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Activity Date Estimation in Timestamped
Interaction Networks

Fabrice Rossi and Pierre Latouche

SAMM EA 4543, Université Paris 1 Panthéon-Sorbonne
90, rue de Tolbiac, 75634 Paris cedex 13, France

Abstract. We propose in this paper a new generative model for graphs
that uses a latent space approach to explain timestamped interactions.
The model is designed to provide global estimates of activity dates in his-
torical networks where only the interaction dates between agents are known
with reasonable precision. Experimental results show that the model pro-
vides better results than local averages in dense enough networks.

1 Introduction

In this paper, we study interactions between agents that are recorded on a time
scale larger than the expected lifespan of the agents. A typical instance of such
interactions are property ownership recordings in which a house or a land exists
for a very long time period and passes from owner to owner, outliving them.
Ownerships are generally recorded with a lot of details in well kept archives,
while the lives of the owners are generally known with much less details.

In [1, 4] for instance, the primary information source consists in notarial acts
recording different forms of ownerships of lands and related objects (according
to the French feudal laws) during a long time period (up to 300 years for the
digitized version). On the one hand, most of the notarial acts have a proper
date, precise at least at the year level, while, on the other hand, little is known
about the tenants (a.k.a. the “owners”) involved in the acts, apart from their
names. It seems therefore interesting to infer information about the tenants
from the acts, namely to estimate a living period for each tenant based on the
acts in which he/she is involved.

More generally, we consider a graph whose vertices represent agents and
whose edges represent interactions between those agents. We consider here sim-
ple graphs, but the approach generalizes immediately to multi-graphs in which
several edges can link two agents. Each interaction is timestamped and our goal
is to estimate a central time stamp for each agent in such a way that interac-
tion dates are compatible with the time stamps of the agents and with expert
knowledge on the expected life span of the agents. The main difficulty of this
task comes from inconsistencies observed in real world historical data: due to
name ambiguities, associations between agents and interactions are sometimes
incorrect. In network parlance this corresponds to some rewiring of the graph:
while we should get a connection between a and b, a naming ambiguity between
vertex b and c assigns wrongly this interaction to a and c.

We propose a solution based on a generative model inspired by the latent
space model of [3]: given the interaction dates, the model generates interaction



networks that fulfill the compatibility constraints exposed above. Note that
the proposed setting is quite different from classical temporal graph modeling
(see e.g. [2, 5]) where the primary goal generally consists in understanding the
evolution of the structure of the network through time.

The rest of the paper first introduces the generative model as well as the max-
imum likelihood estimation strategy. It then summarizes experimental results
on simulated data.

2 A Generative Model

We observe an undirected graph G characterized by a vertex set V.= {1,...,n}
and a binary adjacency matrix A. When A;; = 1, that is when node 7 is
connected to node j, we are given an associated interaction date specified as a
positive real number D;;. (We might be given several dates in a multi-graph
setting.)

We consider a generative model for (A, D) based on latent activity date
variables. More precisely, each vertex i is associated to a positive (unobserved)
real number Z; which summarizes the activity period of said vertex. Then, we
assume that the probability of having a connection between ¢ and j is linked
to the temporal distance |Z; — Z;|. We assume also that knowing Z = (Z;);,
the A;; are independent. Finally, when i and j are connected, we assume that
their interaction date is randomly distributed between Z; and Z; (independently
of all other variables). In more technical terms, the conditional independence
assumptions lead to the following generative model, where 6 denotes numerical
parameters:

p(A=a,D|Z0)= ][ P(A;=0Z,2;0)
17#5,a;;=0
X H p(D’Lj|A’L] = 1,Zi,Zj79)P(Aij = 1|Zl,Zj,0) (1)
i#j,a:;=1
A natural extension to multi-graphs consists in assuming independence between
edges, that is between the D;; given Z; and Z;.

2.1 A specific model

We specialize now the generic form of equation (1). Inspired by [3], we use a
logistic regression model for the connection probabilities, that is

P(Ai; =11Z;, Zj, o, B)
P(AZJ = O|ZZ, ZJ‘, a, ﬂ)

log =a—f(Z; - Z;)%, (2)

while the interaction date D;; is simply modelled with a Gaussian distribution
Zi+2, .

around =5=*, that is

Z;i+ Z;
Dij|zi7zj,a~/\f(@;f,02). 3)



Then, up to constants, the log-likelihood of the data is given by

1 Zi+ Z;\"
L(A,D|Z,0,a, ) = Z <_10gg_M<Dij_ . J))

i#£7,Ai;=1

N Z (Ai,j(oz —B(Zi — Z,)%) — log (1 T ea*B(Zifzjf)) . (4)
i#]

Connection probabilities are not identical to the ones used in [3] for two reasons.
Firstly, we use a quadratic term (Z; — Zj)2 rather than the original absolute
value |Z; — Z;| to avoid numerical instabilities linked to the non differentiability
of the latter. Secondly, we add a [ parameter to compensate for the relatively
large values found in real world historical networks for (Z; — Z;)? which can be
of the order 2500. In [3], the absence of the first term in equation (4) allows for
free scaling effects of the Z;, something that is not possible here.

2.2 Estimation

We use a maximum likelihood approach implemented via a gradient descent

based algorithm. A natural initialization for Z is provided by Z; = 7]5’ Al,_ o
g s

that is Z; takes the average value of the dates of the outgoing/incoming edges.
This corresponds to an estimation of the activity dates based only on local
information. The initial values of the other parameters are chosen as follows.
As o models the life span of actors, we use 50 as a starting point, allowing
interactions to happen in a very large two hundred years interval centered in the
average activity date of two actors. The a parameter is initialized such that the
connection probability equals the observed network density when all the Z; are
equals. Finally, 3 is set to a value that reduces the connection probability to
almost zero (107°%) when the temporal distance between two actors is above one
hundred years.

3 Experimental evaluation

As we do not have access yet to large historical data sets with reliable activity
dates, we focus on simulated data to evaluate the model we propose and to
understand its strengths and limitations.

3.1 Ideal situation

First, we study the ideal situation in which networks are simulated according
to our model. The goal is then to recover the activity dates used to generate
the data. We measure the quality of the recovery using the mean square error
(MSE) between the real Z and the estimated one. A network is generated as
follows:

1. n =100 and the Z; are uniformly distributed in [1200, 1400];



2. for a given maximal target density d in [0.1,0.5], c is set to —log (5 — 1).
This sets the probability of A;; =1 to d when Z; = Zj;

. . . . log(1—
3. the expected life span is set to 80. Accordingly, /5 is set to W,

where ¢ is the target probability to have A;; =1 when |Z; — Z;| = 80. We
use € = 1076;

4. o is set to 20 (that is to one fourth of the life span);

given «, 3, 0 and Z, A and D are generated according to the model;

6. finally, we keep only the largest connected component of the obtained
graph. We discard graphs in which there are less edges than the number
of parameters in the model (that is three added to the number of vertices).

ot

Results are summarized by Figure 1 which gives the improvement in MSE
obtained by using the Z estimates of the model compared to the local averages'

Z; = ﬁ,w. The superimposed curve is a kernel based estimate of
g i

the relation between the average number of edges per vertex and the improve-

ment in MSE. According to this estimate, the average improvement reaches a

positive value above 1.31 edges per vertex. When this number is above 2, the

improvement over local estimates is almost always positive.
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Figure 1: Ideal situation: each dot gives the improvement in MSE over local averages

when using the proposed model estimates as a function of the number of edges per
node.

1On a total of 2152 networks, 3 where excluded from Figure 1 because of very large negative
values of the improvement (down to -2200) due to convergence issues. Those networks had
below 1.27 edges per vertex.



3.2 Misspecification

We also tested the model under mis-specification by replacing the Gaussian
distribution for dates by a uniform distribution between Z; and Z; for connected
vertices. This introduces some form of heteroscedasticity. Results displayed
on Figure 2 show a good resistance of the model to misspecification when the
number of edges per vertex if above 2.
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Figure 2: Misspecification with uniform connection dates. 10 graphs out of 1079 with
an average number of edges per vertex below 1.21 and bad estimates were removed
from the figure to keep it readable.

3.3 Rewiring

Finally, we study the robustness of the model with respect to the rewiring issue
exposed in the introduction. Networks are first generated according to the model
and then a certain number of edges are randomly rewired by moving one of the
end points to a randomly selected vertex while keeping the original date. In
the case of a very low noise (1% of rewired edges), almost no effect on the
improvements are observed (results not shown here). Figure 3 shows results for
a more important noise (5% of rewired edges). As expected, the model, while
showing robustness, is impaired by the “false” information attached to rewired
edges. According to the kernel estimator, at least 2.1 edges per vertex are needed
to reach equal performances between the local average and the model estimates,
while above 3, the model outperforms the local estimates.
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Figure 3: Improvements under rewiring noise. 54 graphs out of 2159 with an average
number of edges per vertex below 1.79 and very bad estimates are removed from the
figure to keep it readable.

4 Conclusion

Results on simulated data are very satisfactory: above an average number of two
edges per vertex, the estimates provided by the model are closer to the ground
truth than local averages, even under two forms of misspecification (uniform date
distribution and edge rewiring). While the estimator exhibits large variability
and can give quite bad results, this happens only under a low number of edges
per vertex. While a direct numerical evaluation of the method on real world
historical data is impossible because of the lack a reliable activity dates on large
interaction databases, we are working with historians on qualitative assessment
of the results based on dates inferred from well known figures such as prominent
land lords.
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