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Abstract. We present a non parametric bayesian inference strategy

to automatically infer the number of classes during the clustering pro-

cess of a discrete valued random network. Our methodology is related to

the Dirichlet process mixture models and inference is performed using a

Blocked Gibbs sampling procedure. Using simulated data, we show that

our approach improves over competitive variational inference clustering

methods.

1 Introduction

Recent years have been the witness of an increasing interest in random network
analysis. Networks are now used in many scientific fields from Biology to social
sciences, among others. For example, protein-protein interaction networks de-
scribe possible physical interactions between proteins [1] while social networks
aim at characterizing relational ties between actors [2, 3]. In order to extract
information from these structured data sets, a wide range of methods have been
proposed. Some of them focus on discovering communities, i.e. regions with
high connectivity between nodes [4, 5]. For instance, the network modularity
of [6] aims at detecting communities by looking for dense zones in a graph us-
ing a modularity score. An alternative approach is the Latent Position Cluster
Model proposed by [7]. This model looks for clusters of vertices depending on
their positions in an unobserved euclidean latent space. Other models seek dis-
assortative structures in which vertices are more likely to connect with vertices
belonging to other clusters [8].

The Stochastic Block Model (SBM) [2, 9] is a more flexible model. Given a
network, it assumes that each vertex belongs to a latent class among K classes
and uses a K × K connectivity matrix to describe the connection probabilities
[10]. As shown by [2], it can be used to retrieve both communities and disas-
sortative mixing, but not only. However, SBM only deals with binary relational
data. To tackle this issue, [11] introduced recently an extension of SBM to deal
with discrete valued edges, called the Poisson Mixture model for graphs (PM).
In order to perform inference, a Variational Expectation Maximization (VEM)
algorithm is applied on a network for various values of the number K of classes.
The Integrated Classification Likelihood (ICL) criterion is then computed for
each K and K̂ is chosen such that the criterion is maximized.

Recently, [12] proposed the Infinite Relational Model (IRM) as well as a
Gibbs sampling procedure. Their approach for relation data is non parametric
and allows the number of clusters to be estimated automatically while clustering



the observations. [13] proposed a similar approach, however, their methodology
is restricted to multinomial relations.

In this paper, we propose a bayesian non parametric method for the clustering
of discrete valued networks. First, we recall the PM introduced by [11] and show
how it can be described in a Bayesian framework. We then consider a Chinese
Restaurant Process (CRP) on the latent structure and perform inference using a
Blocked Gibbs sampling procedure. The algorithm allows the number of clusters
to be automatically obtained during the estimation process. Finally, we apply
our methodology on simulated data and compare our results with a competitive
approach.

2 Model: Infinite Poisson mixture model

We consider a random graph G represented by a N × N adjacency matrix X.
Each entry Xij takes its value in N and describes the relation between vertex i

and vertex j. Note that Xij = 0 corresponds to the absence of an edge.

2.1 Poisson mixture

The Poisson Mixture model for graphs (PM) introduced by [11] assumes that
the vertices of G are spread into K classes. Thus, the model associates to each
vertex a latent variable Zi drawn from a multinomial distribution:

Zi ∼ Mult (1;α) , ∀ {i ∈ 1, · · ·N} , (1)

where α denotes the vector of class proportions (
∑K

q=1 αq). Given the classes,
edges are then sampled from Poisson distributions P(·). Thus, if i belongs to
class q and j to class l, Xij is assumed to be drawn from:

Xij |{ZiqZjl = 1} ∼ P (λql) , (2)

where λql represents the expected value of the links between nodes from class q
to nodes of class l. According to the PM model, the latent variables Z1, · · · , ZN

are iid and given the latent structure, all edges are assumed to be independent.
In the following, we assume that G is an undirected random graph without

self-loops. In other words, for all pairs of nodes i and j, Xij = Xji and Xii = 0.
However, we emphasize that all results presented here can easily be extended to
directed and undirected networks, with or without self-loops.

2.2 Infinite Poisson mixture model for random graph

We consider a Chinese Restaurant Process (CRP) as a non parametric prior
for the PM model. CRP describes a sampling procedure to generate classes.
Thus, starting with a single class with only one observation, observations are
added as well as some classes until all observations in the data set are classified.
Under CRP, each class attracts new data points depending on its current size
(see [12] for instance). Thus, given the classes of the m first observations, a new



observation is either assigned to an existing class q with probability
nq

m−1+η0
or

to a new class with probability η0

m−1+η0
. The number of data points in class q is

denoted nq while η0 is an hyperparameter that has to be set in practice. This
sampling scheme has two main advantages. First, the distribution of the classes
is exchangeable, i.e. changing the order to which the observations are assigned to
classes does not change the probability of the corresponding partition. Second,
since there is a non-zero probability that a new data point creates a new class,
CRP is a prior distribution over partitions with various number K of classes.

CRP is related to Dirichlet processes [14] for which a constructive defini-
tion, namely the Stick-Breaking Prior (SBP), exists. Thus, for each class q, a
parameter βq is sampled from a beta distribution:

βq ∼ Beta(1; η0).

The proportion αq of the class if then set to βq if q = 1, and

αq = βq

q−1∏

l=1

(1− βl) , (3)

otherwise. Thus, the αq’s are exponentially decreasing, so only a limited number
of classes will be involved to model data [15]. In fact, the mean number of
classes involved is O(η0 log(N)). This result underlines the influence of the
scalar parameter η0 on the effective number of classes. A discussion about the
choice of η0 is given in the experiment section.

Finally, in order to obtain analytical expressions for the conditional distri-
butions of the Gibbs sampling procedure, we consider a conjugate prior for the
mean intensity λql. Since p(Xij |ZiqZjl = 1, λql) = P(Xij ;λql) is a Poisson
distribution, we rely on a Gamma prior:

p(λql) = Gamma(λql; a, b).

By construction, the Gamma distribution is informative. In order to limit its
influence on the posterior distribution, a common choice in the literature is to
set the hyperparameters a and b, controlling the scale and rate respectively, to
a = b = 0.1. With these choices of priors, the PM model becomes:

α|η0 ∼ SBP (η0) Zi|α ∼ Mult (1;α) ,

λql|a, b ∼ Gamm(a, b) Xij |Ziq, Zjl, λql ∼ P (λql) . (4)

We call the later model the Infinite Poisson Mixture model for graphs (IPM).

3 Inference

Given the adjacency matrixX of a network, the goal is to approximate the poste-
rior distribution Pr(Z, α, λ|X). For this purpose, inference can be performed us-
ing the Blocked Gibbs sampling algorithm described in [16]. The Stick-Breaking



prior is truncated at an arbitrary value T. This approximation allows the model
to be represented with a finite number of random variables. As mentioned in
[17], T does not need to be very large to get a good approximation. Actually, T
corresponds to a maximum number of classes expected a priori. In practice, T
can be set using an expert prior knowledge. During the Blocked Gibbs sampling,
some classes tend to get empty and after convergence of the Markov chain, the
number of non-empty classes is used as an approximation of K∗, the true num-
ber of classes in the data. Algorithm 1 presents the pseudo-code of the Blocked
Gibbs sampling algorithm.

Algorithm 1 Gibbs Sampling for the Infinite Poisson mixture model

Require: A value for T and an initial state for Z
1: repeat

2: For q ∈ {1, · · · , T}, αq = βq

∏

l<q
(1 − βl) and βT = 1,

where

βq ∼ Beta(γq1, γq2) and γq1 = 1 +
N
∑

i=1

Ziq and γq2 = η0 +
T
∑

j=q+1

N
∑

i=1

Zij .

3: For i ∈ {1, · · · , N}, sample Zi from Mult(1; τi),where for all q ∈ {1, · · · , T},

log(τiq) = log(αq) +
∑

l

∑

j 6=i

Zjl{Xij log(λql) − λql − log(Xij !)}.

4: For q, l ∈ {1, · · · , T}, sample λ such that:

λql |Z,α,X ∼







Gamm
(

∑

i6=j
XijZiqZjl + a,

∑

i6=j
ZiqZjl + b

)

if q < l

Gamm
(

∑

i<j
XijZiqZjl + a,

∑

i<j
ZiqZjl + b

)

if q = l

5: until Convergence of the Markov chain.

6: Delete each empty class, and actualize T.

We emphasize that our method does not require an initialization algorithm such
as kmeans, contrary to most other methods of inference for random graphs, as
variational inference for instance.

4 Experiments

4.1 Simulation data

In order to compare our results on model selection to those of [11] on simulated
data, we reproduced their example of undirected random graphs without self-
loops, with parameters such that the vector α of class proportions is unbalanced
and the class intensities satisfy: for all classes p and q, λpp = λ

′

and λpq = γλ
′

.
Thus, networks with K = 3 classes were generated with α = (57%, 29%, 14%)



and γ = 0.5. λ′ was set such that the mean connectivity equals 2. This induces
the following connectivity matrix:

Λ =




3 1.5 1.5
1.5 3 1.5
1.5 1.5 3


 .

With those parameters, we simulated 100 networks for each value of N in (50,
100, 500, 1000). Then, we applied our Gibbs inference procedure for IPM to
infer the number K∗ of classes. For this purpose, we set the maximum number
of classes expected a priori to 20. In practice, we tested various values of η0 but
we did not observe any effect on the results presented in the following.

We compared our result in terms of model selection to those of [11]. As
mentioned previously, [11] estimate the number of classes using the ICL criterion.
Results are shown in table 1.

Network size Model K̂n = 3 K̂n = 2 K̂n = 4

N = 50 IPM 0.59 0.41 0.00
PM 0.17 0.82 0.01

N = 100 IPM 0.96 0.04 0.00
PM 0.90 0.07 0.03

N = 500 IPM 1.00 0.00 0.00
PM 1.00 0.00 0.00

N = 1000 IPM 1.00 0.00 0.00
PM 1.00 0.00 0.00

Table 1: Rate at which K is selected for various sizes of networks, with the
Infinite Poisson mixture model (IPM) and with the Poisson mixture (PM) model.

Our approach clearly outperforms the results of PM in the case of small
networks of size 50 and 100. It gives comparable results for larger networks.

5 Conclusion

In this paper, we proposed a bayesian nonparametric inference of discrete valued
random networks. Our methodology is based on Stick-Breaking prior, and uses
a Blocked Gibbs sampling algorithm. This method allows to automatically infer
the number of classes during the estimation process. The method gives promising
results on simulated data, since they are comparable to a competing inference
method based on variational inference. Further work should be conducted to
assess the quality of parameter estimates as well as clustering, and applied to
real data.
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