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Abstract. Generalized maps describe the subdivision of objects in cells,
and incidence and adjacency relations between cells, and they are widely
used to model 2D and 3D images. Recently, we have defined submap
isomorphism, which involves deciding if a copy of a pattern map may
be found in a target map, and we have described a polynomial time
algorithm for solving this problem when the pattern map is connected.
In this paper, we show that submap isomorphism becomes NP-complete
when the pattern map is not connected, by reducing the NP-complete
problem Planar-4 3-SAT to it.

1 Motivations

Combinatorial maps and generalized maps [1] are very nice data structures to
model the topology of nD objects subdivided in cells (e.g., 0D vertices, 1D edges,
2D faces, 3D volumes, . . . ) by means of incidence and adjacency relationships
between these cells. In 2D, maps may be used to model the topology of an
embedding of a planar graph in a plane. In particular, these models are very
well suited for scene modeling [2], and for 2D and 3D image segmentation [3].

In [4], we have defined a basic tool for comparing 2D maps, i.e., submap
isomorphism (which involves deciding if a copy of a pattern map may be found
in a target map), and we have proposed an efficient polynomial-time algorithm
for solving this problem when the pattern map is connected. This work has been
generalized to nD maps in [5]. The subisomorphism defined in [5] is based on
induced submap relations, such that submaps are obtained by removing some
darts and all their seams, just like induced subgraphs are obtained by removing
some vertices and all their incident edges. In [6], we have introduced a new
kind of submap relation, called partial submap: partial submaps are obtained by
removing not only some darts (and all their seams), but also some other seams,
just like partial subgraphs are obtained by removing not only some vertices
(and their incident edges), but also some other edges. The polynomial time
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Fig. 1. (a) A plane graph. (b) The corresponding 2G-map. (c) Its graphical repre-
sentation: darts are represented by segments labeled with letters, consecutive darts
separated with a little segment are 0-sewn (e.g., α0(b) = c and α0(c) = b), consecutive
darts separated with a dot are 1-sewn (e.g., α1(a) = b and α1(b) = a), parallel adjacent
darts are 2-sewn (e.g., α2(d) = i and α2(i) = d).

algorithm described in [5] for solving the induced submap isomorphism problem
may be extended to the partial case in a very straightforward way. However,
this algorithm still assumes that the pattern map is connected. In this paper,
we show that the submap isomorphism problem becomes NP-complete when the
pattern map is not connected, both for partial and induced submaps.

Outline of the paper. In Section 2, we recall definitions related to generalized
maps. In Section 3, we define the submap isomorphism problem and recall some
complexity results about this problem. In Section 4, we describe the planar-4
3-SAT problem, which is NP-complete. In Section 5, we describe a polynomial-
time reduction of planar-4 3-SAT to submap isomorphism, thus showing that
submap isomorphism is NP-complete.

2 Recalls and basic definitions on generalized maps

In this work we consider generalized maps, which are more general than combi-
natorial maps, and we refer the reader to [1] for more details.

Definition 1. (nG-map) Let n ≥ 0. An n-dimensional generalized map (or nG-
map) is defined by a tuple G = (D,α0, . . . , αn) such that (i) D is a finite set of
darts; (ii) ∀i ∈ {0, . . . , n}, αi is an involution5 on D; and (iii) ∀i, j ∈ {0, . . . , n}
such that i+ 2 ≤ j, αi ◦ αj is an involution.

2G-maps may be used to model the embedding of a planar graph into a plane.
For example, Fig. 1 displays a plane graph and the corresponding 2G-map. We
say that a dart d is i-sewn with a dart d′ whenever d = αi(d

′) and d 6= d′,
whereas it is i-free whenever d = αi(d). A seam is a tuple (d, i, d′) such that d′

is i-sewn to d. For example, (a, 0, h) is a seam of the map displayed in Fig. 1
because α0(a) = h.

Definition 2. (seams of a set of darts in an nG-map) Let G = (D,α0, . . . , αn)
be an nG-map and E ⊆ D be a set of darts. The set of seams associated with E
in G is: seamsG(E) = {(d, i, αi(d))|d ∈ E, i ∈ {0, . . . , n}, αi(d) ∈ E,αi(d) 6= d}.
5 An involution f on D is a bijective mapping from D to D such that f = f−1.



A map is connected if any pair of darts is connected by a path of sewn darts.

Definition 3 (Connected map). A generalized map G = (D,α0, . . . , αn) is
connected if ∀d ∈ D,∀d′ ∈ D, there exists a path between d and d′, i.e., a
sequence of darts (d1, . . . , dk) such that d1 = d, dk = d′ and ∀i∈{1, . . . , k − 1},
∃ji ∈ {0, . . . , n}, di+1 = αji(di).

Map isomorphism [1] allows us decide of the equivalence of two maps.

Definition 4. (nG-map isomorphism [1]) Two nG-maps G = (D,α0, . . . , αn)
and G′ = (D′, α′

0, . . . , α
′
n) are isomorphic if there exists a bijection f : D → D′,

such that ∀d ∈ D,∀i ∈ [0, n], f(αi(d)) = α′
i(f(d)).

In [4], induced submaps have been defined: G is an induced submap of G′

if G preserves all seams of G′, i.e, for every couple of darts (d1, d2) of G, d1 is
i-sewn to d2 in G′ if and only if d1 is i-sewn to d2 in G.

Definition 5. (induced submap) A map G′ = (D′, α′
0, . . . , α

′
n) is an induced

submap of G = (D,α0, . . . , αn) if D′ ⊆ D and seamsG′(D′) = seamsG(D′).

In [6], we have introduced another submap relation, called partial submap by
analogy with existing work on graphs. Indeed, induced subgraphs are obtained
by removing some nodes (and all their incident edges) whereas partial subgraphs
are obtained by removing not only some nodes (and all their incident edges) but
also some edges. In our map context, partial submaps are obtained by removing
not only some darts (and all their seams) but also some other seams.

Definition 6. (partial submap) A map G′ = (D′, α′
0, . . . , α

′
n) is a partial submap

of G = (D,α0, . . . , αn) if D′ ⊆ D and seamsG′(D′) ⊆ seamsG(D′).

3 The submap isomorphism problem

The submap isomorphism problem involves deciding if a pattern map is isomor-
phic to a submap of a target map, and it is formally defined as follows:

Problem: Partial (resp. induced) submap isomorphism
Instance: A triple (n,G,G′) such that n > 0, and G and G′ are nG-maps.
Question: Does there exist a partial (resp. induced) submap of G′ which is
isomorphic to G?

We note G vp G′ (resp. G vi G′) when the answer is yes. Note that G vi

G′ ⇒ G vp G′. Fig. 2 displays examples of submap isomorphisms.
The complexity of the submap isomorphism problem depends on the connect-

edness of the pattern map. For example, the map G1 of Fig. 2 is not connected,
and is composed of two connected components, whereas the maps G2, G3 and
G4 are connected. In [5], we have described a polynomial-time algorithm which
solves the submap isomorphism problem when the pattern map G is connected.
When the pattern map G is not connected, we may use this algorithm to search
for all occurrences of each connected component of G in the target map G′. Let
us consider, for example, the map G1 of Fig. 2. Its left hand side component
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Fig. 2. Submap isomorphism examples. G1 is not isomorphic to a submap of G2 (i.e.,
G1 6vp G2 and G1 6vi G2), though each connected component of G1 is a submap of G2.
G1 is isomorphic to a partial submap of G3, but not to an induced one (i.e., G1 vp G3

and G1 6vi G3), because the seams (a, 2, c) and (b, 2, d) of G3 are not preserved in G1.
G1 is isomorphic to an induced submap of G4 and, therefore, it is also isomorphic to a
partial submap of G4 (i.e., G1 vp G4 and G1 vi G4).

occurs once in G2 and twice in G3 and G4, and its right hand side component
occurs twice in G2, G3 and G4 (as it is automorphic). To solve the submap iso-
morphism problem from these occurrence lists, we have to solve the following
combinatorial problem: Can we select one occurrence in G′ of each connected
component of G so that the selected occurrences do not overlap in G′?

Theorem 1 claims that this combinatorial problem is NP-complete.

Theorem 1. The partial (resp. induced) submap isomorphism problem is NP-
complete.

The problem trivially belongs to NP since one can check that a given partial
(resp. induced) submap of the target map G′ is isomorphic to the pattern map
G in polynomial time. We may use for example the polynomial algorithm of [5],
which has been defined for non connected maps.

To prove that it is NP-complete, we show in Section 5 that Planar-4 3-SAT,
which is known to be NP-complete, may be reduced to it in polynomial time.

4 Planar-4 3-SAT

Planar-4 3-SAT is a special case of the SAT problem, which involves deciding
if there exists a truth assignment for a set X of variables such that a boolean
formula F over X is satisfied [?]. We assume that F is in Conjunctive Normal
Form (CNF), i.e., it is a conjunction of clauses such that each clause is a dis-
junction of literals which are either variables of X or negations of variables of
X.

The formula-graph associated with a CNF formula F over a set of variables
X is the bipartite graph GX,F = (V,E) such that V associates a vertex with
every variable xi ∈ X and every clause cj of F , and E associates an edge (xi, cj)
with every variable/clause couple such that variable xi occurs in clause cj .



X = {x, y, z, u, w}
F = (x̄ ∨ y ∨ u)∧

(x̄ ∨ y ∨ z̄)∧
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Fig. 3. An instance of Planar-4 3-SAT and its associated formula graph (clauses cor-
respond to circles, and variables to squares).

The planar-4 3-SAT problem is formally defined as follows.

Problem: Planar-4 3-SAT
Instance: A couple (X,F ) such that X is a set of boolean variables and
F is a CNF formula over X such that (i) every clause of F is a disjunction
of 3 literals, (ii) the formula-graph GX,F is planar, and (iii) the degree of
every vertex of GX,F is bounded by 4 (i.e., each variable occurs in at most 4
different clauses)
Question: Does there exist a truth assignment for X which satisfies F?

Planar-4 3-SAT has been shown to be NP-complete in [7]. Fig. 3 displays an
instance of Planar-4 3-SAT and its associated formula-graph.

To reduce an instance (X,F ) of Planar-4 3-SAT to an instance (n,G,G′) of
submap isomorphism, we first perform a preprocessing: We iteratively eliminate
from (X,F ) every variable xi ∈ X which occurs in only one clause cj of F (those
whose degree is equal to 1 in the formula-graph), set xi to the truth value which
satisfies cj , and eliminate cj from F , until either X and F become empty (thus
showing that the answer is trivially yes), or all variables in X occur in 2, 3, or
4 clauses of F .

5 Reduction of Planar-4 3-SAT to submap isomorphism

Let us first show that planar-4 3-SAT can be reduced to induced submap iso-
morphism in polynomial time: The partial case will be studied at the end of this
section. We consider an instance (X,F ) of planar-4 3-SAT and we show how to
build an instance (n,G,G′) such that G vi G′ iff the answer to (X,F ) is yes.

We consider 2G-maps, so that n = 2, and the 2G-maps G and G′ are con-
structed by assembling building blocks which are 2G-maps. Fig. 4 displays build-
ing blocks associated with variables: For each variable xi ∈ X such that the
degree of xi in the formula-graph GX,F is equal to k with 2 ≤ k ≤ 4 (as the
preprocessing step has removed any variable whose degree is equal to 1), we
build two variable patterns V ′

k and Vk which will respectively occur in G′ and G.
Each variable pattern V ′

k (resp. Vk) looks like a flower whose core is a 2k-edge
face and which have 2k petals (resp. k petals), where each petal is a 6-edge face.
For each petal in each variable pattern V ′

k, the edge opposite to the core of the
flower is a connecting edge which may be 2-sewn with clause patterns to define
G′.



V4’:

V3:

V2:
V4:

V3’:

V2’:

Patterns associated with variables in G’: Patterns associated with variables in G:

Fig. 4. Variable patterns used as building blocks to define G′ and G. Connecting edges
in G′ are displayed in bold.

For each clause, we build two clause patterns C ′ and C which will respectively
occur in G′ and G. The clause pattern C ′ is composed of a 3-edge central face
which has 3 adjacent 4-edge faces, whereas the clause pattern C is composed of
a 3-edge face which has 1 adjacent 4-edge face, as displayed below:

Clause pattern C ′: Clause pattern C:

Edges of C ′ displayed in bold are connecting edges which are 2-sewn with variable
patterns to define G′.

Definition of the 2G-map G′. For each variable xi ∈ X such that the degree of
xi in the formula-graph GX,F is equal to k, G′ contains an occurrence of the
variable pattern V ′

k. Each petal of this occurrence of V ′
k is alternatively labeled

with xi and x̄i. For each clause cj of F , G′ contains an occurrence of the clause
pattern C ′. Each 4-edge face of this occurrence of C ′ is labeled with a different
literal of cj . Variable and clause patterns are 2-sewn to define a connected 2G-
map: every connecting edge of each clause pattern is 2-sewn with a different
connecting edge of a variable pattern such that the two faces which become
adjacent by this seam are labeled with the same literal. We can easily check that
this 2G-map can always be built in polynomial time as the formula-graph GX,F

is planar, and there exist polynomial-time algorithms for embedding a planar
graph in a plane [8]: We can use the same embedding for constructing G′. Fig. 5
displays the 2G-map associated with the formula displayed in Fig. 3.

Definition of the 2G-map G. If the SAT instance has n variables and c clauses,
then G is composed of n+ c different components: a component Vk is associated
with every variable xi ∈ X, where k is the degree of xi in GX,F ; a component
C is associated with every clause. For example, the 2G-map G associated with
the formula displayed in Fig. 3 contains 10 components: 3 occurrences of V3, 1
occurrence of V4, 1 occurrence of V2, and 5 occurrences of C.
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Fig. 5. 2G-map G′ associated with the SAT instance displayed in Fig. 3. Note that this
map contains holes (corresponding to white parts in the figure): each dart d adjacent
to these holes is 2-free so that α2(d) = d.

Proof of (G vi G′) ⇒ (∃ truth assignment of X which satisfies F ). Let us first
assume that there exists an induced submap G′′ of G′ which is isomorphic to G,
and let us show that there exists a truth assignment of X which satisfies F .

If G′′ is isomorphic to G then, according to Def. 4, there exists a bijection f
which matches darts of G′′ with darts of G and which preserves all seams. By
extension, we say that f matches faces of G′′ with faces of G. As we consider
induced submap isomorphism, two faces of G which belong to two different
connected components cannot be matched by f with faces which are 2-sewn in
G′′ (according to Def. 5). Fig. 6 displays an example of such a solution for the
instance (2, G,G′) of the induced submap isomorphism problem associated with
the instance (X,F ) of Planar-4 3-SAT displayed in Fig. 3.

G contains c occurrences of C, where c is the number of clauses of F . Each
occurrence of C has a 3-edge face adjacent to a 4-edge face. These faces can only
be matched with faces which belong to occurrences of C ′ in G′ as 3-edge faces
in G′ only come from C ′ patterns. As there are c occurrences of C in G, each
occurrence of C ′ in G′ is matched with a different occurrence of C in G. For the
same reasons, each occurrence of a variable pattern Vk in G is matched with a
different occurrence of a variable pattern V ′

k in G′: Petal and core faces in G can
only be matched with petal and core faces in G′, and an occurrence of Vi cannot
be matched with faces of an occurrence of V ′

j if i 6= j. For each variable pattern
V ′
k, the label of the petals of V ′

k which are not matched with petals of variable
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Fig. 6. Solution of the induced submap isomorphism instance (2, G,G′) associated with
the Planar-4 3-SAT instance displayed in Fig. 3. The induced submap of G′ which is
isomorphic to G is displayed in dark grey. Note that two different components of this
submap cannot be 2-sewn in G′ as we consider induced submap isomorphism.

patterns of G gives the truth assignment for the corresponding variable. For each
clause pattern C ′, the label of the 4-edge face of C ′ which is matched with a
4-edge face of C corresponds to a literal which satisfies the clause associated
with C ′. As two faces of G which belong to two different connected components
cannot be matched by f with faces which are 2-sewn in G′′, we ensure that
when a 4-edge face of a clause pattern is matched, then the adjacent petal is not
matched, i.e., when a clause is satisfied by a literal l, then no other clause can be
satisfied by the negation of this literal so that the truth assignment deduced from
the flower matching actually satisfies all clauses of F . For example, the truth
assignment corresponding to the solution displayed in Fig. 6 is {x̄, y, z̄, u, w}.

Proof of (∃ truth assignment of X which satisfies F ) ⇒ (G vi G′). Let us as-
sume that there exists a truth assignment of X which satisfies F and let us
show that there exists an induced submap G′′ of G′ which is isomorphic to G,
i.e., that there exists a dart matching which preserves all seams of G. For each
variable pattern Vk in G associated with a variable xi, we match the darts of the
core face with the darts of the core face of the variable pattern associated with
xi in G′ and we match the darts of the k 6-edge petals of Vk with the darts of
the k 6-edge petals which are labeled with the negation of the truth value of xi.
For each clause pattern C in G associated with a clause cj , we match the darts
of the 3-edge face of C with the darts of the 3-edge face of the clause pattern
associated with cj in G′ and we match the darts of the 4-edge face of C with the
darts of one of the three 4-edge faces: We choose a 4-edge face which is labeled
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Fig. 7. Solution of the partial submap isomorphism instance (2, G,G′) associated with
the Planar-4 3-SAT instance displayed in Fig. 3. The partial submap of G′ which is
isomorphic to G is displayed in dark grey.

with a literal which is satisfied by the truth assignment (this 4-edge face cannot
be 2-sewn with a matched 6-edge petal).

Proof for the partial case. Let us now consider the partial case: We consider
an instance (X,F ) of planar-4 3-SAT and we show how to build an instance
(n,G,G′) such that G vp G′ iff the answer to (X,F ) is yes. The proof is similar
to the induced case. The difference between the induced and the partial cases
is that, when considering induced submap isomorphism, two faces which belong
to two different components in G cannot be matched with faces of G′ which are
2-sewn whereas, when considering partial submap isomorphism, two faces which
belong to two different components in G may be matched with faces of G′ which
are 2-sewn. Therefore, we modify the clause pattern C so that the 4-edge face is
adjacent to a 3-edge face, on one side, and to a 6-edge face on the opposite side,
as displayed below:

These 6-edge faces can only be matched with petals.The label of the petal which
is matched with the 6-edge face of a clause pattern corresponds to the literal
which satisfies the clause. Fig. 7 displays an example of solution for partial
submap isomorphism.



6 Conclusion

We have shown that submap isomorphism is NP-complete when the pattern
map G is not connected. This implies that there does not exist a polynomial-
time algorithm for this problem, unless P=NP. The practical tractability of this
problem actually depends on the number of different connected components
of G. Indeed, if G contains k different connected components, we can use the
polynomial-time algorithm of [5] to search for all occurrences of each component
of G in the target map G′. Let m be the maximum number of occurrences of
a connected component of G in G′ (m is bounded by the number of darts of
G′). The number of candidate solutions to explore is bounded by mk so that the
problem remains tractable if k is small enough.

A consequence of our NP-completeness proof is that the maximum common
submap problem introduced in [9] is NP-hard in the general case, i.e., if the
common submap is not necessarily connected (as searching for a common submap
is more general than deciding of submap isomorphism). However, the complexity
of the maximum common submap problem in the particular case where the
common submap must be connected is still an open question: We haven’t found
a polynomial-time algorithm for solving this problem, neither have we found a
polynomial-time reduction from a known NP-complete problem to this problem.
Hence, further work will mainly concern the answer to this question.

Acknowledgments. The authors would like to thank Daniel Goncalves (University
of Montpellier) for his pointer to problem Planar-3SAT, and fruitful remarks.
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