case where the slip tensors �b
þ
; �b

�
are diagonal in the basis

Oxy, J;K are also diagonal in the same basis and their compo-
nents admit the expressions

Jx ¼
�bþx þ �b�x þ 4�bþx �b�x
1þ �bþx þ �b�x

; Jy ¼
�bþy þ �b�y þ 4�bþy �b�y
1þ �bþy þ �b�y

;

Kx ¼
�bþx � �b�x

1þ �bþx þ �b�x
; Ky ¼

�bþy � �b�y
1þ �bþy þ �b�y

(22)

If Eq. (19) holds, we can rewrite the previous expressions as
follows:

Jx ¼
KnðNþ

x þ N�
x Þ þ 4Kn2Nþ

x N
�
x

1þ KnðNþ
x þ N�

x Þ
;

Jy ¼
KnðNþ

y þ N�
y Þ þ 4Kn2Nþ

y N
�
y

1þ KnðNþ
y þ N�

y Þ
:

Kx ¼
KnðNþ

x � N�
x Þ

1þ KnðNþ
x þ N�

x Þ
;

Ky ¼
KnðNþ

y � N�
y Þ

1þ KnðNþ
y þ N�

y Þ

(23)

These analytical expressions will be examined in Sec. 4.4, thanks
to the MD method.

4.3 MD Simulation of Gas Flows. In this section, we
described the MD method used to simulate gas flows in a nano-
channel. The gas atoms are placed in a rectangular box of dimen-
sion L� B� H along the x, y, z directions and subject to a
uniform force field c, parallel to the plane xOy, with

g ¼ mgqoc (24)

and qo the global number density. We assume that the interaction
between the gas atoms and the walls (normal to the z direction)
are anisotropic with the following parameters:

ax ¼ 0:96; ay ¼ 0:83; az ¼ 0:9; Tw ¼ 300 K (25)

½0; 1� is generated. Depending on the value of X and the arriving
velocity v0, we shall decide the reflection mechanism and generate
the post collision velocity v accordingly, for example:

— If 0 < X < l0 then the reflection is specular: vx ¼ v0x;
vy ¼ v0y; vz ¼ �v0z.

— If l0 < X < l0 þ lxy then the reflection is specular along z,
diffusive along x, y directions: vx; vy � Nð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ;
vz ¼ �v0z.

— If l0 þ lxy < X < l0 þ lxy þ lxz then the reflection is
specular along y, diffusive along x, z directions

vx � Nð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ; vz � Rð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ and vy ¼ v0y.
— If l0 þlxy þ lxz < X < l0 þ lxy þlxz þ lyz then the reflec-

tion is specular along x, diffusive along y, z directions

vy � Nð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ; vz � Rð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ, and vx ¼ v0x.
— If l0 þ lxy þ lxz þ lyz < X < l0 þ lxy þ lxz þ lyz þ lx

then the reflection is specular along y, z, diffusive along x

direction vx � Nð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ; vy ¼ v0y, and vz ¼ �v0z.
— If l0 þ lxy þ lxz þ lyz þ lx < X < l0 þ lxy þ lxz þ lyz þ lx

þly then the reflection is specular along x, z, diffusive along

y direction vy �Nð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ; vx ¼ v0x, and vz ¼�v0z.
— If l0 þ lxy þ lxz þ lyz þ lx þ ly < X < l0 þ lxy þ lxz þ lyz

þlx þ ly þ lz then the reflection is specular along x, y,

diffusive along z direction vz �Rð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ;vx ¼ v0x and

vy ¼ v0y.
— If l0 þ lxy þ lxz þ lyz þ lx þ ly þ lz < X < l0 þ lxy þ lxz

þlyz þ lx þ ly þ lz þ lxyz ¼ 1 then the reflection is diffu-

sive along x, y, z directions vx; vy � Nð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ and

vz � Rð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ.
It should be noted that the total sum of the li equals 1 and they

are related to ax; ay and az.

lij ¼ aiajð1� akÞ; li ¼ aið1� ajÞð1� akÞ;
lijk ¼ aiajak; l0 ¼ ð1� aiÞð1� ajÞð1� akÞ;

i; j; k ¼ x; y; z; i 6¼ j 6¼ k 6¼ i

(26)

Here Nð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ is the normal distribution with zero mean

and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

, and Rð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

Þ is the Ray-

leigh distribution with parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTw=mg

p

. In addition to the

previously described wall boundary conditions along the z direc-
tion, the simulation box is periodic along the x, y directions.

It is clear that the described anisotropic collision mechanism
is a generalization of Maxwell’s original isotropic reflection
mechanism. Here, the specular and diffusion reflections are
applied to the three velocity components for different propor-
tions of atom li, in order to reproduce the momentum relative
changes of Eq. (9). Furthermore, due to a considerable portion
of atoms reflecting diffusively at the wall temperature Tw,
these boundary conditions correspond to a thermal wall allow-
ing full energy exchange. As a result, thermostats are no lon-
ger needed during MD simulation. A rather similar thermal
wall approach can be found in Refs. [30,31] concerning the
implementation of isotropic Maxwell’s model. The use of ther-
mal walls avoids the explicit description of solid wall atoms
and reduces considerably the computational cost. The approach
is also comparable to classical kinetic gas simulation methods
like Boltzmann-based equations [23–25], direct simulation
Monte Carlo [32], etc. However, the present MD approach is
also capable of simulating the atomic collisions in a determin-
istic way and flows at large range of gas density. In our simu-
lations, the interaction force between two gas atoms at
distance r is governed by the Lennard–Jones potential

VðrÞ ¼ 4e
r

r

� �12

� r

r

� �6
� �

(27)

It should be noted that the values of ax; ay correspond to the tan-
gential accommodations coefficients for Ar and a nanotextured Pt
wall at Tw ¼ 300 K studied in Sec. 3.2. MD simulations also show 
that results are little sensitive to az.

Boundary conditions for MD methods that can mimic the
effects of Eq. (9) are implemented. During MD simulations, when 

a gas atom crosses the wall boundary, we consider that it collides
with the wall. Then, the same atom is reinserted at the wall bound-
ary with the same x, y coordinates and its velocity is reassigned on 

the basis of different elementary processes. At each collision
event, a random number X with uniform distribution between
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with a cutoff distance rc ¼ 2:5r. For Argon, the reference energy
e and length r are, respectively, e ¼ 1:67� 10�21 J and r ¼ 3:41
Å. The global number density is kept constant, qo ¼ 0:035r�3

while the number of atoms N, the acceleration c, and other geo-
metric parameters like L, B, H are changed as shown in Table 2.

During the simulations, the Leapfrog–Verlet integration algo-
rithm is employed and the averaging procedure starts only when
the flow is stabilized, i.e., after about 106 time steps of 2 fs. The
total computational time is 2� 108 time steps. The height of
the channel is divided into 100 layers to determine accurately the
distribution of local streamwise velocity u. The flow direction
determined by the angle u made between the flow direction n
(also the direction of c) and the x axis is also varied from 0 deg to
90 deg to examine the anisotropy effect of the channel. The global
mean free path k used in the analysis is calculated by the formula

k ¼ 1
ffiffiffi

2
p

pqor
2

(28)

4.4 Results. We consider the case where the two walls are
identical and aligned, �b

þ ¼ �b
� ¼ �b. This simplification leads to

the following expressions of J and K:

J ¼ 2b; K ¼ 0 (29)

The MD simulation results confirm the parabolic velocity profile
along the flow direction for most part of the channel, as predicted
by Eq. (20). Another interesting aspect that agrees with Eq. (20)
and with some previous studies [33,34] is that we observe the
occurrence of a small transversal velocity profile. It seems to van-
ish at principal directions u ¼ 0 deg; 90 deg and it is maximal at
u ¼ 45 deg (see Fig. 5). We will show that these properties cannot
be recovered when the isotropic slip theory is invoked.

Next let us look further into the quantitative aspect of the
results. The velocity profiles along the flow direction and the
transversal direction are fitted, respectively, with parabolic and
constant equation to determine the fitted slip velocities at the

walls. These numerically computed values will be compared with
the analytical solution (Eq. (20)) when Eqs. (19) and (23) are
accounted for. We remark that some deviations from the analyti-
cal solution are observed in a small region near the wall (the
Knudsen layer). We remark also that the real slip velocities can
be different from the fitted velocities. The former are computed
directly by averaging molecular velocity before and after colli-
sions with the walls, also considered in this work. However, for
the sake of convenience, the terminology “slip velocities” without
prefix (fitted or real) is used to refer to the fitted velocities when
no comparison is made between these two quantities. According
to Eq. (20), the dependence of dimensionless slip lengths on the
flow orientation can be expressed by the relation

LsðuÞ
H

¼ �bx cos
2 uþ �by sin

2 u (30)

or by

LsðuÞ
H

¼ Kn
2� ax

ax
cos2 uþ 2� ay

ay
sin2 u

� �

(31)

if the simplified quantitative relation (19) is used. From Fig. 6,
both analytical solutions and numerical solutions at different Kn
show the same trend of Ls in function of u. All MD data can be fit-
ted perfectly with Eq. (30), showing excellent agreement with the
tensorial slip theory. On the other hand, Eq. (31) based on the
quantitative estimation of �bx; �by shows good agreement with MD
results in slip flow regime Kn < 0:1, average error being less than
5%. At higher Kn, considerable discrepancy is observed. The
former have been reported in numerous works concerning the
original Maxwell slip model and different correction coefficients
(either empirically or theoretically based) have been proposed to
deal with these issues [23,26,35].

Regarding the ratio between the slip velocities in transverse and
longitudinal directions, usm=usn, its dependency on the flow direc-
tion is given in Eq. (20).

usm

usn
¼ ð�by � �bxÞ sinu cosu

�bx cos2 uþ �by sin
2 u

(32)

using �bx; �by parameters from the fit of Ls in Eq. (30), or

usm

usn
¼

2� ay

ay
� 2� ax

ax

� �

sinu cosu

2� ax

ax
cos2 uþ 2� ay

ay
sin2 u

(33)

Fig. 6 Dimensionless slip length Ls=H as a function of u at dif-
ferent Kn. Points are MD data which are fitted with solid lines
corresponding to the analytical expression (30). The dashed
lines represent quantitative estimation (31) based on ax ; ay .

Table 2 Input data of MD simulations in reduced unit. For
Argon, r53:41 Å and e=mgr57:32331013 m/s2.

N(atoms) L(r) B(r) H(r) Kn c(e=mr )

74,088 128.4 128.4 128.4 0.050 0.001
27,000 91.7 91.7 91.7 0.070 0.001
8000 61.1 61.1 61.1 0.104 0.001
4400 61.1 61.1 33.6 0.190 0.001

Fig. 5 Longitudinal and transverse velocity profiles un, um for 

different values of u and Kn 5 0.104. The velocities are normal-
ized with umax—the velocity at z 5 0 for case u 5 90 deg .
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the DFT method, the MD method and gas–wall interface model in
the kinetic theory. The DFT method is used to compute precisely
the interaction potential from the first principle and the electronic
structure of the material. The MD method uses the explicit inter-
action between the atoms to simulate realistic fluid flows. The
studies of gas–wall collisions, the equivalent collision model, and
its effect on the macroscopic scale are interesting from both theo-
retical and practical aspects. In particular, the use of gas–wall col-
lision model reduces considerably the computational cost,
enabling realistic gas simulations with the MD method. The main
concluding remarks drawn from this study are as follows:

(a) The ab initio-based results including equilibrium distance
and adsorption energy are in good agreement with empiri-
cal results reported in the literature (see Sec. 2). Conse-
quently, it is shown that the gas–wall potential can be
expanded in pairwise contributions according to the
approach by Kulginov et al. [5]. Therefore, it has been used
for the MD simulations.

(b) The angular dependence of the TMAC is computed and an-
alyzed in comparison with isotropic/anisotropic scattering
kernel models. It is shown that the extension of the Max-
well model, Eq. (7), can describe quite well anisotropic slip
effects if two TMAC parameters are used.

(c) Anisotropic effects on TMAC increase as the roughness
increases. For example, the numerical results show that at
the azimuthal angle u ¼ 45 deg, the anisotropic effect
enhances the ratio of the reflected velocity components
along two orthogonal directions from 0 to 0.67 as the
roughness height increases. This effect agrees with the the-
oretical prediction presented in Eq. (8).

(d) The MD simulation results confirm that the velocity profile
is parabolic along the flow direction in most part of the
channel. However, the anisotropic slip theory shows occur-
rence of a small transversal velocity component, maximal
at u ¼ 45 deg, and very weak in the principal flow direc-
tion, i.e., u ¼ 0 deg; 90 deg (see Fig. 5).

(e) Analytical solutions and numerical solutions at different Kn
show the same trend on Ls in function of u. All MD data
show excellent agreement with the tensorial slip theory. At
higher Kn, considerable discrepancy is observed, as it has
been previously reported in the literature (see Fig. 6).

(f) The MD results agree also very well with an analytical
expressions (32), (33) which predict the ratio between slip
velocities in transverse and longitudinal directions as a
function of u and the slip tensor coefficients.

Nomenclature

a ¼ quantum Sutton–Chen potential parameter
A ¼ accommodation tensor

b, b ¼ slip length tensors
c ¼ quantum Sutton–Chen potential parameter

C, D ¼ tensors in Poiseuille solution
De ¼ dissociation energy parameter
g ¼ driving force

J, K ¼ flow tensors
L, B, H ¼ length, width, and height of the channel

Ls ¼ slip length
l1; l2; l3 and h ¼ geometric parameters of the nanotextured surface

kB ¼ Boltzmann constant
Kn ¼ Knudsen number
m, n ¼ direction indices

mg, ms ¼ masses of the gas and solid atoms
N ¼ number of molecules
N ¼ accommodation tensor in the current basis Oxy
rc ¼ cut-off radius
rij ¼ distance between particles i and j
t ¼ time variable

Tg, Tw ¼ gas and wall temperatures

Fig. 7 Ratio of transverse and longitudinal components of fit-
ted slip velocity as a function of u for various Kn. Points are
MD data, the solid and dashed lines are analytical expressions
(32) and (33).

Fig. 8 Ratio of transverse and longitudinal components of real 
slip velocity as a function of u for different Kn. Points are MD
data and the dashed line is for the analytical expression (33).

using the approximation given in Eq. (19). It is clear that this ratio
always vanishes by assuming isotropy. For anisotropic surfaces, it

is a function of u and only vanishes when u ¼ 0 deg; 90 deg.
Figure 7 shows fitted slip velocities obtained from MD simula-

tions in comparison with analytical predictions of Eqs. (32) and
(33). Again, MD results agree very well with the analytical
expression given in Eq. (32) and less well with the quantitative
expression given by Eq. (33). More precisely, Equation (33) over-
estimates the fitted transverse flow velocity. However, when we
look into the real slip velocities in Fig. 8, there is a very good
agreement and, more interestingly, the ratio is quasi independent
of Kn, as predicted in Eq. (33).

5 Conclusions

We have presented a three-step approach to study the direc-
tional dependence of slip effects for gas flows: determination of
the gas–wall potential, simulation and modeling of the gas–wall
collisions, simulation and modeling of the anisotropic slip effects.
The present multiscale methodology combines the advantages of
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u ¼ stream velocity
un, um ¼ longitudinal and transverse velocity

usn, usm ¼ longitudinal and transverse slip velocity
V, Ve ¼ potential energy
vi; vr ¼ incident and reflected velocity

X ¼ random number
(x, y, z) ¼ Cartesian coordinate
ax; ay; az ¼ accommodation coefficients along x, y, z

c ¼ gravity-like force field
e ¼ potential parameter
g ¼ viscosity

h, u ¼ zenithal and azimuthal angles
k ¼ mean free path
li ¼ percentage of reflection mechanism i
n ¼ damping coefficient
q ¼ global number density
qi ¼ local density of atom i
r ¼ potential parameter
rt ¼ tangential momentum accommodation coefficient

U
�
t ;U

þ
t ¼ incoming and outcoming tangential momentum

flux at the wall
x ¼ vertical harmonic vibrational frequency
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