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Approximate Implicitization of Space Curves

Martin Aigner, Bert Jiittler and Adrien Poteaux

Abstract

The process of implicitization generates an implicit representation of a curve or surface
from a given parametric one. This process is potentially interesting for applications in Com-
puter Aided Design, where the robustness and efficiency of intersection algorithm can be
improved by simultaneously considering implicit and parametric representations. This pa-
per gives an brief survey of the existing techniques for approximate implicitization of hyper
surfaces. In addition it describes a framework for the approximate implicitization of space
curves.

Keywords: Approximate implicitization, space curves.

1 Introduction

There exist two main representations of curves and surfaces in Computer Aided Geometric De-
sign: the implicit and the parametric form. In both cases, the functions which describe the curve
or surface are almost always chosen as polynomial or rational functions or, more generally, as
polynomial or rational spline functions [15]. Consequently, one deals with segments and patches
of algebraic curves and surfaces.

Each of the two different representation is particularly well suited for certain applications.
Parametric representations are well suited to generate points, e.g., for displaying curves and sur-
faces, and to apply the results of the classical differential geometry of curves and surfaces, e.g.,
for shape interrogation. Implicit representations encompass a larger class of shapes and are more
powerful for certain geometric queries. Moreover, the class of algebraic curves and surfaces is
closed under certain geometric operations, such as offsetting, while the class of rational paramet-
ric curves and surfaces is not.

Consequently, it is often desirable to change from one representation to the other one. For
instance, the implicitization of a planar curve reduces the computation of the intersection of two
curves given in the parametric form to find the roots of a single polynomial [23].

The exact conversion procedures, implicitization and parameterization, have been studied in
classical algebraic geometry and in symbolic computation. Their practical application in Com-
puter Aided Design is rather limited, due to the feasibility reasons outlined below. As an alterna-
tive, approximate techniques have emerged recently. These alternatives contribute to the use of
symbolic-numerical techniques in Computer Aided Geometric Design.



The remainder of this paper consists of four parts. First we introduce the notation. Section 3
then presents a survey of related techniques for the approximate implicitization of hypersurfaces.
The following section describes a new framework for the approximate implicitizaton of space
curves. Finally we conclude this paper.

2 Preliminaries

We start by introducing a few notations. A parametric representation of a curve segment or a
surface patch is a mapping
p: Q—RY: t—p(t) (1)

where Q C RF is the parameter domain (typically a closed interval in R or a box in R?). A
curve or surface is described for k = 1 and k = 2, respectively. In many applications, e.g. in
Computer-Aided Design, the mapping p is represented by piecewise rational functions (rational
spline functions), see [15].

An implicitly defined hypersurface .% in R is the zero-set of a function f : RY — R,

F={xeR?: fi(x) =0}. 2)

If d =3 or d =2, then it is called an implicitly defined surface or planar curve, respectively.

The subscript represents a vector s € R which collects the parameters which characterize
the function fg(x). They are called the shape parameters, since they control the shape of the
curve or surface. For instance, if fg is a polynomial of some finite degree,

N
Fo(x) =} 5i 9i(x), (3)
i=1
then's = (s1,...,sy) contains the coefficients with respect to a suitable basis (¢;)Y_, of the space
of polynomials.
An implicitly defined space curve
% ={xeR’: fy(x) = 0Ags(x) = 0}. 4)

is defined by two intersecting implicitly defined surfaces .# and ¢, see Fig. 1. Clearly, fs and
gs are not unique. This space curve is said to be regular at point x € . % N¥Y, if there exists a
representation (4) such that the two gradient vectors Vy f(x) and Vxgg(x) with Vi = ((%, (%, 8%)
are linearly independent.

Typically, the two functions defining .%# and ¢ are characterized by two independent sets of
shape parameters, say s and s,. In order to simplify the notation, we shall use the convention that
both functions depend on the union of these two sets, hence on s = sy Us,. If the two functions

fs(x) and gs(x) are polynomials, then € is said to be an algebraic space curve.
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Figure 1: An implicitly defined space curve

3 Approximate Implicitization

Exact techniques for the implicitization of curves and surfaces have been studied for a long time.
In 1862, Salmon [20] noted that the surface implicitization can be performed by eliminating the
parameters. This was improved by Dixon in 1908 [8], who published a more compact resultant
for eliminating two variables from three polynomials. In 1983, Sederberg [21] considered the
implicitization of surface patches for Computer Aided Geometric Design.

From a theoretical point of view, the problem of the implicitization of a given rational curve
or surface is always solvable. However, there remains a number of challenging computational
difficulties. As described in [15, chapter 12], while the 2D case can be handled satisfactorily by
building the Bezout resultant, the 3D case is more complicated: for instance, a tensor product
surface of degree (m,n) leads to an implicit formula of degree 2mn. Then, in the simple case
m = n = 3, we already have an algebraic representation of degree 18. After expanding this
polynomial in monomial basis this would lead to 1330 terms.

Practical problems associated with the exact implicitization of curves and surfaces are ad-
dressed in [22] and [5]. Grobner bases can also be used [7]. For more details on resultant based
methods, the reader may also consult [6].

To conclude, as shown in [22, 15], exact implicitization has many associated difficulties, in
particular in the case of surfaces. Moreover, the computed implicit form of a curve or surface can
be difficult to use, since the degree of the polynomial is often too high. On the other hand, CAD
(Computer-Aided Design) systems are based on floating point computations, and so all quantities
are represented with a rounding error. Therefore, if we apply any of the exact implicitization
method in this context, the result is not exact.

The existing techniques for approximate implicitization can be classified as direct ones,
where the result is found in a single step, and evolution-based techniques, where an iterative
process is needed to find the result.

3.1 Direct techniques

We describe three approaches to approximate implicitization. The first two approaches are due
to Dokken, who also coined the notion of Al. The third approach comprises various fitting-based



techniques.

Dokken’s method. In order to adapt implicitization to the need for approximate computation
in CAD, and to achieve more practical algorithms, Dokken introduced the approximate implic-
itization of a curve or surface [9, 10]. In the sequel we recall Dokken’s method to compute the
approximate implicitization of a curve or surface. See also [12] for a survey of these and related
techniques.

Given a parametric curve or surface p(t), t € Q, we want to find a polynomial fs(x)) such
that

Ss(p(t) +n(t)g(t)) =0, (5)

where g(t) is a continuous direction function satisfying ||g(t)||2 = 1 and 7n(t) a continuous error
function with |1 (t)| < s (see [9, Definition 35]). We denote by n the degree of the parametrization
p and by m the degree of f;.

Dokken observes that the composition fs o p can be factorized as

A(p() = (Ds)" a(v), (©)
where D is a matrix build from certain products of the coordinate functions of p(t), s is the vector
of parameters that characterize the function f;(x), and a(t) = (ay,...,on(t))7, where N is the

dimension of polynomial space, is the basis of the space of polynomials of degree mn, which is
used to describe fs(p(t)).
This basis is assumed to form partition of unity,

™M=

o=1
1

~.

and in addition, the basis a(t) is assumed to be nonnegative for t € Q:
o; >0, ViVteQ.

For instance, one may use the Bernstein-Bézier basis with respect to the interval 2 or with respect
to a triangle which contains € in the case of curves and surfaces, respectively.
Consequently we obtain that

£5(p(1)] = (Ds)" a(t)] < [Ds|la]|ex(t) 2 < [|Ds]l2, (7

hence we are led to find a vector s which makes ||Ds||, small. Using the Singular Value De-
composition (SVD) of the matrix D, one can show that || fs, (p(t)))|| < /01, Where o is the
smallest singular value, and s; is the corresponding singular vector. This strategy enables the
use of Linear Algebra tools to solve the problem of approximate implicitization. Moreover, this
approach provides high convergence rates, see [12, Table 1 and 2].



Dokken’s weak method. Dokken’s original method has several limitations: for instance, it is
relatively costly to build the matrix D. Moreover, it is impossible to use spline functions for
describing fs, since no suitable basis for the composition fsop can be found.

This problem can be avoided by using the weak form of approximate implicitization which
was introduced in [11], see also [12, section 10]. For a given curve or surface p with parameter
domain Q, we now find the approximate implicitization by minimizing

[ (s(p(e)))dt = s"As ®
Q
where
A=DT /(x(t)a(t)Tdt D. (9)
Q

The matrix A can be analyzed by eigenvalue decomposition, similar to the original approach,
where the matrix D was analyzed with singular value decomposition. Note that one can apply
this strategy even if no explicit expression is available: one only needs to be able to evaluate
points on the curve or surface. The integrals can then be approximately evaluated by numerical
integration.

Choosing the eigenvector which is associated with the smallest eigenvalue of the matrix A is
equivalent to minimizing the objective function defined in (8) subject to the constraint ||s|| = 1.
This can be seen as a special case of fitting, see next section.

Algebraic curve and surface fitting. Given a number of points (pi)f.\’: |» which have been sam-
pled from a given curve or surface, one may fit a curve or surface by minimizing the sum of the
squared residuals (also called algebraic distances),

(fs(pi))>. (10)

M=

1

i

This objective function can be obtained by applying a simple numerical integration to (8).

If the algebraic curve or surface is given as in (3), then this objective function has the trivial
minimum s = (. In order to obtain a meaningful result by minimizing (10), several additional
constraints have been introduced.

Pratt [19] picks one of the coefficients and restricts it to 1, e.g.

s1=1. (11)

For instance, if fg is a polynomial which is represented with respect to the usual power basis,
then one may consider the absolute term. This constraint is clearly not geometrically invariant,
since the curve and surface cannot pass through the origin of the system of coordinates.
Geometrically invariant constraints can be obtained by considering quadratic functions of the
unknown coefficients s. An interesting normalization has been suggested by Taubin [24], who



proposed to use the norm of the squared gradient vectors at the given data,

N
ZHfos p)|I* = (12)

Adding this constraint leads to a generalized eigenvalue problem. Taubin’s method gives results
which are independent of the choice of the coordinate system.

Finally, Dokken’s weak method — when combined with numerical integration for evaluating
the objective function (8) — uses the constraint

N
Is|*> =Y 57 =1. (13)
=1

These three approaches are able to provide meaningful solutions which minimize the squared
algebraic distances (10). However, they may still lead to fairly unexpected results. Additional
branches and isolated singular points may be present, even for data which are sampled from
regular curves or surfaces.

If a method for approximate implicitization is to reproduce the exact results for sufficiently
high degrees, then this unpleasant phenomenon is always present. For instance, consider a cu-
bic planar curve with a double point. Even if we take sample points only from one of the two
branches which pass through the singular point, any of the above-mentioned methods will gen-
erate the cubic curve with the double point, provided that the degree of fs is at least 3.

These difficulties can be avoided by using additional normal (or gradient) information. More
precisely, a nontrivial solution of the minimization problem can be found by considering a convex
combination of the two objective functions (8) and

N
Y Vi fs(pi) — i, (14)
i=1

where the vectors (n;)Y_; represent additional normal vector information at the given points.

This gives a quadratic function of the unknown coefficients s, hence the minimum is found
by solving a system of linear equations. This approach has been introduced in [16], and it has
later been extended in [17, 27, 26]. Among other topics, these papers also consider the case of
curves which contain singular points, where a globally consistent propagation of the normals is
needed.

3.2 Iterative (evolution-based) techniques

Iterative (evolution-based) methods have been considered for several reasons. First, they lead
to a uniform framework for handling various representations of curves and surfaces, which can
handle implicitly defined curves and surfaces as well as parametric ones [1, 13]. Second, they
make it possible to include various conditions, such as constraints on the gradient field, volume
constraints or range constraints [28, 14, 29]. Finally, the sequence of curves or surfaces generated



by an iterative method can be seen as discrete instances of a continuous evolution process, which
links this approach to the level set method and to active curves and surfaces in Computer Vision
[18, 4].

We recall the evolution-based framework for fitting point data (p;) j=1,...m With implicitly
defined hypersurfaces, which was described in [1]. In this framework, the approximate solutions
which are generated by an iterative algorithm are seen as discrete instances of a continuous
movement of an initial curve or surface towards the target points (the given point data).

More precisely, we assume that the shape parameters s depend on a time-like parameter ¢, and
consider the evolution of the hypersurface described by the parameters s(¢) for  — oo, Each data
point p; attracts a certain point f; on the hypersurface .# which is associated with it. Usually f;
is chosen to be the closest point on .%, i.e.

f; = argmin [|p —p,]|. (15)
pEZ

These attracting forces push the time-dependent hypersurface towards the data. This is realized
by assigning certain velocities to the points on the hypersurface. For a point lying on a time-
dependent implicitly defined curve or surface, which is described by a function f;, the normal
velocity is given by

a‘fS VstT VXfT
o Vil = VAR
where the dot indicates the derivative with respect to ¢ and the gradient operator
d d
Vo=(=—,....,— 17
S (8Sl b 9 aSN) ( )

gives the row vector of the first partial derivatives. Note that we omitted the time dependency of
s in (16), in order to simplify the notation.
The first term —Vfs$ in (16) specifies the absolute value of the normal velocity. The second
term is the unit normal vector of the curve, which identifies the direction of the velocity vector.
As the number of data points exceeds in general the degrees of freedom of the hypersurface,
the velocities are found as the least squares solution of

M
El(ﬁv—-dDTibﬁz—%ngn, (18)
j=1

where d; = f; — p; is the residual vector from a data point to its associated point on the hyper-

surface, n; = % is the unit normal in this point and v; is the velocity computed via (16) at f;.
XJs

More precisely, this leads to the minimization problem

—(—-p)")

— min. (19)
S

u (sts)(pj)s(vxfs>(pj) (fos)(pj)T ?
Y|« T
1(Vxfs)(p))]? 1(Vxfs) (@)l

We use Tikhonov regularization in order to obtain a unique solution. In addition, we apply a
distance field constraint, in order to avoid the trivial solution, cf. [28].

=1

7



The geometric interpretation of this approach is as follows: The bigger the distance to the
associated data point, the greater is the velocity that causes the movement of the hypersurface
at the corresponding point. Note that (18) takes only the normal component of the velocity into
account, as a tangential motion does not change the distance to the data.

The objective function in Eq. (19) depends on s as well as on §. For a given value of s, we can
find § by solving a system of linear equations. Consequently, (19) leads to an ordinary differential
equation for the vector of shape parameters. We can solve it by using Euler steps with a suitable
stepsize control, see [1] for details.

The solution converges to a stationary point, which defines the solution of the fitting problem.
It can be shown that this evolution-based approach is equivalent to a Gauss-Newton method
for the implicit fitting problem, and the stationary point of the ODE is a (generally only) local
minimum of the objective function

M 2
Y llp;— 15117 (20)
=

where f; has been defined in (15), see [2].

The evolution viewpoint has several advantages. It provides a geometric interpretation of the
initial solution, which is now seen as the starting point of an evolution that drives the hypersurface
towards the data. It also provides a geometrically motivated stepsize control, which is based on
the velocity of the points during the evolution (see [1]). Finally, the framework makes it possible
to introduce various other constraints on the shape of the hypersurface, see [13, 14].

In the remainder of this paper we will apply the evolution framework to the approximate
implicitization of space curves. In this situation we need to generate two surfaces which intersect
in the given space curve. Moreover, these two surfaces should intersect transversely, in order to
obtain a robustly defined intersection curve.

4 Approximate implicitization of space curves

Now we consider a point cloud (p;) j=1,...,m Which has been sampled from a space curve. Recall
that a point p; lies on an implicitly defined space curve ¢ if it is contained in both surfaces
defining the curve. Consequently we fit the spatial data with two surfaces .# and ¢. The desired
solution %’ is then contained in the intersection of .%# and ¢. We need to couple the fitting of the
two surfaces, in order to obtain a well-defined intersection curve.

4.1 Fitting two implicitly defined surfaces

Following the idea in [2] we use an approximation of the exact geometric distance from a data
point to a space curve. More precisely, we use the Sampson distance which was originally
introduced for the case of hypersurfaces [25]. The oriented distance from a point p; to a curve
or surface which is defined implicitly as the zero set of some function f; can be approximated by

fs(pj)
Hvxfs(pj)H ‘

8

1)



Geometrically speaking, the equation of the surface is linearized in the point p; and the dis-
tance from this point to the zero-set of the linearization is taken as an approximation of the exact
distance. Consequently, this measure is exact for planes, as they coincide with their lineariza-
tion. The Sampson distance is not defined at points with vanishing gradients, which have to be
excluded.

A natural extension of this distance to two surfaces defining a space curve is

N2
g, _\/”Vs p;)? gs(pj) _ 22)

xS p] ||2 IIVng(pj)||2

If both surfaces intersect each other orthogonally, then this expression approximates the distance
to the implicitly defined space curve.

In order to approximate a set of points which has been sampled from a space curve, we
minimize the sum of the squared distances, which leads to the objective function

M M 2 2
fs(p') gs([") )
d> = J + J — min. 23
L4 SV fs)IP T [Vags)I?E s 29

Note that both functions fg and g5 depend formally on the same vector s of shape parameters.
Typically, each shape parameter s; is uniquely associated with either fg or g5. Consequently, (23)
minimizes the Sampson distances from a point p; to each of the surfaces .# and ¢ independently.

We adapt the evolution based-framework [2] in order to deal with the objective function
(23). We consider the combination of the two evolutions for .# and ¢ which is defined by the
minimization problem £ — msln, where

2 2
E(f,g)zZ( /s T Vsfs S> +< 8s 4 Vsgs S) ‘ (24)

IVxssll (Vs IVxgsll Vsl

In order to simplify the notation, we omit the argument p; from now on and omit the range of the
sum, which is taken over all sampled points (p;)j—1,..m. This sum can also be seen as simple
numerical integration along the given space curve.

The geometric meaning of this objective function is as follows: The normal velocity (cf. (16))
of the level set of fs (and analogously for gs) which passes through the given point p; is to be
equal to the estimated oriented distance, see (21), to the surface. Later we will provide another
interpretation of this evolution as a Gauss-Newton-type method.

Similar to Eq. (19), the objective function in Eq. (24) depends on s and on $. For a given
value of s, we find § by solving a system of linear equations. Consequently, (24) leads to an
ordinary differential equation for the vector of shape parameters. We can again solve it simply
by using Euler steps with a suitable stepsize control.

As a necessary condition for a minimum of (24), the first derivatives with respect to the vector
$ have to vanish. This yields the linear system

[stsT Vs fs n ng;l' Vsgs § Zfs sfs sgs (25)
Vsl [IVefsll [ Vxgsll ||ngs|| HfosH2 ||ngs||2

9



If there exists a zero-residual solution, then the right hand side vanishes, as fs(p;) = gs(pj) =0
for all j. Hence § = 0 is a solution for the problem and we have reached a stationary point of the
evolution. However, the solution may not be unique.

First, the trivial (and unwanted) functions fg = 0 and g5 = 0 solve always the minimum
problem (23) for all data sets (p;) j=1..m- Of course these solutions have to be avoided.

Second, the evolution defined via (24) pushes both surfaces independently towards the data
points p;. This may lead to the unsatisfying result fs = g5 (where the two functions are identical
up to a factor A). Consequently, we need to introduce additional terms which guarantee that f;
and gs do not vanish and that they intersect orthogonally along the data points.

4.2 Regularization

So far, the implicitization problem is not well-posed. If fy is a solution to the problem, then A fg
is a solution as well. In this section we discuss several strategies that shall prevent the functions fg
and gs from vanishing and that shall guarantee a unique solution to the individual fitting problems
for the two defining surfaces .7 and ¢. Additionally, we propose a coupling term that ensures a
well-defined intersection curve of the surfaces .# and ¢.

Distance field constraint. In order to avoid the unwanted solutions fg = 0 and g¢ = 0 we use
the distance field constraint which was described in [28]. Consider the term

d 2
DU = (VAW + a0l 1) 26)
It pushes the function f5 in a point x closer to a unit distance field, hence

IVxfs(x)[[ =1 27)

If the length of the gradient in (26) equals 1, it is expected to remain unchanged. Consequently,
its derivative shall be 0. Otherwise (26) modifies fs such that the norm of its gradient gets closer
to 1.

We apply this penalty term to both functions fs and gs.

This side condition has also an important influence on the robustness of the implicit represen-
tation of the two surfaces .# and ¢, cf. [3]. Roughly speaking, the closer the defining functions
fs and g are to a unit gradient field, the less sensible is the representation to potential errors in
its coefficients.

Theoretically, this condition can be integrated over the entire domain of interest. In order to
obtain a robust representation of the implicit space curve, the robustness of the two generating
surfaces is mainly required along their intersection, i.e. near the data points. This leads to the
idea of imposing the distance field constraint only in the data points p;.

We note two more observations. First, the term is quadratic in the unknowns § which follows
directly from expanding the derivative in (26),

d Vx/s

IV = [P VsV 28)

10



Consequently, the objective function with the distance field constrained is still quadratic in the
unknowns, and we can compute the derivative vector § of the shape parameters by solving a
system of linear equations.

Second, the constrained problem does in general not reproduce exact solutions which would
be available without any constraints. For instance, if the data were sampled from a low degree
algebraic space curve, then the approximation technique would not provide an exact equation
of this curve. Only if that solution possesses a unit gradient field along the data, then it can be
recovered. In the next section we introduce another regularization term which makes it possible
to reproduce the exact solution.

Averaged gradient constraint. This technique is related to a method that was introduced by
Taubin [25]. The core idea is to restrict the sum of the norms of the gradients. Hence, not all the
gradient lengths are expected to be uniform, but the average gradient length

1
7 LI Vsfs(@y)l = 1. (29)

This can be dealt with by adding the term

2
A = (L IV 1+ i)l 1) 60)

to our framework.

Although (27) and (30) look quite similar, their effects on the solution are rather different.
Note that Eq. (29) is only one constraint, whereas (27) is a set of constraints, which depends on
the number of points.

Consequently, the condition on the average norm of the gradient can only handle the singu-
larity that is due to the scalability of implicit representations. If the ambiguity of the solution
arises from an incorrectly chosen degree of the polynomial, then Taubin’s method and the term
(30) do not provide a unique solution.

For instance, when fitting a straight line with two quadratic surfaces, the obtained linear sys-
tem is singular as the number of unknowns exceeds the number of linearly independent equations
provided by the data points. On the other hand, if we use the distance field constraint (26), then
we will obtain a unique solution.

Orthogonality constraint. The distance field constraint leads to a robust representation of each
of the two surfaces which define the curve. Now we introduce an additional term which provides
a robust representation of the curve itself.

Ideally, the two surfaces would intersect orthogonally along the space curve %, i.e.

T —
(Vx/fsVxgs ) v 0. (3D

In this case, small displacements in the two surfaces cause only small errors in the curve. More-
over, the term (22) then approximates the distance to the space curve very well. On the other

11



hand, if the two surfaces intersect tangentially, even small perturbations may cause big changes
of the curve.
In order to obtain two surfaces that intersect each other approximately orthogonally, we add

the term s
d fos ng;r ) fos ng;r )

of,e)=Y (£ n 32

(f:8) Z(dr(uvxfsu xzsl) T TVl TVns] (32

to the objective function. This term penalizes deviations from the optimal case Vxf;Vxgd = 0.
More precisely, if the gradients of the surfaces are not orthogonal in a point where (32) is applied
to, then the time derivative of the product of the unit gradients forces the surfaces to restore this
property. Theoretically, this term should be imposed along the intersection of the surfaces .%#
and ¢. As the exact intersection curve is not known, we apply (32) to the data points p;.

We analyze the structure of this term in more detail. The time derivative of the first product
in (32) gives

i Vi fs ngsT :fosvxgsT""VstngsT
dt [|Vxfsl| [ Vxssl| Vsl Vxegsl
VT (S Ve
X X858

IVxfslPIIVxgsll  IVxfslll[Vxgsll®

Since Vy fs = VxVsfs$ and Vygs = Vi Vsgs$, the term (32) is quadratic in §.

) (33)

4.3 Putting things together

Summing up, we obtain the minimization problem
F($,s) — min (34)
S

where
F =E(f,g)+ o1 (D(f) + D(g)) + @ 0(f,g) + 03(A(f) +A(g)) + 048’ (35)

The non-negative weights @;, m,, @3 and @4 control the influence of the distance field constraint,
the orthogonality constraint, the averaged gradient constraint and the Tikhonov regularization,
respectively. Due to the special structure Eq. (35) is quadratic in the vector . Hence, for a
given vector s of shape parameters, we can find $§ by solving a system of linear equations. The
evolution of the implicit representation of the space curve can then be traced using explicit Euler
steps with a suitable stepsize control (cf. [1]).

We conclude this section by discussing the coupled evolution from the optimization view-
point. We show that the constrained optimization is in fact a Gauss-Newton method for a partic-
ular fitting problem.

12



Consider the optimization problem

Z(Hm”)z (Hv‘fgsn)zm (IVfell =17+ (1Vxsll = 1))

2

/s ngsT)

+602( = (36)
[ Vxgs|l [|Vxes||

+3((LIVaA®)Il = 1)+ (L [ Vags(p)) ]| 1)) — min.

Obviously, a solution of (36) minimizes simultaneously the Sampson distances from the data
points to the space curve (term 1 and 2) the distance field constraint (term 3), the orthogonality
constraint (term 4) and the averaged gradient constraint (term 5 and 6). Hence a zero residual
solution of (36) interpolates all data points, the defining surfaces have slope one in the data points
and furthermore, the surfaces intersect orthogonally.

Since (36) is non-linear in the vector of unknowns s, we consider an iterative solution tech-
nique. A Gauss-Newton approach for (36) solves iteratively the linearized version of (36),

C* — min (37)
As
where
C*:Z< s i Vs fs AS)2+( 8s i Vsgs AS)2 (38)
AN [Vxgsl ™ Vgl
o [(IVxfsll =14+ Vs 1V fs | 1)85)° + (1 Vgl = 1+ Vs( [ Vagsl| - 1)As)?]
2
n Vi fs ng;l' Vxfs ng;r )
(9] s( )A
Y

A/_-\

O3 (L[ Vafsll = 14 Vs | Vi sl[A4)” + (X [ Vs | — 1+ V|| Vxgsl|as) )

and computes an update of the previous solution via s* = s+ As. By comparing (35) and (38)
we arrive at the following observation.

An explicit Euler step for the evolution equation (35) with stepsize 1 is equivalent to
the Gauss-Newton update (38) for the optimization problem (36).

Indeed, if we use that for any function A(s(z)),

9 h(s(0)) = Vah(s(0))s (39)

then we can replace the time derivatives in (35). Substituting $ for As then gives the desired
result.
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Figure 2: Implicitization of a space curve represented by data points sampled from a parametric
curve. Left: Initial surfaces, right: Final result.

4.4 Examples

Finally we present some examples.

Example 1. We sampled 50 points from a parametric space curve of degree 6. The two implicit
patches that represent the implicit space curve are of degree 2. As initial configuration we have
chosen two surfaces deviating from each other slightly, see Figure 2(a).

The obtained result after 15 iterations is shown in Figure 2(b). In order to demonstrate the
robustness of the representation we note that the norm of the gradients of the two surfaces in
the data points varies between 0.94 and 1.94. The maximal deviation of the gradients from
orthogonality at the data points is 0.49 degrees.

Example 2. We choose again the same data set, but modify the various weights in order to
demonstrate their influence. First we omit the orthogonality constraint. That is, the evolution is
not coupled, and both surfaces move independently towards the data. The result is obvious, both
surfaces converge towards the same result, as the initial values are quite similar, cf. Fig. 3(a).
Alternatively, we omit the distance field constraint. The results can be seen in Fig. 3(b).

As one can verify, the two surfaces match still the data. However, one of the surfaces has
a singularity. This is due to the fact that the averaged gradient constraint allows also vanishing
gradients. For the distance field constraint this is not true, as the norm of the gradients in the data
points is forced to be close to one, hence singular points are unlikely to appear.

Example 3. For this example we added a random error of maximal magnitude 0.05 % of the
diameter of the bounding box to the data points from the previous example. The fitted space
curve is represented in Fig. 4.

Example 4. In a fourth example we consider a parametric curve of degree 8. The two surfaces
were chosen to have degree 3. This example shall illustrate again the good convergence behavior,
as the two initial surfaces are far away from the final result.
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Figure 3: Result with omitted orthogonality constraint(left) and omitted distance field con-
straint(right).

.

Figure 4: Implicit description of a curve represented by perturbed data. Left: Initial surfaces,
right: Final result.

5 Conclusion

In the first part of the paper we reviewed some of the existing techniques for approximate implic-
itization of hypersurfaces. Starting with Dokken’s approach, which relies on the use of singular
value decomposition, we observed that the weak version of Dokken’s method can be seen as
a special instance of a fitting method. Finally we described a general framework for evolution
based fitting techniques.

The second part of the paper extended the existing evolution framework to the implicitization
of space curves, by coupling the evolution of two implicitly defined surfaces. As the implicit
representation of a curve or surface is not unique, additional regularization terms have to be
added in order to achieve the uniqueness of the solution. We discussed two possibilities.

The first, called the distance field constraint, tries to achieve a unit gradient field along the
intersecting surfaces. Hence a unique solution to the fitting problem is always guaranteed. Fur-
thermore, it can even cope with an incorrectly chosen degree, that is when the degrees of the

15
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Figure 5: Implicit representation of a curve described by exact point data. Left: Initial surfaces,
right: Final result.

defining polynomials have been chosen too high. However, this approach prevents the evolution
from finding the exact solution.

The second proposed regularization eliminates only the redundancy which is caused by the

scalability of the underlying functions. As an advantage, it allows to find the exact solution,
provided that the degrees of the implicitly defined surfaces are sufficiently high.

In order to obtain also a robust representation of the intersection curve we introduced another

constraint which is to guarantee that the defining surfaces intersect as orthogonal as possible.
Consequently, small perturbations of the coefficients of the defining functions lead only to small
deviations of the intersection points of the two surfaces.
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