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We present a new primal-dual splitting algorithm for structured monotone inclusions in Hilbert spaces and analyze its asymptotic behavior. A novelty of our framework, which is motivated by image recovery applications, is to consider inclusions that combine a variety of monotonicitypreserving operations such as sums, linear compositions, parallel sums, and a new notion of parallel composition. The special case of minimization problems is studied in detail, and applications to signal recovery are discussed. Numerical simulations are provided to illustrate the implementation of the algorithm.

Introduction

Let A and B be set-valued monotone operators acting on a real Hilbert space H. The first operator splitting algorithms were developed in the late 1970s to solve inclusion problems of the form find x ∈ H such that 0 ∈ Ax + Bx,

(1.1) by using separate applications of the operators A and B at each iteration; see [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF][START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF] and the references therein. Because of increasingly complex problem formulations, more sophisticated splitting algorithm have recently arisen. Thus, the splitting method proposed in [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF] can solve problems of the type

find x ∈ H such that 0 ∈ Ax + r k=1 L * k • B k • L k x, (1.2) 
where each monotone operator B k acts on a real Hilbert space G k and each L k is a bounded linear operator from H to G k . This model was further refined in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF] by considering inclusions of the form

find x ∈ H such that 0 ∈ Ax + r k=1 L * k • (B k D k ) • L k x + Cx, (1.3) 
where D k is a monotone operator acting on G k such that D -1 k is Lipschitzian,

B k D k = B -1 k + D -1 k -1 (1.4)
is the parallel sum of B k and D k , and C : H → H is a Lipschitzian monotone operator. More recent developments concerning splitting methods for models featuring parallel sums can be found in [START_REF] Bot | Solving systems of monotone inclusions via primal-dual splitting techniques[END_REF][START_REF] Bot | Convex risk minimization via proximal splitting methods[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]. In the present paper, motivated by variational problems arising in image recovery, we consider a new type of inclusions that involve both parallel sum and "parallel composition" operations in the sense we introduce below.

Definition 1. [START_REF] Andrews | Digital Image Restoration[END_REF] Let H and G be real Hilbert spaces, let A : H → 2 H , and let L ∈ B (H, G). Then the parallel composition of A by L is

L ⊲ A = L • A -1 • L * ) -1 .
(1.5)

The primal-dual inclusion problem under consideration will be the following (our notation is standard, see Section 2.1 for details). Problem 1.2 Let H be a real Hilbert space, let r be a strictly positive integer, let z ∈ H, let A : H → 2 H be maximally monotone, and let C : H → H be monotone and µ-Lipschitzian for some µ ∈ [0, +∞[. For every integer k ∈ {1, . . . , r}, let G k and K k be real Hilbert spaces, let B k : G k → 2 G k and D k : K k → 2 K k be maximally monotone, and let L k ∈ B (H, G k ) and M k ∈ B (H, K k ). It is assumed that

β = µ + r k=1 L k 2 + max 1 k r L k 2 + M k 2 > 0 (1.6)
and that the inclusion

find x ∈ H such that z ∈ Ax + r k=1 (L * k • B k • L k ) (M * k • D k • M k ) x + Cx (1.7)
possesses at least one solution. Solve (1.7) together with the dual problem find v 1 ∈ G 1 , . . . , v r ∈ G r such that (∀k ∈ {1, . . . , r})

0 ∈ -L k (A + C) -1 z - r l=1 L * l v l + B -1 k v k + L k M * k ⊲ D -1 k (L * k v k ) . (1.8)
The paper is organized as follows. In Section 2 we define our notation and provide preliminary results. In particular, we establish some basic properties of the parallel composition operation introduced in Definition 1.1 and discuss an algorithm recently proposed in [START_REF] Combettes | Systems of structured monotone inclusions: duality, algorithms, and applications[END_REF] that will serve as a basis for our splitting method. In Section 3, our algorithm is presented and weak and strong convergence results are established. Section 4 is devoted to the application of this algorithm to convex minimization problems. Finally, in Section 5, we propose applications of the results of Section 4 to a concrete problem in image recovery, along with numerical results.

Notation and preliminary results

Notation and definitions

The following notation will be used throughout. H, G, and K are real Hilbert spaces. We denote the scalar product of a Hilbert space by • | • and the associated norm by • . The symbols ⇀ and → denote, respectively, weak and strong convergence. B (H, G) is the space of bounded linear operators from H to G. The Hilbert direct sum of H and G is denoted by H ⊕ G. Given two sequence (x n ) n∈N and (y n ) n∈N in H, it will be convenient to use the notation

(∀n ∈ N) x n ≈ y n ⇔ n∈N x n -y n < +∞ (2.1)
to model the tolerance to errors in the implementation of the algorithms.

The power set of H is denoted by 2 H . Let A : H → 2 H be a set-valued operator. We denote by ran

A = u ∈ H (∃ x ∈ H) u ∈ Ax the range of A, by dom A = x ∈ H Ax = ∅ the domain of A, by gra A = (x, u) ∈ H × H u ∈ Ax
the graph of A, and by A -1 the inverse of A, i.e., the set-valued operator with graph

(u, x) ∈ H × H u ∈ Ax . The resolvent of A is J A = (Id +A) -1 . Moreover, A is monotone if (∀(x, y) ∈ H × H)(∀(u, v) ∈ Ax × Ay) x -y | u -v 0, (2.2) 
and maximally monotone if there exists no monotone operator B : H → 2 H such that gra A ⊂ gra B = gra A. In this case, J A is a single-valued, nonexpansive operator defined everywhere in H. We say that A is uniformly monotone at x ∈ dom A if there exists an increasing function φ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀u ∈ Ax)(∀(y, v) ∈ gra A) x -y | u -v φ( x -y ). (2.3) 
We denote by Γ 0 (H) the class of lower semicontinuous convex functions f :

H → ]-∞, +∞] such that dom f = x ∈ H f (x) < +∞ = ∅. Let f ∈ Γ 0 (H). The conjugate of f is the function f * ∈ Γ 0 (H) defined by f * : u → sup x∈H ( x | u -f (x)).
For every x ∈ H, f + x -• 2 /2 possesses a unique minimizer, which is denoted by prox f x. The operator prox f can also be defined as a resolvent, namely

prox f = (Id +∂f ) -1 = J ∂f , (2.4) 
where ∂f :

H → 2 H : x → u ∈ H (∀y ∈ H) y -x | u + f (x) f (y)
is the subdifferential of f , which is maximally monotone. We say that f uniformly convex at x ∈ dom f if there exists an increasing function φ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀y ∈ dom f )(∀α ∈ ]0, 1[) f (αx + (1 -α)y) + α(1 -α)φ( x -y ) αf (x) + (1 -α)f (y). (2.5)
The infimal convolution of two functions f 1 and

f 2 from H to ]-∞, +∞] is f 1 f 2 : H → [-∞, +∞] : x → inf y∈H f 1 (x -y) + f 2 (y) , (2.6) 
and the infimal postcomposition of

f : H → [-∞, +∞] by L : H → G is L ⊲ f : G → [-∞, +∞] : y → inf f L -1 {y} = inf x∈H Lx=y f (x). (2.7)
Let C be a convex subset of H. The indicator function of C is denoted by ι C , and the strong relative interior of C, i.e., the set of points x ∈ C such that the cone generated by -x + C is a closed vector subspace of H, by sri C.

For a detailed account of the above concepts, see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF].

Parallel composition

In this section we explore some basic properties of the parallel composition operation introduced in Definition 1.1 which are of interest in their own right. First, we justify the terminology via the following connection with the parallel sum.

Lemma 2.1 Let

A : H → 2 H , let B : H → 2 H , and let L : H ⊕ H → H : (x, y) → x + y. Then L ⊲ (A × B) = A B.
Proof. Since L * : H → H ⊕ H : x → (x, x), the announced identity is an immediate consequence of (1.4) and (1.5).

Lemma 2.2 Let

A : H → 2 H , let B : G → 2 G
, and let L ∈ B (H, G). Then the following hold.

(i) ((L ⊲ A) B) -1 = L • A -1 • L * + B -1 .
(ii) Suppose that A and B are monotone. Then (L ⊲ A) B is monotone.

(iii) Suppose that A and B are maximally monotone and that the cone generated by L * (ran B)ran A is a closed vector subspace. Then (L ⊲ A) B is maximally monotone.

(iv) Suppose that A is maximally monotone and that the cone generated by ran L * + ran A is a closed vector subspace. Then L ⊲ A is maximally monotone.

Proof. (i): This follows easily from (1.4) and (1.5).

(ii): Section 24] and so is its inverse which, in view of (i), is (L ⊲ A) B.

By (i), ((L ⊲ A) B) -1 = L • A -1 • L * + B -1 . Since A -
* (ran B) -ran A = L * (dom B -1 ) -dom A -1 . Hence, L • A -1 • L * + B -1 is maximally mono- tone [3,
(iv): Set B = {0} -1 in (iii).

Lemma 2.3 Let

A : H → 2 H , let B : H → 2 H , and let L ∈ B (H, G). Then L ⊲ (A B) = (L ⊲ A) (L ⊲ B).
Proof. It follows from (1.4) and (1.5) that

L ⊲ (A B) = L • (A B) -1 • L * -1 = L • (A -1 + B -1 ) • L * -1 = L • A -1 • L * + L • B -1 • L * -1 = (L ⊲ A) -1 + (L ⊲ B) -1 -1 = (L ⊲ A) (L ⊲ B), (2.8)
which proves the announced identity.

Lemma 2.4 Let

A : H → 2 H , let L ∈ B (H, G), and let M ∈ B (G, K). Then M ⊲ (L ⊲ A) = (M • L) ⊲ A. Proof. Indeed, M ⊲ (L ⊲ A) = (M • (L ⊲ A) -1 • M * ) -1 = (M • L • A -1 • L * • M * ) -1 = (M • L) ⊲ A.
Finally, the next lemma draws connections with the infimal convolution and postcomposition operations of (2.6) and (2.7). Lemma 2.5 Let f ∈ Γ 0 (H), let g ∈ Γ 0 (G), and let L ∈ B (H, G) be such that 0 ∈ sri (L * (dom g * )dom f * ). Then the following hold.

(i) (L ⊲ f ) g ∈ Γ 0 (G). (ii) ∂ (L ⊲ f ) g = (L ⊲ ∂f ) ∂g.
Proof. (i): Since 0 ∈ L * (dom g * )dom f * and, by the Fenchel-Moreau theorem [2, Theorem 13.32], f * ∈ Γ 0 (H) and g * ∈ Γ 0 (G), we have [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 15.27(i)], the assumptions also imply that (f * • L * + g * ) * = (L ⊲ f ) g.

f * • L * + g * ∈ Γ 0 (G). Hence (f * • L * + g * ) * ∈ Γ 0 (G). However, in view of
(ii): Let y and v be in G. Then (i), [2, Corollary 16.24, Proposition 13.21(i)&(iv), and Theorem 16.37(i)] enable us to write

v ∈ ∂ (L ⊲ f ) g (y) ⇔ y ∈ ∂ (L ⊲ f ) g -1 (v) ⇔ y ∈ ∂ (L ⊲ f ) g * (v) ⇔ y ∈ ∂(f * • L * + g * )(v) ⇔ y ∈ (L • (∂f * ) • L * + ∂g * )(v) ⇔ y ∈ L • (∂f ) -1 • L * + (∂g) -1 (v) ⇔ v ∈ (L ⊲ ∂f ) ∂g y, (2.9)
which establishes the announced identity.

Corollary 2.6 Let f ∈ Γ 0 (H) and let L ∈ B (H, G) be such that 0 ∈ sri (ran L *dom f * ). Then the following hold.

(i) L ⊲ f ∈ Γ 0 (G). (ii) ∂(L ⊲ f ) = L ⊲ ∂f .
Proof. Set g = ι {0} in Lemma 2.5.

An inclusion problem

Our main result in Section 3 will hinge on rewriting Problem 1.2 as an instance of the following formulation.

Problem 2.7 Let m and K be strictly positive integers, let (H i ) 1 i m and (G k ) 1 k K be real Hilbert spaces, and let (µ i ) 1 i m ∈ [0, +∞[ m . For every i ∈ {1, . . . , m} and k ∈ {1, . . . , K}, let C i : H i → H i be monotone and µ i -Lipschitzian, let A i :

H i → 2 H i and B k : G k → 2 G k be maximally monotone, let z i ∈ H i , and let L ki ∈ B (H i , G k ). It is assumed that β = √ λ + max 1 i m µ i > 0, where λ ∈ sup m i=1 x i 2 1 K k=1 m i=1 L ki x i 2 , +∞ , (2.10) 
and that the system of coupled inclusions

find x 1 ∈ H 1 , . . . , x m ∈ H m such that                z 1 ∈ A 1 x 1 + K k=1 L * k1 B k m i=1 L ki x i + C 1 x 1 . . . z m ∈ A m x m + K k=1 L * km B k m i=1 L ki x i + C m x m (2.11)
possesses at least one solution. Solve (2.11) together with the dual problem

find v 1 ∈ G 1 , . . . , v K ∈ G K such that                0 ∈ - m i=1 L 1i A i + C i -1 z i - K k=1 L * ki v k + B -1 1 v 1 . . . 0 ∈ - m i=1 L Ki A i + C i -1 z i - K k=1 L * ki v k + B -1 K v K .
(2.12)

The following result is a special case of [START_REF] Combettes | Systems of structured monotone inclusions: duality, algorithms, and applications[END_REF]Theorem 2.4(iii)]. We use the notation (2.1) to model the possibility of inexactly evaluating the operators involved.

Theorem 2.8 Consider the setting of

Problem 2.7. Let x 1,0 ∈ H 1 , . . . , x m,0 ∈ H m , v 1,0 ∈ G 1 , . . . , v K,0 ∈ G K , let ε ∈ ]0, 1/(β + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/β], and set For n = 0, 1, . . .                        For i = 1, . . . , m s 1,i,n ≈ x i,n -γ n C i x i,n + K k=1 L * ki v k,n p 1,i,n ≈ J γnA i (s 1,i,n + γ n z i ) For k = 1, . . . , K         s 2,k,n ≈ v k,n + γ n m i=1 L ki x i,n p 2,k,n ≈ s 2,k,n -γ n J γ -1 n B k (γ -1 n s 2,k,n ) q 2,k,n ≈ p 2,k,n + γ n m i=1 L ki p 1,i,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n For i = 1, . . . , m q 1,i,n ≈ p 1,i,n -γ n C i p 1,i,n + K k=1 L * ki p 2,k,n x i,n+1 = x i,n -s 1,i,n + q 1,i,n . (2.13)
Then there exist a solution (x 1 , . . . , x m ) to (2.11) and a solution (v 1 , . . . , v K ) to (2.12) such that the following hold.

(i) (∀i ∈ {1, . . . , m}) z i -K k=1 L * ki v k ∈ A i x i + C i x i . (ii) (∀k ∈ {1, . . . , K}) m i=1 L ki x i ∈ B -1 k v k . (iii) (∀i ∈ {1, . . . , m}) x i,n ⇀ x i . (iv) (∀k ∈ {1, . . . , K}) v k,n ⇀ v k . (v) Suppose that A 1 or C 1 is uniformly monotone at x 1 . Then x 1,n → x 1 .
(vi) Suppose that, for some k ∈ {1, . . . , K}, B -1

k is uniformly monotone at v k . Then v k,n → v k .

Main algorithm

We start with the following facts. 

B k : G k → 2 G k and D k : K k → 2 K k , and let L k ∈ B (H, G k ) and M k ∈ B (H, K k ). Set H = r k=1 H, G = r k=1 G k , K = r k=1 K k , (3.1 
)

and      A : H → 2 H : (x, y 1 , . . . , y r ) → (Ax + Cx -z) × {0} × • • • × {0} B : G ⊕ K → 2 G⊕K : (s 1 , . . . , s r , t 1 , . . . , t r ) → B 1 s 1 × • • • × B r s r × D 1 t 1 × • • • × D r t r L : H → G ⊕ K : (x, y 1 , . . . , y r ) → (L 1 x -L 1 y 1 , . . . , L r x -L r y r , M 1 y 1 , . . . , M r y r ). (3.2) 
Furthermore, suppose that

∃ x = (x, y 1 , . . . , y r ) ∈ H 0 ∈ Ax + L * B(Lx) . (3.3)
Then the following hold for some (v 1 , . . . , v r ) ∈ G and (w 1 , . . . , w r ) ∈ K.

(i) z -r k=1 L * k v k ∈ Ax + Cx. (ii) (∀k ∈ {1, . . . , r}) L * k v k = M * k w k , L k x -L k y k ∈ B -1 k v k , and M k y k ∈ D -1 k w k . (iii) x solves (1.7). (iv) (v 1 , . . . , v r ) solves (1.8). Proof. (i) and (ii): It follows from (3.3) that there exists v = (v 1 , . . . , v r , w 1 , . . . , w r ) ∈ G ⊕ K such that -L * v ∈ Ax and v ∈ B(Lx), i.e., -L * v ∈ Ax and Lx ∈ B -1 v. (3.4) Since L * : G ⊕ K → H : (v 1 , . . . , v r , w 1 , . . . , w r ) → r k=1 L * k v k , M * 1 w 1 -L * 1 v 1 , . . . , M * r w r -L * r v r , (3.5) 
it follows from (3.2) that (3.4) can be rewritten as

z - r k=1 L * k v k ∈ Ax + Cx and (∀k ∈ {1, . . . , r})      L * k v k = M * k w k L k x -L k y k ∈ B -1 k v k M k y k ∈ D -1 k w k . (3.6) 
(iii): For every k ∈ {1, . . . , r},

(ii) ⇒      L * k v k = M * k w k v k ∈ B k (L k x -L k y k ) w k ∈ D k (M k y k ) (3.7) ⇒      L * k v k = M * k w k L * k v k ∈ L * k B k (L k x -L k y k ) M * k w k ∈ M * k D k (M k y k ) ⇔      L * k v k = M * k w k x -y k ∈ (L * k • B k • L k ) -1 (L * k v k ) y k ∈ (M * k • D k • M k ) -1 (M * k w k ) (3.8) ⇒ x ∈ (L * k • B k • L k ) -1 (L * k v k ) + (M * k • D k • M k ) -1 (L * k v k ) ⇔ L * k v k ∈ (L * k • B k • L k ) (M * k • D k • M k ) (x). (3.9) 
Hence,

r k=1 L * k v k ∈ r k=1 (L * k • B k • L k ) (M * k • D k • M k ) (x). (3.10) 
Adding this inclusion to that of (i) shows that x solves (1.7).

(iv): It follows from (i) that

(∀k ∈ {1, . . . , r}) -L k x ∈ -L k (A + C) -1 z - r l=1 L * l v l . (3.11) 
On the other hand, (ii) yields

(∀k ∈ {1, . . . , r}) L k x -L k y k ∈ B -1 k v k , (3.12) 
while (3.8) yields

(∀k ∈ {1, . . . , r}) L k y k ∈ L k (M * k • D k • M k ) -1 (M * k w k ) = L k (M * k • D k • M k ) -1 (L * k v k ) = L k (M * k ⊲ D -1 k )(L * k v k ) . (3.13)
Upon adding (3.11), (3.12), and (3.13), we obtain

(∀k ∈ {1, . . . , r}) 0 ∈ -L k (A + C) -1 z - r l=1 L * l v l + B -1 k v k + L k (M * k ⊲ D -1 k )(L * k v k ) , (3.14) 
which proves that (v 1 , . . . , v r ) solves (1.8).

We are now in a position to present our main result.

Theorem 3.2 Consider the setting of Problem 1.2. Let x 0 ∈ H, y 1,0 ∈ H, . . . , y r,0 ∈ H, v 1,0 ∈ G 1 , . . . , v r,0 ∈ G r , w 1,0 ∈ K 1 , . . . , w r,0 ∈ K r , let ε ∈ ]0, 1/(β + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/β],
and set

For n = 0, 1, . . .

                                          s 1,1,n ≈ x n -γ n (Cx n + r k=1 L * k v k,n ) p 1,1,n ≈ J γnA (s 1,1,n + γ n z) For k = 1, . . . , r                          p 1,k+1,n ≈ y k,n + γ n (L * k v k,n -M * k w k,n ) s 2,k,n ≈ v k,n + γ n L k (x n -y k,n ) p 2,k,n ≈ s 2,k,n -γ n J γ -1 n B k (γ -1 n s 2,k,n ) q 2,k,n ≈ p 2,k,n + γ n L k (p 1,1,n -p 1,k+1,n ) v k,n+1 = v k,n -s 2,k,n + q 2,k,n s 2,k+r,n ≈ w k,n + γ n M k y k,n p 2,k+r,n ≈ s 2,k+r,n -γ n J γ -1 n D k (γ -1 n s 2,k+r,n ) q 1,k+1,n ≈ p 1,k+1,n + γ n (L * k p 2,k,n -M * k p 2,k+r,n ) q 2,k+r,n ≈ p 2,k+r,n + γ n M k p 1,k+1,n w k,n+1 = w k,n -s 2,k+r,n + q 2,k+r,n q 1,1,n ≈ p 1,1,n -γ n (Cp 1,1,n + r k=1 L * k p 2,k,n ) x n+1 = x n -s 1,1,n + q 1,1,n For k = 1, . . . , r y k,n+1 = y k,n -p 1,k+1,n + q 1,k+1,n . (3.15) 
Then the following hold for some solution x to (1.7) and some solution (v 1 , . . . , v r ) to (1.8).

(i) x n ⇀ x and (∀k ∈ {1, . . . , r}) v k,n ⇀ v k .

(ii) Suppose that A or C is uniformly monotone at x. Then x n → x.

(iii) Suppose that, for some k ∈ {1, . . . , r}, B -1

k is uniformly monotone at v k . Then v k,n → v k .
Proof. We introduce the auxiliary problem

find x ∈ H, y 1 ∈ H, . . . , y r ∈ H such that            z ∈ Ax + r k=1 L * k B k (L k x -L k y k ) + Cx 0 ∈ -L * 1 B 1 (L 1 x -L 1 y 1 ) + M * 1 D 1 (M 1 y 1 ) . . . 0 ∈ -L * r B r (L r x -L r y r ) + M * r D r (M r y r ) . (3.16) Let x ∈ H. Then x solves (1.7) ⇔ z ∈ Ax + r k=1 (L * k • B k • L k ) (M * k • D k • M k ) x + Cx ⇔ ∃ (u k ) 1 k r ∈ H r            z ∈ Ax + r k=1 u k + Cx u 1 ∈ (L * 1 • B 1 • L 1 ) (M * 1 • D 1 • M 1 ) x . . . u r ∈ (L * r • B r • L r ) (M * r • D r • M r ) x ⇔ ∃ (u k ) 1 k r ∈ H r            z ∈ Ax + r k=1 u k + Cx x ∈ (L * 1 • B 1 • L 1 ) -1 u 1 + (M * 1 • D 1 • M 1 ) -1 u 1 . . . x ∈ (L * r • B r • L r ) -1 u r + (M * r • D r • M r ) -1 u r ⇔ ∃ (u k ) 1 k r ∈ H r ∃ (y k ) 1 k r ∈ H r                      z ∈ Ax + r k=1 u k + Cx x -y 1 ∈ (L * 1 • B 1 • L 1 ) -1 u 1 y 1 ∈ (M * 1 • D 1 • M 1 ) -1 u 1 . . . x -y r ∈ (L * r • B r • L r ) -1 u r y r ∈ (M * r • D r • M r ) -1 u r ⇔ ∃ (u k ) 1 k r ∈ H r ∃ (y k ) 1 k r ∈ H r                      z ∈ Ax + r k=1 u k + Cx u 1 ∈ (L * 1 • B 1 • L 1 )(x -y 1 ) u 1 ∈ (M * 1 • D 1 • M 1 )y 1 . . . u r ∈ (L * r • B r • L r )(x -y r ) u r ∈ (M * r • D r • M r )y r ⇒ ∃ (y k ) 1 k r ∈ H r            z ∈ Ax + r k=1 L * k B k (L k x -L k y k ) + Cx 0 ∈ -L * 1 B 1 (L 1 x -L 1 y 1 ) + M * 1 D 1 (M 1 y 1 ) . . . 0 ∈ -L * r B r (L r x -L r y r ) + M * r D r (M r y r ) .
(3.17 Next, we set

                         m = r + 1 K = 2r H 1 = H A 1 = A C 1 = C µ 1 = µ z 1 = z and (∀k ∈ {1, . . . , r})                      H k+1 = H A k+1 = 0 B k+r = D k C k+1 = 0 µ k+1 = 0 z k+1 = 0. (3.19) 
We also define

(∀k ∈ {1, . . . , r}) G k+r = K k and (∀i ∈ {1, . . . , m}) L ki =            L k , if 1 k r and i = 1; -L k , if 1 k r and i = k + 1; M k-r , if r + 1 k 2r and i = k -r + 1; 0, otherwise. (3.20) 
We observe that in this setting (3.16) is a special case of (2.11).

(3.21)

Moreover, if we set λ = r k=1 L k 2 + max 1 k r ( L k 2 + M k 2 )
, we deduce from the Cauchy-Schwarz inequality in R 2 that, for every

(x i ) 1 i m = (x, y 1 , . . . , y r ) ∈ m i=1 H, K k=1 m i=1 L ki x i 2 = (L 1 x -L 1 y 1 , . . . , L r x -L r y r , M 1 y 1 , . . . , M r y r ) 2
(L 1 x, . . . , L r x) + (L 1 y 1 , . . . , L r y r , M 1 y 1 , . . . , M r y r ) Altogether, Theorem 2.8(i)-(iv) asserts that there exist a solution x = (x 1 , . . . , x m ) = (x, y 1 , . . . , y r ) to (2.11) and a solution (v 1 , . . . , v K ) = (v 1 , . . . , v r , w 1 , . . . , w r ) to (2.12) which satisfy

2 =   r k=1 L k x 2 + r k=1 L k y k 2 + M k y k 2   2   r k=1 L k 2 x + r k=1 ( L k 2 + M k 2 ) y k 2   2   r k=1 L k 2 x + max 1 k r L k 2 + M k 2 (y 1 , . . . , y r )   2 r k=1 L k 2 + max 1 k r L k 2 + M k 2 x 2 + (y 1 , . . . , y r ) 2 = λ m i=1 x i 2 . ( 3 
x n ⇀ x and (∀k ∈ {1, . . . , r}) v k,n ⇀ v k w k,n ⇀ w k , (3.26) 
together with the inclusions 

z - r k=1 L * k v k ∈ Ax + Cx and (∀k ∈ {1, . . . , r})      L * k v k = M * k w k L k x -L k y k ∈ B -1 k v k M k y k ∈ D -1 k w k . ( 3 

Remark 3.3

In the spirit of the splitting method of [START_REF] Combettes | Systems of structured monotone inclusions: duality, algorithms, and applications[END_REF][START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], the algorithm described in (3.15) achieves full decomposition in that every operator is used individually at each iteration.

Application to convex minimization

In this section we consider a structured minimization problem of the following format.

Problem 4.1 Let H be a real Hilbert space, let r be a strictly positive integer, let z ∈ H, let f ∈ Γ 0 (H), and let ℓ : H → R be a differentiable convex function such that ∇ℓ is µ-Lipschitzian for some µ ∈ [0, +∞[. For every integer k ∈ {1, . . . , r}, let G k and K k be real Hilbert spaces, let

g k ∈ Γ 0 (G k ) and h k ∈ Γ 0 (K k ), and let L k ∈ B (H, G k ) and M k ∈ B (H, K k ).
It is assumed that

β = µ + r k=1 L k 2 + max 1 k r L k 2 + M k 2 > 0, (4.1) 
that

(∀k ∈ {1, . . . , r}) 0 ∈ sri dom (g k • L k ) * -M * k (dom h * k ) , (4.2) 
that

(∀k ∈ {1, . . . , r}) 0 ∈ sri ran M k -dom h k , (4.3) 
and that

z ∈ ran ∂f + r k=1 (L * k • (∂g k ) • L k ) (M * k • (∂h k ) • M k ) + ∇ℓ . (4.4)
Solve the primal problem

minimize x∈H f (x) + r k=1 (g k • L k ) (h k • M k ) (x) + ℓ(x) -x | z , (4.5) 
together with the dual problem minimize 

v 1 ∈G 1 ,..., vr∈Gr (f * ℓ * ) z - r k=1 L * k v k + r k=1 g * k (v k ) + (M * k ⊲ h * k )(L * k v k ) . (4.6) 
E = L 1 (x -y 1 ) -s 1 , . . . , L r (x -y r ) -s r , M 1 y 1 -t 1 , . . . , M r y r -t r x ∈ dom f, y 1 ∈ H, . . . , y r ∈ H, s 1 ∈ dom g 1 , . . . , s r ∈ dom g r , t 1 ∈ dom h 1 , . . . , t r ∈ dom h r = ∅ (4.7)
and that (4.5) has a solution. Then (4.4) is satisfied in each of the following cases.

(i) 0 ∈ sri E.
(ii) E is a closed vector subspace.

(iii) f is real-valued and, for every k ∈ {1, . . . , r}, the operators L k and M k are surjective.

(iv) For every k ∈ {1, . . . , r}, g k and h k are real-valued.

(v) H, (G k ) 1 k r , and (K k ) 1 k r are finite-dimensional, and

(∃ x ∈ ri dom f )(∀k ∈ {1, . . . , K})(∃ y k ∈ H) L k (x -y k ) ∈ ri dom g k M k y k ∈ ri dom h k . (4.8)
Proof. Let us define H, G, and K as in (3.1), L as in (3.2), and let us set

f : H → ]-∞, +∞] : x = (x, y 1 , . . . , y r ) → f (x) + ℓ(x) -x | z g : G ⊕ K → ]-∞, +∞] : s = (s 1 , . . . , s r , t 1 , . . . , t r ) → r k=1 g k (s k ) + h k (t k ) . (4.9) 
Then we can rewrite (4.7) as

E = L(dom f ) -dom g. (4.10) (i): Since E = ∅, the functions (g k • L k ) 1 k r and (h k • M k ) 1 k
r are proper and therefore in Γ 0 (H). In turn, the Fenchel-Moreau theorem [2, Theorem 13.32] asserts that the functions

((g k • L k ) * ) 1 k r and ((h k • M k ) * ) 1 k r are in Γ 0 (H).
On the other hand, since (4.3) and [2, Corollary 15.28(i)] imply that 

(∀k ∈ {1, . . . , r}) (h k • M k ) * = M * k ⊲ h * k , ( 4 
(∀k ∈ {1, . . . , r}) 0 ∈ sri dom (g k • L k ) * -M * k (dom h * k ) = sri dom (g k • L k ) * -dom (M * k ⊲ h * k ) = sri dom (g k • L k ) * -dom (h k • M k ) * . (4.12)
Hence, we derive from [2, Proposition 15.7] that 

(∀k ∈ {1, . . . , r})(∀x ∈ H)(∃ y k ∈ H) (g k • L k ) (h k • M k ) (x) = g k (L k x -L k y k ) + h k (M k y k ), (4.
f (x) + ℓ(x) -x | z + r k=1 g k (L k x -L k y k ) + h k (M k y k ) (4.14)
or, equivalently,

minimize x∈H f (x) + g(Lx). (4.15)
It follows from (4.10) that 0 ∈ sri L(dom f )dom g and therefore from [2, Theorem 16.37(i)], that 

∂(f + g • L) = ∂f + L * • (∂g) • L. ( 4 
⇔ (∃ x ∈ ri dom f ) Lx ∈ ri dom g ⇔ 0 ∈ L(ri dom f ) -ri dom g ⇔ 0 ∈ ri L(dom f ) -dom g ⇔ 0 ∈ ri E ⇔ 0 ∈ sri E, (4.19) 
which completes the proof.

Next, we propose our algorithm for solving Problem 4.1.

Theorem 4.3 Consider the setting of Problem

4.1. Let x 0 ∈ H, y 1,0 ∈ H, . . . , y r,0 ∈ H, v 1,0 ∈ G 1 , . . . , v r,0 ∈ G r , w 1,0 ∈ K 1 , . . . , w r,0 ∈ K r , let ε ∈ ]0, 1/(β + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/β],
and set

For n = 0, 1, . . .

                                          s 1,1,n ≈ x n -γ n (∇ℓ(x n ) + r k=1 L * k v k,n ) p 1,1,n ≈ prox γnf (s 1,1,n + γ n z) For k = 1, . . . , r                          p 1,k+1,n ≈ y k,n + γ n (L * k v k,n -M * k w k,n ) s 2,k,n ≈ v k,n + γ n L k (x n -y k,n ) p 2,k,n ≈ s 2,k,n -γ n prox γ -1 n g k (γ -1 n s 2,k,n ) q 2,k,n ≈ p 2,k,n + γ n L k (p 1,1,n -p 1,k+1,n ) v k,n+1 = v k,n -s 2,k,n + q 2,k,n s 2,k+r,n ≈ w k,n + γ n M k y k,n p 2,k+r,n ≈ s 2,k+r,n -γ n prox γ -1 n h k (γ -1 n s 2,k+r,n ) q 1,k+1,n ≈ p 1,k+1,n + γ n (L * k p 2,k,n -M * k p 2,k+r,n ) q 2,k+r,n ≈ p 2,k+r,n + γ n M k p 1,k+1,n w k,n+1 = w k,n -s 2,k+r,n + q 2,k+r,n q 1,1,n ≈ p 1,1,n -γ n (∇ℓ(p 1,1,n ) + r k=1 L * k p 2,k,n ) x n+1 = x n -s 1,1,n + q 1,1,n For k = 1, . . . , r y k,n+1 = y k,n -p 1,k+1,n + q 1,k+1,n . (4.20)
Then the following hold for some solution x to (4.5) and some solution (v 1 , . . . , v r ) to (4.6).

(i) x n ⇀ x and (∀k ∈ {1, . . . , r}) v k,n ⇀ v k .

(ii) Suppose that f or ℓ is uniformly convex at x. Then x n → x.

(iii) Suppose that, for some k ∈ {1, . . . , r},

g * k is uniformly convex at v k . Then v k,n → v k . Proof. Set A = ∂f, C = ∇ℓ, and (∀k ∈ {1, . . . , r}) B k = ∂g k D k = ∂h k . (4.21) 
We derive from [2, Proposition 17.10] that C is monotone. Furthermore, [2, Theorem 20.40 and Corollary 16.24] assert that the operators A, (B k ) 1 k r , and (D k ) 1 k r are maximally monotone with inverses respectively given by ∂f * , (∂g * k ) 1 k r , and (∂h * k ) 1 k r . Moreover, (4.4) implies that (1.7) has a solution. Now let x and v = (v k ) 1 k r be, respectively, the solutions to and (1.8) produced by Theorem 3.2. Since the uniform convexity of a function at a point implies the uniform monotonicity of its subdifferential at that point [25, Section 3.4] and since, in the setting of (4.21), (4.20) reduces to (3.15) thanks to (2.4), it is enough to show that x solves (4.5) and v solves (4.6). To this end, we first derive from (4.12) and [2, Propositions 16.5(ii) and [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF].27] that

(∀k ∈ {1, . . . , r}) L * k • (∂g k ) • L k M * k • (∂h k ) • M k ⊂ ∂(g k • L k ) ∂(h k • M k ) = ∂ (g k • L k ) (h k • M k ) . (4.22) 
Hence, it follows from (4.21) and Fermat's rule [2, Theorem 16.2] that

x solves (1.7) ⇒ z ∈ ∂f (x) + r k=1 (L * k • (∂g k ) • L k ) (M * k • (∂h k ) • M k ) x + ∇ℓ(x) ⇒ z ∈ ∂f (x) + r k=1 ∂ (g k • L k ) (h k • M k ) x + ∂ℓ(x) ⇒ 0 ∈ ∂ f + r k=1 (g k • L k ) (h k • M k ) + ℓ -• | z (x) ⇒ x solves (4.5). (4.23) 
On the other hand, (4.3) and Corollary 2.6(ii) yield

(∀k ∈ {1, . . . , r}) M * k ⊲ ∂h * k = ∂(M * k ⊲ h * k ), (4.24) 
while [2, Proposition 16.5(ii)] yields

(∀k ∈ {1, . . . , r}) ∂g * k + L k • ∂(M * k ⊲ h * k ) • L * k ⊂ ∂ g * k + (M * k ⊲ h * k ) • L * k . (4.25) 
Now define G as in (3.1) and

     ϕ : H → ]-∞, +∞] : u → (f * ℓ * )(z + u) ψ : G → ]-∞, +∞] : v → r k=1 g * k (v k ) + (M * k ⊲ h * k )(L * k v k ) M : G → H : v → -r k=1 L * k v k . (4.26) 
Then 

(∀v ∈ G) ϕ(M v) + ψ(v) = (f * ℓ * ) z - r k=1 L * k v k + r k=1 g * k (v k ) + (M * k ⊲ h * k )(L * k v k ) . (4.
v solves (1.8) ⇒ (∀k ∈ {1, . . . , r}) 0 ∈ -L k ∂(f + ℓ) * z - r l=1 L * l v l + ∂g * k (v k ) + L k M * k ⊲ ∂h * k (L * k v k ) ⇒ (∀k ∈ {1, . . . , r}) 0 ∈ -L k ∂(f * ℓ * ) z - l=1 L * l v l + ∂ g * k + (M * k ⊲ h * k ) • L * k (v k ) ⇒ 0 ∈ M * • (∂ϕ) • M (v) + ∂ψ(v) ⇒ 0 ∈ ∂ ϕ • M + ψ (v) ⇒ v solves (4.6), (4.28) 
which completes the proof.

Theorem 4.3 enables us to solve a new class of structured minimization problems featuring both infimal convolutions and postcompositions. The special cases of this model which arise in the area of image recovery [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF][START_REF] Setzer | Infimal convolution regularizations with discrete ℓ 1 -type functionals[END_REF] initially motivated our investigation. Such applications are considered in the next section.

Image restoration application

Image restoration

Proximal splitting methods were introduced in the field of image recovery in [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] for variational models of the form

minimize x∈H f (x) + ℓ(x), (5.1) 
where f and ℓ are as in Problem 4.1 (see [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] for recent developments in this application area). In this section we show a full fledged implementation of the algorithm in Theorem 4.3 in the Euclidean setting H = R N which goes much beyond (5.1). For this purpose, we consider the problem of image restoration from a blurred image [START_REF] Andrews | Digital Image Restoration[END_REF]. Imaging devices, such as cameras, microscopes, and telescopes, distort the light field due to both optical imperfections and diffraction; another source of blur is relative movement of the scene and the device during the exposure, as happens when taking a photo in low-light without a tripod or when a telescope observes the stars with imperfect motion compensation. The effect is that the recorded image is the convolution of the true scene with a function known as the point-spread function. The resulting convolution operator T is called the blur operator.

The original N -pixel (N = 512 2 ) image shown in Fig. 1(a) is degraded by a linear blurring operator T associated with a 21-pixel long point-spread function corresponding to motion blur, followed by addition of a noise component w. Images in their natural matrix form are converted to vectors x ∈ R N by stacking columns together. We write the coefficients of x as x = (ξ i ) 1 i N , but when we wish to make use of the 2-dimensional nature of the image (as a √ N × √ N image), we use the convention ξ i,j = ξ (j-1) √ N +i for every i and j in {1, . . . , √ N }, so that i and j refer to the row and column indices, respectively. The degraded image

y = T x + w (5.2)
is shown in Fig. 1(b). The noise level is chosen to give y a signal-to-noise ratio of 45 dB relative to T x. The variational formulation we propose to recover x is an instantiation of Problem 4.1 with r = 2, namely,

minimize x∈C (α • 1,2 • D (1) ) (β • 1,2 • D (2) ) (x) + γ W x 1 + 1 2 T x -y 2 2 (5.3) or, equivalently, minimize x∈H ι C f (x) + (α • 1,2 • D (1)
)

g 1 •L 1 (β • 1,2 • D (2) ) h 1 •M 1 (x) + γ W • 1 g 2 •L 2 (ι {0} • Id ) h 2 •M 2 (x) + 1 2 T • -y 2 2 ℓ (x). (5.4) 
In this model, α, β, and γ are strictly positive constants, and C is a constraint set modeling the known amplitude bounds on pixel values; here C = [0, 1] N . To promote the piecewise smoothness of x we use an inf-convolution term mixing first-and second-order total variation potentials, in a fashion initially advocated in [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF] and further explored in [START_REF] Setzer | Infimal convolution regularizations with discrete ℓ 1 -type functionals[END_REF]. First-order total variation is commonly used in image processing, but suffers from staircase effects (see, e.g., [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF]), which are reduced by using the inf-convolution model. The operators D (1) and D (2) are, respectively, first and second order discrete gradient operators that map R N to R N ×M for M = 2 and M = 3, respectively (see section 5.2 for details). The functions g 1 and h 1 are the usual mixed norms defined on R N ×M as

• 1,2 : x → N i=1 M j=1 ξ 2 i,j . (5.5)
which is the sum of the norm of the rows of x. The potential

x → W x 1 , (5.6) 
where W is the analysis operator of a weighted 9/7 biorthogonal wavelet frame [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF], promotes sparsity of wavelet coefficients of x. Since natural images are known to have approximately sparse wavelet representations, this term penalizes noise, which does not have a sparse wavelet representation. Such wavelet terms are standard in the literature, and are often used in conjunction with a first-order TV term [START_REF] Pustelnik | Parallel proximal algorithm for image restoration using hybrid regularization[END_REF]. Finally, data fidelity is promoted by the potential

ℓ : x → 1 2 T x -y 2 .
(5.7)

Remark 5.1 Here are some comments on the implementation of the algorithm from Theorem 4.3 in the setting of (5.4).

(i) The proximity operator of f = ι C is simply the projector onto a hypercube, which is straightforward.

(ii) By [2, Example 14.5], for every x ∈ H {0},

prox • x = 1 - 1 x x (5.8)
and prox • 0 = 0. Since x 1,2 is separable in the rows of x, prox • 1,2 x is computed by applying (5.8) to each row.

(iii) The gradient of ℓ is ∇ℓ : x → T ⊤ (T x -y), which is Lipschitz continuous with constant T 2 .

(iv) The proximity operator of • 1 is implemented by soft-thresholding of each component [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF].

(v) No special assumption is required on the structure of W (e.g., the frame need not be tight or, in particular, an orthonormal basis). Without assumptions on W , there is no known closed-form proximity operator of x → γ W x 1 , which is why it is important to treat • 1 and W separately. 

(∀x ∈ H) prox ϕ x = ρ -1 prox ρ 2 ϕ (ρx). (5.9) 
This gives the possibility of writing f (Lx) as f ( Lx) for L = ρ -1 L. Our implementation will exploit this flexibility in order to rescale all L k and M k operators to have unit operator norm. Numerical evidence suggests that this improves convergence profiles since all dual variables (v k ) 1 k r and (w k ) 1 k r are approximately of the same scale.

Total variation

Total variation can be defined for mathematical objects such as measures and functions [START_REF] Ziemer | Weakly Differentiable Functions[END_REF]. In a discrete setting, there are many possible definitions of total variation. We use the standard isotropic discretization,

tv(x) = √ N -1 i=1 √ N -1 j=1 (ξ i+1,j -ξ i,j ) 2 + (ξ i,j+1 -ξ i,j ) 2 , x = (ξ k ) 1 k N , ξ i,j = ξ (j-1) √ N +i , (5.10) 
originally advocated in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. There is no known closed form expression for the proximity operator of (5.10).

Infimal-convolution with a second-order total variation term was first suggested in [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF]. We use the particular second-order total variation term corresponding to "D 2,b " (with weights b = (1, 1 2 , 1)) from [START_REF] Setzer | Infimal convolution regularizations with discrete ℓ 1 -type functionals[END_REF]. We now show how to recover the relation tv(x) = D (1) x 1,2 . Define the following horizontal finite-difference operator

D ↔ : R N → R √ N × √ N : x → z = (ζ i,j ) 1 i,j √ N , ζ i,j = ξ i,j+1 -ξ i,j 1 j < √ N 0 j = √ N, (5.11) 
and define the vertical operator D by D : x → (D ↔ (x ⊤ )) ⊤ . Let vec(•) be the mapping that reorders a matrix by stacking the columns together, and define D (1) : x → (vec(D ↔ (x)), vec(D (x))).

Then by comparing (5.5) with (5.10), we observe that tv(x) = D (1) x 1,2 .

The second-order total variation potential makes use of an additional set of first-order difference operators that have different boundary conditions, namely

D ↔ : R N → R √ N × √ N : x → z = (ζ i,j ) 1 i,j √ N , ζ i,j =      ξ i,j -ξ i,j-1 1 < j < √ N ξ i,j j = 1 -ξ i,j-1 j = √ N , (5.12) 
and D : x → ( D ↔ (x ⊤ )) ⊤ . Then define

D (2) : x → vec( D ↔ (D ↔ x)), vec( D ↔ (D x)) + vec( D (D ↔ x)) √ 2 
, vec( D (D x)) .

(5.13)

The second-order total variation potential is defined as x → D (2) x 1,2 .

Constraint qualifications

To apply the results of Theorem 4.3, we need to check that the constraint qualifications (4.2), (4.3), and (4.4) hold. Starting with (4.2), for each k ∈ {1, 2} we have sri dom 

(g k • L k ) * -M * k (dom h * k ) = sri dom (L * k ⊲ g * k ) -M * k (dom h * k ) = sri L * k (dom g * k ) -M * k (dom h * k ) = L * k ri dom g * k ) -M * k (ri dom h * k , ( 5 

Numerical experiments

Experiments are made on a quad-core 1.60 GHz Intel i7 laptop, with the algorithms and analysis implemented using the free software package GNU Octave [START_REF]GNU Octave scientific package[END_REF]. The authors are grateful for the support of the Octave development community.

Note that in (4.20), the update for s 1,1,n and for p 1,k+1,n both involve L * k v k,n , hence it is possible to prevent redundant computation by storing L * k v k,n as a temporary variable. Similarly, the updates for q 1,1,n and q 1,k+1,n both involve L * k p 2,k,n , which can also be stored as a temporary variable for savings. With this approach, each L k and M k is applied exactly twice per iteration, and each L * k and M * k is also applied exactly twice. The restored image is displayed in Fig. 1(c). The algorithm uses all variables initialized to 0. The values of the parameters are as follows: α = β = γ = 10 -2 . Figures of merit relative to these experiments are provided in Table 1. Given a reference image x and an estimate x = (ξ i ) 1 i N , the peak signal-to-noise ratio (PSNR), a standard measure of image quality, is defined by PSNR x (x) = 10 log 10 N max 1 i N ξ 2 i N i=1 (ξ i -ξ i ) 2

(5.17) and reported in units of decibels (dB). The structural similarity index attempts to quantify human visual response to images; details can be found in [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF].

)

  Hence since, by assumption, (1.7) has at least one solution,(3.16) has at least one solution.(3.18)

  [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] which allows us to rewrite (4.5) as a minimization problem on H, namely minimize x∈H,y 1 ∈H,...,yr∈H

(Remark 5 . 2

 52 vi) We have used only one hard constraint set C, but it is clear that our framework can accommodate an arbitrary number of constraint sets, hence permitting one to inject easily a priori information in the restoration process. Each additional hard constraint of the type L k x ∈ C k can be handled by setting g k = ι C k , h k = ι {0} , and M k = Id . Remark 5.1 shows that the computation of proximity operators for each function involved in (5.4) is implementable. It is also possible to compute proximity operators for scaled versions of the above functions. Let ρ ∈ ]0, +∞[. Then given ϕ ∈ Γ 0 (H) and ϕ : x → ϕ(ρx),[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Corollary 23.24] implies that

. 14 )Figure 1 :

 141 Figure 1: Original, blurred, and restored images.

  We derive from[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Proposition 17.10] that C is monotone and from[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Theorem 20.40] that the operators A, (B k ) 1 k r , and (D k ) 1 k r are maximally monotone. Next, let us define A and B as in(3.2). Then it follows from (4.17) and[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Proposition 16.8] that (3.3) holds.

	.16) Since, by assumption, (4.5) has a solution, so does (4.15). By Fermat's rule [2, Theorem 16.2], this means that 0 ∈ ran ∂(f + g • L). Thus (4.16) yields tion 3.1(iii) asserts that (4.4) is satisfied. (ii)⇒(i): This follows from [2, Proposition 6.19(i)]. (iii)⇒(i) and (iv)⇒(i): In both cases E = G ⊕ K. (v)⇒(i): Since H, G, and K are finite-dimensional, (4.10) and [2, Corollary 6.15] imply that 0 ∈ ran ∂f + L In turn, Proposi-(4.8)

* • (∂g) • L . (4.17) Let us introduce the operators A = ∂f, C = ∇ℓ, and (∀k ∈ {1, . . . , r}) B k = ∂g k D k = ∂h k . (4.18)

Table 1 :

 1 Quantitative measurements of performanceMethodPeak signal-to-noise ratio Structural similarity index

	Blurred and noisy image 20.32 dB	0.545
	Restoration	25.42 dB	0.803
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