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Abstract: In this paper we revisit the derivation of boundary conditions for the Boltzmann
Equation. The interaction between the wall atoms and the gas molecules within a thin surface layer
is described by a kinetic equation introduced in [9] and used in [1]. This equation includes a Vlasov
term and a linear molecule-phonon collision term and is coupled with the Boltzmann equation
describing the evolution of the gas in the bulk flow. Boundary conditions are formally derived
from this model by using classical tools of kinetic theory such as scaling and systematic asymptotic
expansion. In a first step this method is applied to the simplified case of a flat wall. Then it is
extented to walls with nanoscale roughness allowing to obtain more complex scattering patterns
related to the morphology of the wall. It is proved that the obtained scattering kernels satisfy
the classical imposed properties of non-negativeness, normalization and reciprocity introduced by
Cercignani [11].

1 Introduction

The Boltzmann equation is a powerful tool to describe phenomena in a gas flow taking place at a
the scale of the order of the mean free path, i.e. the micrometric scale (for the air under stantard
conditions). For many applications the gas flow takes place in a region bounded by one or several
solid bodies. Then boundary conditions have to be prescribed in order to characterize the behavior
of the gas close to the wall [11, 28].

The first attempt to propose boundary conditions for the Boltzmann equation goes backs to
Maxwell in a paper of 1879 ([26]) where he discusses the way to describe the interaction between a
gas and a wall. The first condition he proposed corresponds to a simple gas-solid interaction where
we assume that the wall is smooth, and perfectly elastic, so that the particles of gas are specularly
reflected. This condition writes

f(t, x, v) = f(t, x, v − 2ν〈ν, v〉) 〈v, ν〉 > 0, (1)

where ν is the unit vector to the surface at point x and f(t, x, v) is the distribution function of
particles that tt time t and position x have the velocity v. Maxwell noticed that this assumption
means that the gas can exert any stress on the surface only in the direction of the normal. But
this is not physically relevant because in practical situations it can also exert stress in oblique
directions. This is why he introduced another type of boundary conditions corresponding to a
more complex gas-solid interaction. Physically he supposed that the wall has a stratum in which
fixed elastic spheres are placed. Moreover the stratum is assumed to be deep enough so that every
molecule going from the gas to the wall must collide ones or more with the spheres. In this case, the
particle is reflected into the gas with a velocity taken with a probability whose density corresponds
to the equilibrium state of the gas. In that case the boundary condition (known as the perfect
accommodation or diffuse reflexion condition) writes

f(t, x, v) =
1

2π(RT )

∫

〈v′,ν〉<0

|〈v′, ν〉| f(t, x, v′)dv′ exp(− v2

2RT
), 〈v, ν〉 > 0, (2)
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where T is the temperature of the wall. Finally Maxwell considered a more complicated intermedi-
ate situation which is devoted to be more physically realistic. This model is intermediate between
the two previous ones. Maxwell postulated that there is a fraction of the gas which accomdates
to the temperature of the solid and another one which is reflected by the solid. In that case the
boundary conditions writes

f(t, x, v) = (1− α)f(t, x, v − 2ν〈ν, v〉)

+ α
1

2π(RT )

∫

〈v′,ν〉<0

|〈v′, ν〉| f(t, x, v′)dv′ exp(− v2

2RT
), 〈v, ν〉 > 0, (3)

where T is still the temperature of the wall and α ∈ [0, 1] is called the accomodation coefficient. It
represents the tendency of a gas to accomodate to the wall. It means that a fraction of (1− α) of
molecules satisfies specular boundary conditions whereas a fraction of α satisfies Maxwell diffuse
boundary conditions. When α = 0, we recover the specular boundary conditions and when α = 1,
we recover the diffuse boundary condition. The main drawback of this condition is that it gives
the same accommodation coefficient for energy and momentum though it is known that energy
and momentum accommodate differently in physical molecule-wall interactions (see for instance
[15]). Nevertheless, this condition has been widely used, both for theoretical studies and numerical
simulations for practical applications.

More recently, in [14, 11, 12, 13] Cercignani adressed in great details the question of gas-surface
interaction and boundary conditions for the Boltzmann equation with a large bibliography. He
introduced a general formulation of the boundary conditions

f(t, x, v)|〈ν, v〉||〈ν,v〉>0 =

∫

〈ν,v′〉<0

R(v′ → v, x, t)f(t, x, v′)|〈ν, v′〉|dv′, (4)

where the scattering kernel R(v′ → v, x, t) characterizes the interaction between the molecules of
the gas and the molecules of the wall. More precisely R(v′ → v, x, t) represents the probability
density that a molecule stricking the wall with a velocity v′ at point x and time t is reemitted at the
same point with a velocity between v and v + dv. To determine the scattering kernel, Cercignani
proposed to use either physical or mathematical considerations.
In the physical approach we have to compute as exactly as possible the path of the molecules
within the wall. This is anything but easy since such a molecule may experience various events
such as elastic scattering, inelastic scattering (including multi-phonon scattering), temporary or
permanent adsorption, mobile adsorption (surface diffusion), condensation, reactive interactions.
Therefore, in a first attempt, very simplified models have been used to describe the wall and the
interactions such as arrays of smooth hard sphere or hard cubes (see the work of Maxwell and the
references given in [13]). A more interesting way to approximate the path of molecules within the
wall has been proposed by Cercignani. He suggested to use a transport equation for the molecules
inside the solid which is regarded as a half-space. This transport equation includes a Vlasov-type
term describing the van der Walls forces exerted on the gas molecules by the solid atoms and a
linear collision term (of Boltzmann or Fokker-Plank type) describing the scattering by phonons.
Nevertheless, the Maxwell condition (3) can be recovered in this way (with a Boltzmann-like col-
lision term) as well as the Cercignani-Lampis condition [15] (with a Fokker-Plank collision term).
This latter condition is free from the physically inconsistence of the Maxwell condition indicated
above and has been widely used. More recent works come close to the same approach by deter-
mining the molecule-wall interactions by means of molecular dynamics simulation [19, 4]. But an
intrinsic difficulty in this physical approach is due to our lack of knowledge of the surface layers of
solid walls, which leads Cercignani to propose as an alternative that he called the mathematical
approach.
The idea of the mathematical approach is to construct a scattering kernel, as simple as possible,
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satisfying the following basic (physical) requirements:

(i) Non-negativeness:
R(v′ → v, x, t) ≥ 0, (5)

(ii) Normalization:
∫

〈v,ν〉>0

R(v′ → v, x, t) dv = 1, (6)

this property means that the mass flux through the boundary vanishes. It is valid when permanent
adsorption is excluded.
(iii) Reciprocity:

|〈v′, ν〉|Mw(v
′)R(v′ → v, x, t) = |〈v, ν〉|Mw(v)R(−v → −v′, x, t), (7)

where Mw is a Maxwellian distribution having the temperature of the wall. This last property
means that the microscopic dynamics is time reversible, and that the wall is in a local equilibrium
state and is not influenced by the incoming molecule. An example of a well-known scattering kernel
derived in such a way is the Cercignani-Lampis model.

In the present paper we use the so called physical approach but we start from a somewhat more
sophisticated model introduced in [9] and used in [10, 6, 7, 8, 24, 25, 1] for studying gas-surface
interaction, nanoflows and surface diffusion. This model, valid for smooth walls, is still a crude
approximation of the complex gas surface interaction, but it proved to be remarkably useful to
give new insight on these issues. It couples the Boltzmann equation in the bulk flow with a kinetic
model inside a very thin surface layer (with width typically less than a nanometer) where the van
der Waals forces are taken into account. This model includes a Vlasov term to take into account
the part of the interaction potential that depends on the frozen position of the atoms of the solid
wall (the long range interactions), and a Boltzmann like linear collision term between molecules
and phonons to take into account the thermal fluctuations of the atoms of the solid (short range
interactions).
It contains several characteristic times: the characteristic time of the Boltzmann equation in the
bulk flow, the characteristic time of the kinetic model in the surface layer, the characteristic time of
flight of a molecule through the surface layer, the characteristic molecule-phonon relaxation time.
Then using classical tools of kinetic theory such as scaling asymptotic analysis we can derive vari-
ous models corresponding to different regimes according to the relative value of the characteristic
times. Thus in [1] surface kinetic and surface diffusion models have been derived from this three
phase model: they describe mobile adsorption and can be interpreted as non local boundary condi-
tions. In the present paper, using different scalings, we derive local boundary conditions from the
same basic three phase model. First, a weak molecule-phonon interaction regime is considered. In
that case the particles of the gas quickly cross the surface layer and the classical specular boundary
condition is obtained. Then a strong molecule-phonon interaction is investigated. In this situation
the particles of the gas slowly cross the surface layer and are thermalized by the wall leading to
Maxwell-diffuse boundary conditions. Finally, an intermediate interaction is assumed, and we get a
Maxwell-like boundary condition (3), but with a fraction of diffusely evaporated molecules that de-
pends on the velocity. Moreover, the relationship between this coefficient and the surface-molecule
interaction potential is formulated. One of the interesting asset of this boundary condition is that
it gives different accommodation coefficients for energy and (normal and tangential) momentum,
contrary to the original Maxwell condition. Moreover it must be noted that mobile adsorption (see
[1]) as well as elastic or inelastic scattering are treated within the same framework. Finally this
analysis is extended to a non-smooth wall with nanoscale roughness assumed to be periodic in the
directions parallel to the surface. This leads to a scattering kernel with more complex reflexion
patterns that depend on the wall morphology.
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This paper is organized as follows. Section 2 deals with the presentation of nanoscale kinetic
models describing the interaction between a wall and particles in a very simplifed configuration
with a flat wall and simplified expression of the potential. In section 3, the boundary conditions
are derived under these assumptions by using asymptotic analysis. In section 4, the same analysis
is extended to the more realistic case of a wall with nanoscale roughness and a general potential.
Section 5 is devoted to some comments on these results and to concluding remarks.

2 Nanoscale kinetic models for gas-surface interaction

In this section we recall the nanoscale models describing a gas flow near a wall introduced in [9]
and [1]. In these models the interaction between the wall and the gas molecules through Van der
Walls forces are taken into account in a thin surface layer (with thickness L typically smaller than
one nanometer). In all the following, for the sake of simplicity, we assume that the molecules
move in a 2D half-plane 1 and we consider the following configuration: the solid is occupying the
half-space z > L, the gas phase is constituted by the gas molecules in the half-space z < 0, outside
of the range of the surface forces, and we consider separately the surface layer 0 < z < L, where
the gas molecules move within the range of the surface potential. The gas flow in this surface
layer is modelled by the collisionless Boltzmann equation (the size of this layer is much smaller
than the mean free path of the molecules), with a Vlasov term to take into account the part of
the interaction potential that depends on the frozen position of the atoms of the solid wall (the
long range interactions), and a collision term between molecules and phonons to take into account
the thermal fluctuations of the atoms of the solid (short range interactions) (see [9] for a physical
justification of this approach). Since in many applications the surface potential is an attractive-
repulsive potential, some of the molecules in the surface layer have a total energy which is too
small to escape from the potential well and are trapped in the surface layer. On the other hand
some molecules, called the free molecules, have enough energy to escape from the potential well
and can leave the surface layer and go into the bulk flow.

Both type of molecules (trapped and free) are taken into account in this approach and we give
now more details on the model describing their motion in the surface layer.

2.1 The surface potential

We assume that the wall is flat and we use a simplified interaction potential which writes

V(x, z) =W (z), (8)

where W is an attractive-repulsive potential, ie;

(H1) 0 ≤W (z) ,

(H2) limz→LW (z) = +∞,

(H3) the potential W is repulsive (i.e. W ′(z) > 0) for zm ≤ z < L and is attractive (W ′(z) < 0)
for 0 < z < zm, and we set W (zm) = 0

(H4) The range of the surface forces is finite and thus, the potential satisfies W (z) = Wm for
z < 0.

1As indicated in [1] we can assume that the molecules move in the 3D half-space (x, y, z), z < 0, provided that f

is interpreted as the marginal distribution function obtained by integrating the original distribution function with
respect to vy .
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This simplified potential allows to uncouple the parallel motion and the normal motion of gas
molecules near the solid wall, which makes the mathematical developments much easier. More-
over, though not physically realistic, this potential is sufficient to obtain accurate information on
the behavior of the gas near the walls (see [1] for more details). Extension to a more realistic
interaction potential is considered in section 4.

It is useful to introduce in the surface layer the following velocity variable, called equivalent
velocity:

ez = sign(vz)
√

v2z + 2W (z)/m, (9)

which is the velocity of a particle whose total energy 1
2mv

2
z+W (z) would be a kinetic energy 1

2me
2
z

only. We denote by e = (vx, ez) the corresponding two dimensional velocity.
It will be more convenient to describe the distribution function of gas molecules in the surface

layer as a function of e rather than a function of (vx, vz).

Now, we explain how particles can be divided into two different classes: the free particles and
the trapped particles. The trajectory of a particle along z is defined (if there is no collision) by the
two differential equations z′(t) = vz(t) and mv′z(t) = ∂zW (z(t)). Along this trajectory, the total
energy 1

2mv
2
z+W (z) is constant. According to the definition of the equivalent velocity ez (see (9)),

we have 1
2me

2
z = 1

2mv
2
z +W (z) which is a constant too. A particle is free if it can leave the surface

layer and go into the gas. In this case, the potential reaches the value Wm, and since its kinetic

energy 1
2mv

2
z is non-negative, this means that 1

2me
2
z > Wm, which is equivalent to |ez| >

√

2
mWm.

The limit position of this particle when it is inside the surface layer is such that it takes a zero
velocity. At this point, denoted by z−(ez), we have W (z−(e(z))) =

1
2me

2
z (see figure 1).

At the contrary, a particle is trapped if its total energy is lower that Wm, that is to say

|ez| <
√

2
mWm. In that case, the potential is bounded by 1

2me
2
z < Wm, which means that z

varies between two limit values z+(ez) and z−(ez) such that W (z±(ez)) =
1
2me

2
z (see figure 2): the

particle cannot escape from the surface layer.
In order to have the same notation for trapped and free particles, we set z+(ez) = 0 for free

particles (that is to say, if |ez| >
√

2
mWm). Moreover, for particles with zero total energy, we have

ez = 0 and hence the velocity and the potential are zero too, which means that the particle stay
at position z = zm. The we set z±(0) = zm in this case.

With this definition, note that z+ and z− are even functions of ez.

Now, we introduce some notations that are useful to switch between vz and ez variables. The
velocity of a particle with equivalent velocity ez located at position z ∈ [z+(ez), z−(ez)] is given by

vz(z, ez) = sign(ez)

√

e2z −
2

m
W (z), (10)

and we have
vz(z−(ez), ez) = vz(z−(−ez),−ez) = 0. (11)

Moreover, for trapped molecules we also have

vz(z+(ez), ez) = vz(z+(−ez),−ez) = 0. (12)

Let us define

σ(z, ez) =
1

|vz(z, ez)|
= (e2z −

2

m
W (z))−1/2 for |ez| >

√

2W (z)/m,

so that
σ(z, ez) vz(z, ez) = sign(ez), (13)
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and also

τz(ez) =

∫ z−(ez)

z+(ez)

σ(z, ez)dz =

∫ z−(ez)

z+(ez)

(e2z −
2

m
W (z))−1/2dz.

As in [18], τz(ez) can be interpreted as the time for a molecule to cross the surface layer. More-
over, for every z ∈]0, L] the application vz → ez is a one-to-one application from [0,+∞[ onto

[
√

2
mW (z),+∞[ and from ] −∞, 0] onto ] −∞,−

√

2
mW (z)]. Therefore differentiating (10) leads

to
dvz = |ez|σ(z, ez)dez . (14)

Thus the integral of a given function ψ(z, vz) with respect to vz can be transformed as follows:
∫

vz

ψ(z, vz) dvz =

∫

|ez|>
√

2
m

W (z)

ψ(z, vz(z, ez)) |ez|σ(z, ez)dez. (15)

Moreover, the order of integration in a z-ez integral can be changed as follows (see figure 3):

∫ L

0

(

∫

|ez|>
√

2
m

W (z)

ψ(z, vz(z, ez))|ez|σz(z, ez) dez
)

dz

=

∫ +∞

−∞

(

∫ z−(ez)

z+(ez)

(ψ(z, vz(z, ez))|ez|σ(z, ez) dz
)

dez.

(16)

2.2 Molecule-phonon collision term

In this paper we consider the general molecule-phonon collision term

Q[φ](v) =

∫

IR2

K(v, v′)
(

exp
(

−m|v|2
2kT

)

φ(v′)− exp
(

−m|v′|2
2kT

)

φ(v)
)

dv′.

With the new velocity variable e = (vx, ez) defined in (9), for a given value of z, this operator
reads:

Q[φ](z, e) = Q+[φ](z, e)−Q−[φ](z, e) =

∫

E(z)
K(z, e, e′) (G(e)φ(e′)−G(e′)φ(e)) Je′ de

′, (17)

where E(z) = {e′, |e′z| ≥
√

2W (z)/m}, Je′ = J(z, e′z) = |e′z|σ(z, e′z), and

G(e) = exp

(

−m(|vx|2 + |ez|2)
2kT

)

. (18)

The collision kernel K is such that k(z, e → e′) = K(z, e, e′)G(e′) is the probability of transition
per unit time from the state e to the state e′ in a”collision” with a phonon. The dimension of K
is [time/length2] (or, if the molecules move in a 3D plane, of [time2/length3]). We assume in the
following that

K(z, e, e′) = K(z, e′, e),

0 < ν0 ≤ K(z, e, e′) ≤ ν1, (19)

K(z, vx,−ez, v′x,−e′z) = K(z, vx, ez, v
′
x, e

′
z), (20)

K(z,−vx, ez, v′x, e′z) = K(z, vx, ez, v
′
x, e

′
z).

The loss term of the molecule-phonon collision term can be written

Q−[φ](z, e) =
1

τms(z, e)
φ(z, e), (21)
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where

τms(z, e) =

(

∫

E(z)
K(z, e, e′)G(e′)J(z, e′z)de

′
)−1

(22)

is a collision time (at point z). It is useful for the sequel to introduce the mean relaxation time
τms(e) defined as the harmonic mean of τms(z, e) weighted by σ(z, ez):

1

τms(e)
=

∫ z−(ez)

0
σ(z, ez)/τms(z, e) dz

∫ z−(ez)

0
σ(z, ez) dz

=

∫ z−(ez)

0
σ(z, ez)/τms(z, e) dz

τz(ez)
. (23)

Using (20), the even parity of σ, G, J and z± with respect to ez, and the symmetry of E(z), we
have :

τms(z, vx,−ez) = τms(z, vx, ez), and τms(vx,−ez) = τms(vx, ez).

Let us remark that if we assume K(z, e, e′) = 1, then τm does not depends on e and we have:

Q[φ] =
1

τms(z)

(

n[φ]

γ(z)
G− φ

)

, (24)

where γ(z) = τms(z)
−1 =

∫

E(z)G(e
′)J(z, e′z)de

′ and n[φ] =
∫

E(z) φ(e
′)J(z, e′z)de

′, which is quite

similar to the BGK-like relaxation term used in [1]. Finally we recall some of the main properties
satisfied by the operator Q.

Proposition 1. The collision term satisfies the following properties
∫

E(z)
Q[φ](e)Je de = 0, (mass conservation), (25)

Q[φ] = 0 ⇔ φ = n G, (equilibrium), (26)
∫

E(z)
Q[φ](e)φ(e)

Je
G(e)

de ≤ −ν0γ(z)
∫

E(z)
w2 Je

G
de, (H theorem), (27)

∫

E(z)
Q[φ](e)ψ(e)

Je
G(e)

de =

∫

E(z)
Q[ψ](e)φ(e)

Je
G(e)

de, (symmetry) , (28)

where we used the macro-micro decomposition φ = q + w with q = n[φ]G and where w = φ − q
satisfies n[w] = 0.

2.3 Nanoscale models

The first model introduced in [9] and [1] is the following system of coupled kinetic equations which
describes the flow of molecules in the surface layer (where the Van der Waals forces are acting)
and outside:

∂tf + vx∂xf + vz∂zf = 0, z < 0 (29)

f(t, x, 0, vx, vz)|vz<0 = φ(t, x, 0, vx, ez(0, vz)), (30)

∂tφ+ vx∂xφ+ vz(z, ez)∂zφ = Q[φ], z+(ez) < z < z−(ez), (31)

φ(t, x, 0, vx, ez)ez>
√

2Wm/m
= f(t, x, 0, vx, vz(0, ez)), (32)

φ(t, x, z−(ez), vx, ez) = φ(t, z−(−ez), vx,−ez), (33)

φ(t, x, z+(ez), vx, ez) = φ(t, z+(−ez), vx,−ez), |ez| <
√

2Wm/m, (34)

where f = f(t, x, z, vx, vz) is the distribution function describing the bulk flow and φ = φ(t, x, z, vx, ez)
is the distribution function describing the gas flow inside the surface layer. Let us remark that

7



since we have chosen to define φ as a function of (vx, ez) equation (31) does not contain a Vlasov
term in the z-direction.

The above model describes the gas-solid interaction at the nanoscale, i.e on a domain [0, x∗]×
[−z∗, L] with x∗ and z∗ ≈ 1 nanometer. But on a larger scale in the tangential direction, this
model is too complicated and contains stiff terms that would make its numerical solution too much
expensive. Thus in [1] the authors derived a limit model obtained by asymptotic analysis when
the domain is much larger than the surface layer (that is to say x⋆ ≈ z∗ ≫ L). In this model, the
flow of molecules in the surface layer is described by a one-dimensional kinetic equation which can
be considered as a nonlocal boundary condition for the Boltzmann equation in the bulk flow.

But on a larger scale in x and z this last model is still too complicated to manage and it
would be interesting to investigate the relation between these nanoscale models and the standard
boundary conditions used with the Boltzmann equation in gas kinetic theory.

In the following, we use the nanoscale model (29-34) to derive various boundary conditions for
the Boltzmann equation (29), according to convenient scalings.

3 Derivation of boundary conditions: case of a flat wall

In this section, we assume that the characteristic times of the flow in the surface layer (the time for
a molecule to cross the surface layer and the relaxation time of molecules by phonons) are much
smaller than the characteristic time of evolution of the bulk flow. We derive boundary conditions
for the Boltzmann equation in the bulk flow by an asymptotic analysis of system (29-34). The
main point in this derivation is to find the solution of a linear kinetic problem which describes, in a
first approximation, the motion of the molecules in the surface layer. Unfortunately this problem
cannot be solved exactly but approximated solutions can be obtained (see Lemma 1) through an
iterative process.

We consider system (29-34) and we introduce the following dimensionless quantities:

ñ =
n

n∗ , ṽx =
vx
v∗
, ṽz =

vz
v∗
, ẽz =

ez
v∗
, f̃ =

f

f∗ , φ̃ =
φ

f∗ , x̃ =
x

l∗
,

W̃ =
W

W ∗ , W̃m =
Wm

W ∗ , t̃ =
t

t∗B
, τ̃z =

τz
τ∗z
, τ̃ms =

τms

τ∗ms

, K̃ =
K

K∗ ,

and z̃ = z
l∗ for the Boltzmann equation in the bulk flow, while z̃ = z

L in the surface layer.

The reference quantities are the followings: n∗ is the reference number density, v∗ =
√

kT/m,
f∗ = n∗/v∗2, t∗B is the reference time of evolution for the Boltzmann equation (29), l∗ = v∗t∗B,
τ∗ms = 1/(K∗v∗2) is a reference relaxation time, τ∗z = L/v∗ is the characteristic time of flight of a
molecule through the surface layer, and W ∗ = mv∗2/2.

In order to study different regimes corresponding to different order of magnitude of the char-
acteristic time scales τ∗z , τ

∗
ms and t∗B, we introduce the following nondimensional parameters:

ε =
τ∗ms

t∗B
and η =

τ∗ms

τ∗z
.
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Then system (29-34) reads in dimensionless form

∂t̃f̃ + ṽx∂x̃f̃ + ṽz∂z̃ f̃ = 0, z̃ < 0, (35)

f̃(t̃, x̃, 0, ṽx, ṽz)ṽz<0 = φ̃(t̃, x̃, 0, ṽx, ẽz(0, ṽz)), (36)

∂t̃φ̃+ ṽx∂x̃φ̃+
η

ε
ṽz(z̃, ẽz)∂z̃φ̃ =

1

ε
Q̃[φ̃], z̃+(ẽz) < z̃ < z̃−(ẽz), (37)

φ̃(t̃, x̃, 0, ṽx, ẽz)ṽz>0 = f̃(t̃, x̃, 0, ṽx, ṽz(0, ẽz)), (38)

φ̃(t̃, x̃, z̃−(ẽz), ṽx, ẽz) = φ̃(t̃, z̃−(ẽz), ṽx,−ẽz), (39)

φ̃(t̃, x̃, z̃+(ẽz), ṽx, ẽz) = φ̃(t̃, z̃+(ẽz), ṽx,−ẽz), for |ẽz| <
√

W̃m. (40)

We mention that with this dimensionless variables, a particle of velocity ez located at z is:

• either trapped if |ẽz̃| <
√

W̃m, and hence stays between z̃±(ẽz̃) defined by W̃ (z̃±(ẽz)) = ẽ2z,

• or free if |ẽz| >
√

W̃m, and hence stays on the left-hand-side of z̃−(ẽz) defined by W̃ (z̃−(ẽz)) =
ẽ2z. We set z̃+(ẽz̃) = 0 in this case.

We can obtain boundary conditions for the Boltzmann equation through an asymptotic analysis
of the above system when ε→ 0. This leads to the following results.

Proposition 2. Under the hypothesis (8) and (H1-H4), in the limit ε → 0, the gas-surface in-
teraction depends on the order of magnitude of η and can be described by the following boundary
conditions at z = 0:

1. for η = O(1ε ), the boundary condition is the specular reflection

f(t, x, 0, vx, vz)|vz<0 = f(t, x, 0, vx,−vz).

2. for η = O(ε), the boundary condition is the reflection with perfect accommodation

f(t, x, 0, vx, vz)|vz<0 = κ(t, x)M(vx, vz), (41)

where

κ(t, x) =

∫

vz>0

∫

vzf(t, x, 0, vx, vz)dvxdvz/

∫

vz>0

∫

vzM(vx, vz)dvxdvz

is such that the mass flux of f through the boundary z = 0 is zero, and where M(v) =
exp

(

−m(v2x + v2z)/2kT
)

.

3. for η = O(1), the boundary condition writes, in a first approximation, as a Maxwell-like
boundary condition

f(t, x, 0, vx, vz)|vz<0 = a(v)β1(t, x)M(v) + (1 − a(v))f(t, x, 0, vx,−vz),

and

a(v) = 1− exp

(

−2τ̂z(vz)

τ̂ms(v)

)

(42)

β1(t, x) =

∫

vz>0

∫

vza(v)f(t, x, 0, vx, vz)dvxdvz/

∫

vz>0

∫

vza(v)M(vx, vz)dvxdvz ,

with the notations τ̂z(vz) = τz(ez(0, vz)) and τ̂ms(v) = τms(vx, ez(0, vz)). This boundary
condition ensures a zero mass flux of f at the boundary z = 0. Moreover, it can be written
under the general form (4) with a scattering kernel R(v′ → v) that satisfies the properties of
non-negativeness, normalization and reciprocity.
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Proof:
In order to simplify the notations, the tilde ˜ over the dimensionless quantities are dropped in
the following. To avoid confusion, we will indicate explicitely when we come back to dimensional
quantities.

In order to perform an asymptotic analysis of system (35-40), we look for a solution in the form

f = fε = f0 + εf1 + ..., φ = φε = φ0 + εφ1 + ....

This expansion is inserted into (35–40) and we identify the terms of same power of magnitude w.r.t
ε. The zeroth-order term f0 satisfies

∂tf
0 + vx∂xf

0 + vz∂zf
0 = 0, (43)

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, 0, vx, ez(0, vz)). (44)

However, the zeroth-order term φ0 depends on the order of magnitude of η.

(1) We consider the case η = O(1ε ). This means that

τ∗z ≪ τ∗ms ≪ t∗B,

that is to say the free time of flight of a molecule to cross the surface layer is much smaller than
the relaxation time of molecules by phonons. Thus the flow of molecules crosses the surface layer
so quickly that the relaxation phenomena can be neglected. Then φ0 satisfies the following linear
kinetic surface layer (LKSL) problem:

vz(z, ez)∂zφ
0 = 0, for z+(ez) < z < z−(ez), (45)

φ0(t, x, 0, vx, ez)ez>
√
Wm

= f0(t, x, 0, vx, vz(0, ez)), (46)

φ0(t, x, z−(ez), vx, ez) = φ0(t, x, z−(ez), vx,−ez), (47)

φ0(t, x, z+(ez), vx, ez) = φ0(t, x, z+(ez), vx,−ez), for |ez| <
√

Wm. (48)

Consider some vz < 0 and the boundary condition (44) where we write ēz = ez(0, vz):

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, 0, vx, ēz). (49)

Since (45) implies that φ0 does not depend on z, we can replace z = 0 in the right-hand side of (49)
by z = z−(ez) to get

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, z−(ēz), vx, ēz).

Moreover (47) and the even parity of z− imply

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, z−(−ēz), vx,−ēz).

Again, we use the fact that φ0 does not depend on z to get

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, 0, vx,−ēz),

where, by definition, −ēz ≥
√
Wm. Now we can use (46) to replace the right-hand side of the

previous relation and to get the specular boundary condition

f0(t, x, 0, vx, vz)vz<0 = f0(t, x, 0, vx,−vz).

We mention that we used η = O(1ε ) for simplicity. In fact, we recover the same boundary condition
if η = O(ε−α), for every positive α.
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(2) Now we assume η = O(ε), which implies that

τ∗ms ≪ τ∗z ≪ t∗B.

This means that the relaxation time of molecules by phonons is much smaller than the free time
of flight of a molecule to cross the surface layer. In this limit the flow of incoming molecules into
the surface layer immediately relaxes toward the equilibrium. Now the LKSL problem satisfied by
φ0 reads

Q[φ0] = 0, for z+(ez) < z < z−(ez), (50)

φ0(t, x, 0, vx, ez)ez>0 = f0(t, x, 0, vx, vz(0, ez)), (51)

φ0(t, x, z−(ez), vx, ez) = φ0(t, z−(ez), vx,−ez), (52)

φ0(t, x, z+(ez), vx, ez) = φ0(t, x, z+(ez), vx,−ez), for |ez| <
√

Wm (53)

which gives
φ0(t, x, z, vx, ez) = α(t, x)G(vx, ez), for z+(ez) < z < z−(ez). (54)

However, the distribution function φ0 is Maxwellian and hence cannot satisfy the inflow boundary
condition (51). Thus we have to introduce in the expansion of φ a Knudsen-layer corrector

φ(t, x, z, vx, ez) = φ0(t, x, z, vx, ez) + ψ0(t, x,
z

ε
, vx, ez) + εφ1(t, x, z, vx, ez) + ...,

where φ0 is still defined by (54) and satisfies (50, 52, 53), and ψ0(t, x, y, vx, ez) is given by

vz(0, ez)∂yψ
0 = Q[ψ0], for |ez| ≥

√

Wm, 0 < y < +∞, (55)

ψ0(t, x, 0, vx, ez)|ez>0 = f0(t, x, 0, vx, vz(0, ez))− φ0(t, x, 0, vx, ez), (56)

and should rapidly decrease to 0 for large y. It is useful to introduce χ(t, x, y, vx, ez) defined by

χ(t, x, y, vx, ez) = ψ0(t, x, y, vx, ez) + φ0(t, x, 0, vx, ez). (57)

Thus χ is the unique bounded solution of the following linear half-space problem

vz(0, ez)∂yχ = Q0[χ] (58)

χ(t, x, 0, vx, ez)|ez>0 = f0(t, x, 0, vx, vz(0, ez)), (59)

where

Q0[χ] =

∫

E(0)
K(0, e, e′) (G(e)χ(e′)−G(e′)χ(e))J(0, e′) de′.

Then using the result given in [21] and [23] on the linear half-space problem we get the approxi-
mation

χ(t, x, y, vx, ez)|ez<0 ≈ χ(1)(t, x, y, vx, ez)|ez<0 = κ(t, x)G (60)

for every y ≥ 0, where κ can be determined as follows. A standard result on the linear half-space
problem (58–59) shows that χ necessarily satisfies

∫

E(z) ezχ(t, x, y, vx, ez) de = 0 for every y. Then,

writing this relation at y = 0 and using the boundary condition (59) and the approximation (60)
give the definition

κ(t, x) = −
∫

ez>0 in E(0) ezf
0(t, x, 0, vx, vz(0, ez)) de

∫

ez<0 in E(0) ezG(e) de

=

∫

vz>0

∫

vzf
0(t, x, 0, vx, vz) dvxdvz

∫

vz>0

∫

vzM(vx, vz) dvxdvz
,

(61)
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where M(vx, vz) = G(vx, ez(0, vz)) = exp(−(v2x + v2z)/2).
Now, note that (44) has to be modified according to the Knudsen layer correction to get

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, 0, vx, ez(0, vz)) + ψ0(t, x, 0, vx, ez(0, vz))

= χ(t, x, 0, vx, ez(0, vz)).

Consequently, the definition (57) of χ and the approximation (60) give the following approximation
of the outgoing distribution

f0(t, x, 0, vx, vz)vz<0 ≈ κ(t, x)M(vx, vz), (62)

which gives in dimensional variables the classical perfect accommodation boundary condition (41)
(sometimes called the diffuse reflexion boundary condition), provided that the coefficient κ is such
that the corresponding approximation of the mass flux of f0 at the boundary z = 0 is zero. Indeed,
the definition (61) of κ implies that this property holds.

(3) Finally, we assume η = O(1), which corresponds to τ∗ms ≈ τ∗z ≪ t∗B. The LKSL problem
satisfied by φ0 is

vz(z, ez)∂zφ
0 = Q[φ0], for z+(ez) < z < z−(ez), (63)

φ0(t, x, 0, vx, ez)ez>
√
Wm

= f0(t, x, 0, vx, vz(0, ez)), (64)

φ0(t, x, z−(ez), vx, ez) = φ0(t, x, z−(ez), vx,−ez), (65)

φ0(t, x, z+(ez), vx, ez) = φ0(t, x, z+(ez), vx,−ez), for |ez| <
√

Wm. (66)

We can claim that this linear kinetic surface layer (LKSL) problem has a unique solution and that
this solution has a zero mass flux through the surface z = 0 (see lemma 1 in the following):

∫

|ez|>
√
Wm

∫

ezφ
0(t, x, 0, vx, ez) dvxdez = 0. (67)

Now if we solve the LKSL problem (63-66), then φ0(t, x, 0, vx, ez), which is the value of the
solution at z = 0 for ez < 0, gives a boundary value for (44). This value linearily depends on
the inflow data: φ0(t, x, 0, vx, ez(0, vz)) = A (f0(t, x, 0, vx, .)|vz>0), where A is called the ”albedo”
operator A. Consequently, the boundary condition (44) of (43) reads

f0(t, x, 0, vx, vz < 0) = A (f0(t, x, 0, vx, .)|vz>0). (68)

This relation can be interpreted as an exact boundary condition. However, the operator A is
implicitely defined: we must solve the LKSL problem (63-66) to get φ0(t, x, 0, vx, ez)ez<0, which
could be done approximately by a numerical computation. Nevertheless, it is possible to get
an approximation of the operator A that explicitely gives φ0(t, x, 0, vx, ez)ez<0 as a function of
f0(t, x, 0, vx, vz(0, ez))|ez>0: using again Lemma 1 we conclude that

φ0(t, x, 0, vx, ez)ez<0 ≈ φ0,1(t, x, 0, vx, ez)ez<0,

≈ (1− a(ez))f
0(t, x, 0, vx,−vz(0, ez)) + a(ez)α(t, x)G(vx , ez).

From (44), we get

f0(t, x, 0, vx, vz)vz<0 ≈ φ0,1(t, x, 0, vx, ez(0, vz))

≈ (1− a(vz))f
0(t, x, 0, vx,−vz) + a(vz)β(t, x)M(vx, vz).

Moreover, for the same reason as for the previous regime, the approximation of mass flux of f0

through the boundary z = 0, and hence the coefficient β can be uniquely determined. Coming back
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in dimensional variables, we get (3). From this relation we can easily check that the associated
scattering kernel satisfies the properties of non-negativeness, normalization and since a(v) = a(−v),
the property of reciprocity.

2

Lemma 1. Let us consider the linear kinetic surface layer problem (LKSL)

vz(z, ez)∂zφ
0 = Q[φ0], for z+(ez) < z < z−(ez), (69)

φ0(0, vx, ez)ez>
√
Wm

= f∗(vx, vz(0, ez)), (70)

φ0(z−(ez), vx, ez) = φ0(z−(ez), vx,−ez), (71)

φ0(z+(ez), vx, ez) = φ0(z+(ez), vx,−ez), for |ez| <
√

Wm. (72)

This problem has a unique solution and this solution has a zero mass flux through the surface z = 0:

∫

|ez |>
√
Wm

∫

ezφ
0(0, vx, ez) dvxdez = 0. (73)

Moreover in a first approximation we have

φ0(0, vx, ez)|ez<−
√
Wm

≈ (1− a(ez))f
∗(vx,−vz(0, ez)) + a(ez)α1G(vx, ez),

where the coefficient a is given by

a(e) = 1− exp

(

−2τz(ez)

τ̄ms(e)

)

. (74)

Proof :
(i) Existence and uniqueness: Existence and uniqueness of a solution of the LKSL problem
(69-72) can be proved by using standard techniques in linear transport problems. The reader can
refer, for instance, to [20].

(ii) Mass flux at z = 0 : Multiplying (69) by |ez|σ(z, ez) and using (13), we get

ez∂zφ
0 = Q[φ0]|ez|σ(z, ez).

Now we integrate this relation with respect to z. It comes

∫ z−(ez)

z+(ez)

ez∂zφ
0 dz =

∫ z−(ez)

z+(ez)

Q[φ0]|ez|σ(z, ez) dz,

or,

ezφ
0(z−(ez), vx, ez)− ezφ

0(z+(ez), vx, ez) =

∫ z−(ez)

z+(ez)

Q[φ0]|ez|σ(z, ez) dz,

where z+(ez) = 0 for |ez| >
√
Wm. Now integrating with respect to vx and ez, we find

∫ ∫

ezφ
0(z−(ez), vx, ez) dvxdez −

∫ ∫

ezφ
0(z+(ez), vx, ez) dvxdez

=

∫ ∫ ∫ z−(ez)

z+(ez)

Q[φ0]|ez|σ(z, ez) dzdvxdez.
(75)
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But since ezφ
0(z±(ez), vx, ez) dvxdez is an odd function of ez (see (71) and (72)), the first term of

the left-hand side of this relation vanishes and the second one gives

∫ ∫

ezφ
0(z+(ez), vx, ez) dvxdez =

∫ ∫

|ez|<
√
Wm

ezφ
0(z+(ez), vx, ez) dezdvx

+

∫ ∫

|ez|>
√
Wm

ezφ
0(0, vx, ez) dezdvx,

=

∫ ∫

|ez|>
√
Wm

ezφ
0(0, vx, ez) dezdvx.

Consequently, (75) now reads

−
∫ ∫

|ez |>
√
Wm

ezφ
0(0, vx, ez) dezdvx =

∫ ∫ ∫ z−(ez)

z+(ez)

Q[φ0]|ez|σ(z, ez) dzdvxdez.

Finally, inverting the integration with respect to z and the integration with respect to vx and ez
in the right-hand side (see (16)), we get

−
∫ ∫

|ez|>
√
Wm

ezφ
0(0, vx, ez) dvxdez =

∫ L

0

∫

E(z)
Q[φ0]|ez|σ(z, ez) dedz,

= 0,

due to the mass conservation (see (25)).

(iii) Approximate solution of the LKSL problem
First, we multiply (69) by σ(z, ez), and we use the decomposition of the collision operator into
gain and loss terms to rewrite (69) as

sign(ez)∂zφ
0 = σ(z, ez)Q

+[φ0]− σ(z, ez)

τms(z, ez)
φ0, for z+(ez) < z < z−(ez) (76)

Now we proceed by looking for an approximate solution of the boundary value problem (76,70–72)
in the form φ0 = φ0,(1)+φ0,(2)+ ...., and we detail below how we construct the first approximation
φ0,(1).

Let us remark that if f∗ is a Maxwellian, then αG(vx, ez) is a solution of the LKSL problem for
any constant α. Therefore, we propose to construct a first approximation φ0,(1) of φ0 as follows.
We replace φ0 in the gain term of (76) by the Maxwellian φ0,(0) = α1 G(vx, ez) (where the constant
α1 is undetermined for the moment) to get the following problem that defines φ0,(1):

sign(ez)∂zφ
0,(1) =

σ(z, ez)

τms(z, ez)

(

α1
G(e)

τms(z, e)
− φ0,(1)

)

, z+(ez) < z < z−(ez), (77)

φ0,(1)(0, vx, ez)ez>
√
Wm

= f∗(vx, vz(0, ez)), (78)

φ0,(1)(z−(ez), vx, ez) = φ0,(1)(z−(ez), vx,−ez), (79)

φ0,(1)(z+(ez), vx, ez) = φ0,(1)(z+(ez), vx,−ez), for |ez| <
√

Wm. (80)

Then the solution φ0,(1) can be explicitely constructed by integrating (77) along trajectories of free
and trapped molecules. This approach guarantees that the corresponding approximated boundary
condition (3) is exact is f is a Maxwellian.

free molecules with ez > 0 (ez >
√
Wm):
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in that case, particles go from z+(ez) = 0 to z−(ez), and we can integrate (77) between 0 and some
z ∈ [0, z−(ez)] to get

φ0,(1)(z, vx, ez) = exp

(

−
∫ z

0

σ(ζ, ez)

τms(ζ, e)
dζ

)

f∗(vx, vz(0, ez))

+ exp

(

−
∫ z

0

σ(ζ, ez)

τms(ζ, e)
dζ

)
∫ z

0

exp

(

∫ ζ

0

σ(η, ez)

τms(η, e)
dη

)

σ(ζ, ez)

τms(ζ, e)
dζ α1G.

(81)

We write this relation at z = z−(ez), we use the definition of τms (see (23)), and then exact
computations of the integral of the exponential gives

φ0,(1)(z−(ez), vx, ez)|ez>0 = exp

(

− τz(ez)

τms(e)

)

f∗(vx, vz(0, ez))+

(

1− exp

(

− τz(ez)

τms(e)

))

α1G. (82)

free molecules with ez < 0 (ez < −
√
Wm):

in that case, particles go from z−(ez) to z+(ez) = 0. First, we use (79), (82), the even parity
of τ̄ms, τz and G and the odd parity of vz(0, ez) with respect to ez to obtain the distribution of
outgoing particles at z = z−(ez):

φ0,(1)(z−(ez), vx, ez)|ez<0 = exp

(

− τz(ez)

τms(e)

)

f∗(vx,−vz(0, ez)) +
(

1− exp

(

− τz(ez)

τms(e)

))

α1G.

Then we can integrate (77) between z−(ez) and some z ∈ [0, z−(ez)] to get

φ0,(1)(z, vx, ez) =

exp

(

−
∫ z−

z

σ(ζ, ez)

τms(ζ, e)
dζ

)(

exp

(

− τz(ez)

τms(e)

)

f∗(vx,−vz(0, ez)) + (1 − exp

(

− τz(ez)

τms(e)

)

)α1G

)

−
(

exp

(

−
∫ z−

z

σ(ζ, ez)

τms(ζ, e)
dζ

)

− 1

)

α1G,

and hence the distribution of outgoing particles at z = 0:

φ0,(1)(0, vx, ez)|ez<0 = exp

(

−2τz(ez)

τms(e)

)

f∗(vx,−vz(0, ez)) +
(

1− exp

(

−2τz(ez)

τms(e)

))

α1G.

This shows that we can construct the first approximation φ0,(1) for free particles, and that this
approximation satisfies a Maxwell boundary condition at z = 0 with the accomodation coeffi-

cient a(e) = 1 − exp
(

− 2τz(ez)
τms(e)

)

, provided that the coefficient α1 can be defined such that the

corresponding mass flux is zero. Indeed, using (78) and (83), it is sufficient to set

α1 =

(
∫ ∫

ez>
√
Wm

eza(e)f
∗(vx,−vz(0, ez))dezdvx

)

/

(
∫ ∫

ez>
√
Wm

eza(e)G(vx, ez)dezdvx

)

.

Now, φ0,(1) must also be constructed for trapped particles in order to have a complete approx-
imation of φ0. In the following, we follow the same approach as that used for free particles.

trapped molecules with ez > 0 (ez <
√
Wm):
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in that case, particles go from z+(ez) to z−(ez), and we can integrate (77) between z+(ez) and
some z ∈ [z+(ez), z−(ez)] to get

φ0,(1)(z, vx, ez) = exp

(

−
∫ z

z+(ez)

σ(ζ, ez)

τms(ζ, e)
dζ

)

φ0,(1)(z+(ez), vx, ez)

+ exp

(

−
∫ z

z+(ez)

σ(ζ, ez)

τms(ζ, e)
dζ

)

∫ z

z+(ez)

exp

(

∫ ζ

z+(ez)

σ(η, ez)

τms(η, e)
dη

)

σ(ζ, ez)

τms(ζ, e)
dζ α1G,

(83)

and thus

φ0,(1)(z−(ez), vx, ez)|ez>0 = exp

(

− τz(ez)

τms(e)

)

φ0,(1)(z+(ez), vx, ez) +

(

1− exp

(

− τz(ez)

τms(e)

))

α1G.

(84)

trapped molecules with ez < 0 (ez > −
√
Wm):

in that case, particles go from z−(ez) to z+(ez). Consequently, we use (79), (84), the even parity
of τ̄ms, τz and G and the odd parity of vz(0, ez) with respect to ez to obtain the distribution of
outgoing particles at z = z−(ez):

φ0,(1)(z−(ez), vx, ez)|ez<0 = exp

(

− τz(ez)

τms(e)

)

φ0,(1)(z+(ez), vx,−ez)+
(

1− exp

(

− τz(ez)

τms(e)

))

α1G.

Then we can integrate (77) between z−(ez) and some z ∈ [z+(ez), z−(ez)] to get

φ0,(1)(z, vx, ez) = exp

(

−
∫ z−

z

σ(ζ, ez)

τms(ζ, e)
dζ

)(

exp

(

− τz(ez)

τms(e)

)

φ0,(1)(z+(ez), vx,−ez)

+(1− exp

(

− τz(ez)

τms(e)

)

)α1G

)

−
(

exp

(

−
∫ z−

z

σ̃(ζ, ez)

τms(ζ, e)
dζ

)

− 1

)

α1G,

(85)

and thus

φ0,(1)(z+(ez), vx, ez)|ez<0 = exp

(

−2τz(ez)

τms(e)

)

φ0,(1)(z+(ez), vx,−ez)+
(

1− exp

(

−2τz(ez)

τms(e)

))

α1G.

Then we can use (80) in the previous relation to deduce that φ0,(1)(z+(ez), vx, ez) = α1G for every
trapped particles. Finally, using (83) and (85) we obtain

φ0,(1)(z, vx,−ez) = α1G, for z+(ez) ≤ z ≤ z−(ez),

that is to say that trapped molecules are in equilibrium in [z+(ez), z−(ez)]. The first approximation
φ0,(1) of φ0 now is completely defined.

2

4 Derivation of boundary conditions: wall with nanoscale
roughness

We assumed so far that the surface of the solid wall is flat and that the potential has the sim-
plified form (8). Following the same approach, but with notations and algebra a bit more tricky,
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we could obtain similar results for a more general attractive-repulsive surface potential V(x, z),
corresponding to a smooth wall, i.e. such that V(x, z) = +∞ at z = L . Moreover we can extend
the approach to the case of a wall with nanoscale roughness (a wall on which there are a great
number of minute asperities and which may induce multiple scattering as indicated in [26]). More
precisely, let us consider the following configuration for the wall : we assume that the surface layer
is included in [0, L] and that the potential V(x, z) is such that

V(x, z) = V#(
x

L∗
, z), (86)

where L∗ = β∗L and β∗ is a positive constant that characterizes the roughness of the wall, and
V#(y, z) is a periodic function of the nanoscopic variable y with period 1. This nanoscopic variable
y allows us to describe how a molecule impiging the surface layer at microscopic coordinate x sees
the nanoscopic roughness of the wall. Moreover we assume that there exist z = ζ∞(y) a 1-periodic
function with 0 ≤ ζ∞(y) < L and z = ζ0(y) a 1-periodic function with 0 ≤ ζ0(y) < ζ∞(y) such
that (see figure 4)

lim
z′<ζ∞(y),z′→ζ∞(y)

V#(y, z
′) = +∞, (87)

V#(y, ζ0(y)) = 0. (88)

Finally, we assume that the potential is attractive-repulsive, i.e.

for ζ0(y) < z < ζ∞(y), ∂zV#(y, z) > 0, for 0 < z < ζ0(y), ∂zV#(y, z) < 0, (89)

and that
V#(y, z) = Vm, for z ≤ 0. (90)

The total energy of a molecule is

E(x, z, vx, vz) =
m

2
|v|2 + V(x, z),

and this total energy remains constant as long as the molecule does not collide with a phonon.
Note that in this section, we do not use the change of velocity variables v 7→ e(v, z). Indeed, since
the potential is not assumed to be separable into U(x) +W (z) here, there is no obvious change of
variable that would simplify the equations.

With these assumptions, the flow of molecules is described by the following system of kinetic
equations

∂tf + vx∂xf + vz∂zf = 0, z < 0,

∂tf + vx∂xf + vz∂zf − 1

m
∂xV(x, z)∂vxf − 1

m
∂zV(x, z)∂vzf = Q[f ], 0 < z < L,

(91)

where the molecule-phonon collision term writes

Q[f ] =

∫

K(v, v′)(M(v)f(v′)−M(v′)f(v))dv′, (92)

and satisfies the properties recalled in proposition 1. Moreover the distribution function f is
continuous through the interface z = 0.

In the following, we compute the scattering kernel of asymptotic boundary conditions corre-
sponding to various regimes. However, we find it more convenient to use the following form of the
scattering kernel:

k(v′ → v) = R(v′ → v)
|v′z |
|vz |

,
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where R is the standard form (as used in (4)). With this new kernel, properties of normalization (6)
and reciprocity (7) now read:

∫

vz<0

k(v′ → v)vz dv = −v′z, (93)

|vz |k(v′ → v)M(v′) = |v′z|k(−v → −v′)M(v). (94)

Proposition 3. Under the hypothesis (86–90), in the limit ε =
τ∗

ms

t∗
B

→ 0, the gas-surface interac-

tion depends on the order of magnitude of η =
τ∗

ms

τ∗

fl

(where τ∗fl is the characteristic time of flight

of a molecule through the surface layer), and can be described by the following boundary conditions
at z = 0:

1. for η = O(1ε ), the boundary condition is the ”specular” boundary condition which writes for
a rough wall

f(t, x, 0, vx, vz)|vz<0 =

∫

v′

z>0

k(v′ → v)f(t, x, 0, v′) dv′, (95)

where the scattering kernel k, given by (111), is a probability density that is non-negative and
satisfies the normalization and reciprocity properties (93–94).

2. for η = O(1), the boundary condition writes, in a first approximation, as

f(t, x, 0, v) =

∫

v′

z>0

k1(v
′ → v)f(t, x, 0, v′) dv′ + a#(v)σ(t, x)M(v), (96)

where k1(v
′ → v) can be viewed as a scattering kernel of non thermalized molecules, and

is defined by (121), a#(v) is the fraction of incident molecules that are re-emitted with the
velocity v after a collision with a phonon (see (122)), and σ is such that the mass flux at
z = 0 is zero (defined in (131)). This boundary condition satisfies the properties of non
negativeness, normalization, and reciprocity.

Proof: We denote by φ = f|0<z<L, and we write f and φ as functions of (t, x, y = x
L∗

, z, vx, vz),
periodic in y, with period 1. We use the same reference quantities and nondimensional variables
as in the previous sections. With these new functions, the dimensionless form of system (91) is

∂tf + vx∂xf +
η

β∗ε
vx∂yf + vz∂zf = 0, for z < 0, (97)

∂tφ+ vx∂xφ+
η

β∗ε
vx∂yφ+

η

ε
vz∂zφ− 1

2β∗

η

ε
∂yV#(y, z)∂vxφ− 1

2

η

ε
∂zV#(y, z)∂vzφ =

1

ε
Q[φ], (98)

for 0 < z < 1, with interface conditions

φ(t, x, y, 0, vx, vz)vz>0 = f(t, x, y, 0, vx, vz), (99)

f(t, x, y, 0, vx, vz)|vz<0 = φ(t, x, y, 0, vx, vz) (100)

for every y ∈ [0, 1].
We define the average of f over a period:

F (t, x, z, vx, vz) =

∫ 1

0

f(t, x, y, z, vx, vz) dy.

Integrating (97) with respect to y and taking into account the 1-periodicity , we obtain

∂tF + vx∂xF + vz∂zF = 0, (101)
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for z < 0, and the boundary condition (100) leads to

F (t, x, 0, vx, vz)|vz<0 =

∫ 1

0

φ(t, x, y, 0, vx, vz)dy. (102)

Now, we use an expansion of f , F , and φ in terms of powers of ε, and we identify the terms of
same order of magnitude.

(1) We consider the case η = O(1ε ), which implies that τ∗fl ≪ τ∗ms ≪ t∗B (i.e. a weak molecule-

phonon interaction). We find at zeroth order ∂yf
0 = 0 for z < 0, which means that f0 does

not depend on y, and hence F 0(t, x, z, vx, vz) = f0(t, x, z, vx, vz). Consequently, equations (101)
and (102) give

∂tF
0 + vx∂xF

0 + vz∂zF
0 = 0, z < 0, (103)

F 0(t, x, 0, vx, vz)vz<0 =

∫ 1

0

φ0(t, x, y, 0, vx, vz)dy. (104)

However, φ0 stil depends on y and we get

1

β∗
vx∂yφ

0 + vz∂zφ
0 − 1

2β∗
∂yV#(y, z)∂vxφ

0 − 1

2
∂zV#(y, z)∂vzφ

0 = 0, (105)

with a boundary condition coming from (99) which is

φ0(t, x, y, 0, vx, vz)vz>0 = F 0(t, x, 0, vx, vz), ∀y ∈ [0, 1]. (106)

Note that the zeroth-order system (103–106) in (F 0, φ0) is closed, contrary to the original sys-
tem (97), (99), (101), (100) in (F, φ).

Relation (106) means that the molecules impinging the surface layer with velocity v = (vx, vz)
see the roughness of the wall from any nanoscopic variable y with the same probabiliy. Relation
(104) means that the number of molecules going out of the surface layer at microscopic point x
with velocity v is the sum over y of molecules going out with velocity v at the nanoscopic points
y, y ∈ [0, 1].

The characteristic curves of the LKSL problem (105), defined by ẏ(t) = vx(t)/β∗, ż(t) =
vz(t), v̇x(t) = −∂yV#(y(t), z(t))/2β∗, and v̇z(t) = −∂zV#(y(t), z(t))/2, are the trajectories of the
molecules in the surface potential field. We denote by (y, v) = (y(y′, v′), v(y′, v′)) = Λ(y′, v′) the
mapping that gives the position and the velocity (y, v) of a molecule leaving the surface layer (i.
e. with vz < 0 at z = 0) as a function of its position and velocity (y′, v′) when entering the surface
layer (i.e. with v′z > 0 at z = 0), see figure 4. Note that due to the time reversibility of these
trajectories, we have the important property

(y, v) = Λ(y′, v′) ⇔ (y′,−v′) = Λ(y,−v), (107)

and hence v′ = −Λ2(y,−v) for every (y, v, y′, v′) related by a characteristic curve. Another im-
portant property is that the Jacobian of the transformation (y, v) = Λ(y′, v′) can be computed so
that we have:

|v′z|dy′dv′ = |vz|dydv, (108)

see a proof in appendix A. The last property is that the total energy is conserved along the
characteristic and the potential energy has the same value Vm at the head (y, 0) and the foot
(y′, 0) of this characteristic, which yields

|Λ2(y
′, v′)| = |Λ2(y,−v)| = |v| = |v′|. (109)

These relations are essential to derive a collision kernel for problem (103-104) and to prove some
of its properties.

19



Let y in [0, 1] and v such that vz < 0. Then using the fact that φ0 is constant along the char-
acteristics, we get φ0(t, x, y, 0, v) = φ0(t, x, y′, 0, v′), where (y′, v′) are such that (y, v) = Λ(y′, v′).
Then using (106) and the previous relation v′ = −Λ2(y,−v), we get

φ0(t, x, y, 0, v) = F 0(t, x, 0,−Λ2(y,−v)).

Finally, we inject this relation into (104) to get

F 0(t, x, 0, vx, vz)vz<0 =

∫ 1

0

F 0(t, x, 0,−Λ2(y,−v)) dy,

which can be rewritten

F 0(t, x, 0, vx, vz)vz<0 =

∫

v′

z>0

k(v′ → v)F 0(t, x, 0, v′) dv′, (110)

where the collision kernel k is defined by

k(v′ → v) =

∫ 1

0

δ(v′ + Λ2(y,−v)) dy. (111)

This kernel is obviously non-negative, and it satisfies
∫

v′

z>0

k(v′ → v) dv′ = 1,

and hence is a probability density. Indeed, note that a direct integration of (111) with respect to
v′ and the use of variables v, y give this result.

The normalization property (93) is obtained as follows: first, we use (111) to get

∫

vz<0

k(v′ → v)vz dv = −
∫

vz<0

∫ 1

0

δ(v′ + Λ2(y,−v))|vz| dydv.

Then, we use the change variables (y, v) = Λ(y′, w′) and its properties (107) and (108) to get

∫

vz<0

k(v′ → v)vz = −
∫

w′

z>0

∫ 1

0

δ(v′ − w′)|w′
z | dy′dw′

= −
∫ 1

0

|v′z | dy′ = −v′z.

Finally, the reciprocity property (94) is obtained as follows. First, we consider a given velocity
v (with vz < 0) and a test function θ, and we use (93) to get

∫

v′

z>0

|vz |k(v′ → v)M(v′)θ(v′) dv′ =

∫

v′

z>0

∫ 1

0

|vz |δ(v′ + Λ2(y,−v))M(v′)θ(v′) dydv′

=

∫ 1

0

|vz|M(Λ2(y,−v))θ(−Λ2(y,−v)) dy

=

∫ 1

0

θ(−Λ2(y,−v)) dy |vz |M(v)

(112)

from (109). Moreover, (93) also gives

∫

v′

z>0

|v′z |k(−v → −v′)M(v)θ(v′) dv′ =

∫

v′

z>0

∫ 1

0

|v′z|δ(−v + Λ2(y, v
′))M(v)θ(v′) dydv′.
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Then, we write y′ instead of y, and we use the change of variables (y, w) = Λ(y′, v′) and its
properties (107) and (108) to get

∫

v′

z>0

|v′z|k(−v → −v′)M(v)θ(v′) dv′ =

∫

wz<0

∫ 1

0

|wz |δ(−v + w)M(v)θ(−Λ2(y,−w)) dydw

=

∫ 1

0

θ(−Λ2(y,−v)) dy |vz|M(v).

(113)

Then, we compare (112) and (113) to find that the two left-hand sides are equal for every test
function θ. The reciprocity property |vz|k(v′ → v)M(v′) = |v′z |k(−v → −v′)M(v) follows.

(2) Now we consider the case η = O(1), which means that τ∗fl (the characteristic time of flight
of a molecule across the surface layer) is comparable with τ∗ms (the characteristic time of molecule-
phonon relaxation). The zeroth order terms of the expansion are still denoted by F 0 and φ0, where
F 0 satisfies the same equation:

∂tF
0 + vx∂xF

0 + vz∂zF
0 = 0, z < 0, (114)

F 0(t, x, 0, vx, vz)vz<0 =

∫ 1

0

φ0(t, x, y, 0, vx, vz)dy, (115)

and φ0 now is the periodic solution of

1

β∗
vx∂yφ

0 + vz∂zφ
0 − 1

2β∗
∂yV#(y, z)∂vxφ

0 − 1

2
∂zV#(y, z)∂vzφ

0 = Q[φ0], (116)

φ0(t, x, y, 0, vx, vz)vz>0 = F 0(t, x, 0, vx, vz), ∀y ∈ [0, 1]. (117)

As in section 3.1, the right-hand-side of this equation is approximated by Q+[α(t, x)M] −
φ0

τms
, where τms(v) = (

∫

K(v, v′)M(v′) dv′)−1 is the molecule-phonon relaxation time, and where

M(y, z, vx, vz) = exp(−|v|2/2 − V#(y, z)) which is constant along the characteristics, and α is a
free parameter that will be determined later. To integrate (116), it is useful to define the mean
molecule-phonon relaxation time τ̄ms(y

′, v′) along the characteristic curve passing by (y′, 0, v′)

by τ̄ms(y
′, v′) = ( 1

τfl(y′,v′)

∫ τfl(y
′,v′)

0
1

τms(v(s))
ds)−1. Then the solutions of (116) with boundary

condition (117) satisfy

φ0(t, x, y, 0, v) = exp(−r(y′, v′))F 0(t, x, 0, v′)

+ (1− exp(−r(y′, v′)))σ(t, x)M(v),
(118)

where r(y′, v′) = τfl(y
′, v′)/τ̄ms(y

′, v′), τfl(y′, v′) is the free time of flight of a molecule across
the surface layer in which it enters at (y′, z = 0, v′)), and σ(t, x) = α(t, x) exp(−Vm) is still to
be determined. First, note that r(y′, v′) = r(y,−v): indeed it is defined as the ratio of the free
time of flight of a molecule along the trajectory that starts at (y′, v′) and ends at (y, v) and the
mean relaxation time along this trajectory. Since this trajectory is the same as the one that starts
at (y,−v) and ends at (y′,−v′) (see (107)), these two times are the same at (y′, v′) and (y,−v).
Then (118) can be rewritten as

φ0(t, x, y, 0, v) = exp(−r(y,−v))F 0(t, x, 0,−Λ2(y,−v))
+ (1− exp(−r(y,−v)))σ(t, x)M(v),

(119)

where v′ has been replaced by −Λ2(y,−v) due to (107).
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Now, we use (115), and the outgoing distribution F 0(t, x, 0, v) is found to be

F 0(t, x, 0, v) =

∫ 1

0

(

exp(−r(y,−v))F 0(t, x, 0,−Λ2(y,−v)) + (1− exp(−r(y,−v)))σ(t, x)M(v)
)

dy

=

∫ 1

0

∫

v′

z>0

(exp(−r(y,−v))F 0(t, x, 0, v′)δ(v′ + Λ2(y,−v)) dv′dy

+

∫ 1

0

(1− exp(−r(y,−v)))σ(t, x)M(v)) dy

=

∫

v′

z>0

k1(v
′ → v)F 0(t, x, 0, v′) dv′ +

(

1−
∫ 1

0

exp(−r(y,−v)) dy
)

σ(t, x)M(v),

(120)

where k1(v
′ → v) can be viewed as a scattering kernel of non thermalized molecules, and is defined

by

k1(v
′ → v) =

∫ 1

0

exp(−r(y,−v))δ(v′ + Λ2(y,−v)) dy. (121)

Moreover, the coefficient a#(v) of (96) is found to be

a#(v) = 1−
∫ 1

0

exp(−r(y,−v)) dy. (122)

The computation of σ and the reciprocity of this boundary condition are proved in appendix B.

5 Comments and concluding remarks

1- In this approach, the boundary for the Boltzmann equation is considered to be located at z = 0
which is the outer limit of the surface layer. The surface layer is considered as belonging to the solid
phase. This is a two-phase description in opposition to the nanoscale models which are three-phase
models (gas, surface layer, solid).

2- The boundary condition (3) is a Maxwell-like condition but the ”accommodation coefficient”
a = a(v) depends on the velocity. More precisely the coefficient a(v) must be interpreted as the
fraction of diffusively evaporated molecules. A Maxwell-like condition with a coefficient depending
on the velocity has been previously given in [9]. Nevertheless the authors propose a different ex-
pression : â(v) = 1

1+(τms/(2τz))
. Let us remark that â(v) can be interpreted as a Pade approximant

of a(v) given in (42), which can be explained since the boundary condition is derived in [9] from a
nanoscale kinetic model obtained by averaging (29-34) over the surface layer.

3- It is classical in the litterature (see for instance [11]) to introduce the so-called accommodation
coefficients α(ϕ) to describe the the interaction of a gas with a surface

α(ϕ) =

∫

vz>0

∫

|vz |ϕ(v)φ(v)dvxdvz −
∫

vz<0

∫

|vz |ϕ(v)φ(v)dvxdvz
∫

vz>0

∫

|vz |ϕ(v)φ(v)dvxdvz − J0
∫

vz<0

∫

|vz|ϕ(v)M(v)dvxdvz
,

where J0 =
∫

vz>0

∫

vza(vz)φ(0, vx, vz)dvxdvz/
∫

vz>0

∫

vza(vz)M(vx, vz)dvxdvz , and ϕ(v) = vx or

vz , or |v|2/2 (accommodation coefficient for tangential or normal momentum or for energy). A
drawback of the Maxwell’s boundary condition noted in [11] is that those various accommodation
coefficients are equal, and equal to the factor a ( which explains why this coefficient is often called
the accommodation coefficient), which is not realistic since it is well-known that momentum and
energy accommodate differently in physical interactions. In contrast, the boundary condition (3)
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derived in the present paper gives different accommodation coefficients for energy and momentum.

4- We notice that the boundary conditions obtained by this approach do not contain any free pa-
rameter to be adjusted. All the information comes from the smaller scale (nanoscale). In particular
the coefficient a in the Maxwell-like condition is given provided the interaction potential is known
(and thus, τz and τms). It is interesting to look at the influence of the velocity on the fraction of
diffusively evaporated molecules a(v). Since we assumed that the scattering kernel of the molecule-
phonon collision term is bounded below and above (19), then so is τms. Thus the behavior of a
for large |v| depends essentially on τz . Since lim|vz |→+∞ τz(vz) = 0, it appears that the fraction of
diffusively evaporated molecules tends to decrease for high velocities. Finally we remark also that
a perfect accommodation boundary condition can be obtained even if the interaction potential is
purely repulsive. This is in contradiction with the idea that a diffusive departure of molecules from
a surface is due to desorption of trapped molecules (see [9]).

5- We considered in section 4 rough walls with a periodicity assumption. This assumption allows
to take into account the roughness of a surface in a simple way. Such a technique is commonly
used for molecular dynamics simulations in gas-surface interaction or in related applications such
as porous media. It can be relevant for instance when the solid is a crystal or a composite material.
Of course, for a wall with nanoscale roughness, even the ”specular” reflexion condition depends on
the description of the surface potential. The smooth wall can be seen as a particular case of a rough
wall by taking k(v′ → v) = δv−(v′

x,−v′

z)
. Of course, taking advantage of such models for practical

numerical simulations requires accurate experiments to characterize the various parameters for a
given material. For computational purposes, an approximation of the scattering kernel k(vp → vq)
(for (vp, vq) in a discrete velocity grid) can be obtained by numerical solutions of the characteristic
curves in a unit cell of the surface layer.

6- In any boundary condition, the population of trapped molecules is not taken into account. This
is justified when we consider a bulk flow in a domain whose size is much greater than the thickness
L of the boundary layer. But when the size of the domain becomes smaller (for instance in a
channel with diameter comparable with L), then this might not be correct. In such a configuration
the number of molecules trapped in the surface layer cannot be neglected. Indeed if we assume
that the flow is stationary, then the distribution function writes

m n0

2kπT
e−V(x,z)/kT e−m(v2

x+v2
z)/2kT .

Thus, the ratio of the number density of gas molecules at the outer boundary of the surface layer
(and in the channel, i.e at z ≤ 0) over the number density of gas molecules at the bottom of the
well potential (i.e at z = z∗) is equal to

n(x, 0)

n(x, z∗)
= e−Vm/kT ,

so that the number density of gas molecules inside the surface layer is much larger that the number
density of gas molecules in the channel when kT ≪ Vm (see for instance [22] for numerical results
by means of molecular dynamics simulations). Thus in the vicinity of the wall we have to take
into account the molecules inside the surface layer, for instance to estimate the mass flux parallel
to the wall.

To conclude this paper we recall how the gas-surface interaction is described by the proposed
kinetic approach (for a smooth wall) at different scales and for various regimes.

• At the smaller scale (the nanoscale, i.e. on a domain [0, x∗] × [0, z∗] with x∗ and z∗ ≈ 1
nanometer), the gas interaction is described by the two-dimensionnal kinetic model for the
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flow inside the surface layer (29–34), suggested in [9] and [1] (coupled with the Boltzmann
equation for the bulk flow). Then the gas-solid interaction at larger scales is derived from
this model by formal systematic asymptotic analysis with various convenient scalings.

• If we consider a gas flow in a domain [0, x∗∗] × [0, z∗∗] with x∗∗ ≈ z∗∗ ≫ 1 nanometer, but
where x∗∗ is the characteristic length of evolution of the flow in the x-direction inside the
surface layer, then the gas-surface interaction can be described by the Boltzmann equation
coupled with a one-dimensional kinetic or diffusion model describing the flow inside the
surface layer of adsorbed molecules (mobile adsorption) which can be interpreted as non
local boundary conditions for the Boltzmann equation in the bulk flow (see [1]).

• At a larger scale, we consider a gas flow on a domain [0, x∗∗∗] × [0, z∗∗∗] where x∗∗∗ ≈ z∗∗∗

is the characteristic length of evolution of the Boltzmann equation in the bulk flow. Then
the gas-surface interaction can be described by the Boltzmann equation coupled with a local
boundary condition that depends on the ratio τ∗ms/τ

∗
z :

– If τ∗ms, the characteristic time of relaxation of the molecules by the phonons, and τ∗z ,
the characteristic time for a molecule to cross the surface layer are comparable, then
this boundary condition is implicitly given through the solution of a one-dimensional
boundary value problem for a linear transport equation. This boundary condition can be
approximated by the numerical solution of the boundary value problem but it can also
be approximated at first order by a Maxwell-like condition with a factor (the fraction
of diffusively evaporated molecules) that depends on the velocity of the molecules. This
fraction also depends on the temperature of the wall (through M , τ̄ms, and r̄) and of
the morphology of the surface (through Λ).

– If τ∗z ≪ τ∗ms, then the local boundary condition obtained is the well-known specular
reflexion.

– If when τ∗ms ≪ τ∗z , then the local boundary condition obtained is the classical perfect
accommodation boundary condition.
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A Computation of the Jacobian of the transformation (y, v) =
Λ(y′, v′)

Let ϕin(y
′, v′) be a function defined for y′ ∈ [0, 1] and v′ such that v′z > 0. Let ϕout(y, v) be the

outgoing value (at z = 0, for vz < 0) of the solution ϕ(y, z, v) of (105), with ϕin(y
′, v′)|v′

z>0 as an
inflow boundary data (at z = 0), that is to say, ϕ is a y-periodic function solution of:

1

β∗
vx∂yϕ+ vz∂zϕ− 1

2β∗
∂yV#(y, z)∂vxϕ− 1

2
∂zV#(y, z)∂vzϕ = 0,

ϕ(y′, 0, v′)v′

z>0 = ϕin(y
′, v′), ∀y′ ∈ [0, 1].

(123)

Since this solution is constant along the characteristics, we have:

ϕout(y, v) = ϕin(y
′, v′), (124)

where (y, v) = Λ(y′, v′) has been introduced before (107).
Denote by J the Jacobian of the change of variables (y, v) = Λ(y′, v′), then, using (124), we

can write the average outgoing mass flux as:

∫ 1

0

∫

vz<0

ϕout(y, v)|vz | dydv =

∫ 1

0

∫

v′

z>0

ϕin(y
′, v′)|Λ2(y

′, v′)|J dy′dv′, (125)

Moreover, it can easily been obtained that the average mass flux is zero, which reads

∫ 1

0

∫

vz<0

ϕout(y, v)|vz | dydv =

∫ 1

0

∫

v′

z>0

ϕin(y
′, v′)|v′z| dy′dv′. (126)

Indeed, integrating equation (123) with respect to (y, z) on the cell {y ∈ [0, 1], 0 < z < ζ∞(y)},
using the y-periodicity of ϕ, and then taking into account that ϕ is zero at z = ζ∞(y), we get

∫ 1

0

ϕ(y, 0, v)vzdy = −1

2

∫
( 1

β∗

∂yV#

∂zV#

)

.∇v ϕ(y, 0, v) dydz.

Then, we can integrate the previous relation with respect to v: the right-hand side vanishes, and
we get:

∫ ∫ 1

0

ϕ(y, 0, v)vz dydv = 0,

which gives (126).
Now, we compare (125) and (126) to get

∫ 1

0

∫

v′

z>0

ϕin(y
′, v′)|Λ2(y

′, v′)|J dy′dv′ =
∫ 1

0

∫

v′

z>0

ϕin(y
′, v′)|v′z| dy′dv′, (127)

which is true for every function ϕin. Consequently, we deduce that the Jacobian J satisfies

J =
|v′z|

|Λ2(y′, v′)|
=

|v′z|
|vz|

, (128)

which reads in the following more symmetric way

|v′z|dy′dv′ = |vz|dydv. (129)
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B Reciprocity property for the Maxwell like boundary con-
dition (96)

Computation of σ. This parameter can be determined with the constraint of zero mass flux of
F 0 through the boundary z = 0, that is to say

∫

vz<0

vzF
0(t, x, 0, v) dv +

∫

v′

z>0

v′zF
0(t, x, 0, v′) dv′ = 0.

Indeed, integrating equation (116) with respect to (y, z) on the cell {y ∈ [0, 1], 0 < z < ζ∞(y)},
using the y-periodicity of φ0, and then taking into account that φ0 is zero at z = ζ∞(y), we get

∫ 1

0

φ0vzdy = −1

2

∫
( 1

β∗

∂yV#

∂zV#

)

.∇vφ
0 dydz.

But (117) and (115) imply
∫ 1

0
φ0vzdy = vzF

0(t, x, 0, vx, vz), so that after integration in v we obtain

∫

F 0vzdv = −
∫
( 1

β∗

∂yV#

∂zV#

)

.

(
∫

∇vφ
0 dv

)

dydz = 0, (130)

which means that the mass flux of F 0 through the boundary z = 0 vanishes.
Then using (120), we rapidly find

σ(t, x) = −
∫

v′

z>0

(

v′z +
∫

vz<0 vzk1(v
′ → v) dv

)

F 0(t, x, 0, v′) dv′

∫

vz<0
vz

(

1−
∫ 1

0
exp(−r(y,−v)) dy

)

M(v) dv
.

Note that the integral with k1 can be computed: by using (121), the change of variables
(y, v) = Λ(y′, w′) and the property of r(y′, v′) mentioned above, we find

∫

vz<0

vzk1(v
′ → v) dv = −

∫

vz<0

∫ 1

0

|vz| exp(−r(y,−v))δ(v′ + Λ2(y,−v)) dydv

= −
∫

w′

z>0

∫ 1

0

|w′
z| exp(−r(y′, w′))δ(v′ − w′) dy′dw′

= −v′z
∫ 1

0

exp(−r(y′, v′)) dy′.

Consequently, the final form of σ is:

σ(t, x) =

∫

v′

z>0 v
′
z

(

1−
∫ 1

0 exp(−r(y′, v′)) dy′
)

F 0(t, x, 0, v′) dv′

−
∫

vz<0
vz

(

1−
∫ 1

0
exp(−r(y,−v)) dy

)

M(v) dv
, (131)

where the denominator is a constant denoted by C in the following.

Scattering kernel for the boundary condition (120). Using (131) in (120), we find

F 0(t, x, 0, v) =

∫

v′

z>0

k1(v
′ → v)F 0(t, x, 0, v′) dv′

+

(

1−
∫ 1

0

exp(−r(y,−v)) dy
)

1

C

∫

v′

z>0

v′z

(

1−
∫ 1

0

exp(−r(y′, v′)) dy′
)

F 0(t, x, 0, v′) dv′M(v)

=

∫

v′

z>0

k#(v′ → v)F 0(t, x, 0, v′) dv′,
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with the scattering kernel k#(v′ → v) = k1(v
′ → v) + k2(v

′ → v), where

k2(v
′ → v) =

(

1−
∫ 1

0

exp(−r(y,−v)) dy
)

1

C
v′z

(

1−
∫ 1

0

exp(−r(y′, v′)) dy′
)

M(v).

This kernel can be written

k2(v
′ → v) =

1

C
ψ(−v)ψ(v′)|v′z|M(v), (132)

where ψ(w) = 1−
∫ 1

0 exp(−r(y, w)) dy.
Consequently, the reciprocity of k# can be deduced from the reciprocity of the kernels k1 and

k2.

Reciprocity of k1. Using the definition of k1 ((121)), we have

|vz|k1(v′ → v)M(v′) =

∫ 1

0

exp(−r(y,−v))δ(v′ + Λ2(y,−v))|vz|M(v′) dy. (133)

Then for a given v and some test function θ, we have

∫

v′

z>0

|vz|k1(v′ → v)M(v′)θ(v′) dv′ =

∫

v′

z>0

∫ 1

0

exp(−r(y,−v))δ(v′ + Λ2(y,−v))|vz |M(v′)θ(v′) dydv′

=

∫ 1

0

exp(−r(y,−v))|vz |M(−Λ2(y,−v))θ(−Λ2(y,−v)) dy

=

∫ 1

0

exp(−r(y,−v))θ(−Λ2(y,−v)) dy |vz |M(v),

(134)

where we used (109).
Moreover, we can use (133) to write

|v′z |k1(−v → −v′)M(v) =

∫ 1

0

exp(−r(y′, v′))δ(−v + Λ2(y
′, v′))|v′z |M(v) dy′.

Then, with the same v and test function θ as above, we have

∫

v′

z>0

|v′z|k1(−v → −v′)M(v)θ(v′) dv′ =

∫

v′

z>0

∫ 1

0

exp(−r(y′, v′))δ(−v + Λ2(y
′, v′))|v′z |M(v)θ(v′) dy′dv′

=

∫

wz<0

∫ 1

0

exp(−r(y,−w))δ(−v + w)|wz |M(v)θ(−Λ2(y,−w)) dydw

=

∫ 1

0

exp(−r(y,−v))θ(−Λ2(y,−v)) dy |vz |M(v).

(135)

Comparing (134) and (135), we find that the two left-hand sides are equal for every v and every
test function θ, and then we have

|vz|k1(v′ → v)M(v′) = |v′z|k1(−v → −v′)M(v),

which is the reciprocity relation for k1.
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Reciprocity of k2. This property is straightforward: using (132), we have

|vz |k2(v′ → v)M(v′) =
1

C
ψ(−v)ψ(v′)|vz||v′z |M(v)M(v′)

=
1

C
ψ(v′)ψ(−v)|v′z ||vz |M(−v′)M(−v)

= |v′z |k2(−v → −v′)M(−v),

since M depends only on the norm of v.
The reciprocity of k# follows, which completes the proof.
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