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A Bellman approach for regional optimal control
problems in RY

G. Barles* A. Briani* E. Chasseigne*

May 24, 2013

Abstract

This article is a continuation of a previous work where we studied infinite horizon control
problems for which the dynamic, running cost and control space may be different in two half-
spaces of some euclidian space RY. In this article we extend our results in several directions:
() to more general domains; (i7) by considering finite horizon control problems; (iii) by weaken
the controlability assumptions. We use a Bellman approach and our main results are to identify
the right Hamilton-Jacobi-Bellman Equation (and in particular the right conditions to be put
on the interfaces separating the regions where the dynamic and running cost are different) and
to provide the maximal and minimal solutions, as well as conditions for uniqueness. We also
provide stability results for such equations.

Key-words: Optimal control, discontinuous dynamic, Bellman Equation, viscosity solutions.
AMS Class. No: 49120, 49125, 35F21.

1 Introduction

This article is a continuation of [6] where we studied infinite horizon control problems for which the
dynamic, running cost and control space may be different in two half-spaces of some euclidian space
RY. This study was made through the Bellman approach and our main results where to identify
the right Hamilton-Jacobi-Bellman Equation (and in particular the right conditions to be put on
the hyperplane separating the regions where the dynamic and running cost are different) and to
provide the maximal and minimal solutions, as well as conditions for uniqueness. The aim of the
present paper is three-fold: (7) to extend these results to more general domains; (i) to consider also
finite horizon control problems; (7ii) last but not least, to weaken the controlability assumption
made in [6]. We also emphasize the stability properties for such equations which are a little bit
different from the classical ones.
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To be more specific, we recall that, in the classical theory (see for example Lions [27], Fleming
& Somer [21], Bardi & Capuzzo Dolcetta [4]), Hamilton-Jacobi-Bellman Equation for finite horizon
control problems in the whole space RV have the form

us + H(z,t,Du) =0 in RY x (0,7), (1.1)
where the Hamiltonian H is typically given by

H(z,t,p) :=sup { — b(z,t,a) - p—l(z,t,a)} . (1.2)
a€A
The control space A is assumed to be compact, the dynamic b and running cost | are supposed
to be continuous functions which are Lipschitz continuous in x, so that H is continuous and has
suitable properties ensuring existence and uniqueness of a solution to (1.1).

In this paper, as we already mentioned above, we have different dynamics and running costs in
different regions. In other words, the functions b and [ are not assumed to be continous anymore
when crossing the boundaries of the different regions, which implies that the Hamiltonian H in (1.2)
also presents discontinuities. Hence, getting suitable comparison and uniqueness results for (1.1)
in this setting is not obvious at all and the aim of this paper is to give precise answers to these
questions.

To be more precise, we are going to decompose R using a collection (€;);cs of regular open
subsets of R such that each point = € R¥ either lies inside one (and only one) §2;, or is located on
the boundary of exactly two sets €2;. Because of the (regularity) assumptions we are going to use,
we can in fact reduce this collection to two domains 21,9 : we refer to Section 6 for comments
on this reduction. More precisely we assume that

(Hy) RN =Q,UQ UH with QN0 =0 and H = 90y = 9 is a W?2>_hypersurface in RV,
For z € H we denote by n;(z) the unit normal vector pointing outwards ;, for i = 1,2. Of

course, ni(-) = —ny(-) on H.

In each Q; (i = 1,2), we have a ”classical” finite-horizon control problem and the equation can
be written as

ug + Hi(z,t,Du) =0 in Q; x (0,7), (1.3)
for some T > 0, where H; is given by
Hi(z,t,p) = sup {=bi(z,t,05) - p— Lz, t,04)} (1.4)
ai€EA;

The b;,1; are at least continuous functions defined on R x (0,T) x A;, the control space A; being
compact metric spaces; precise assumptions will be given later on.

Of course, one has to write down an equation on the whole space RV (and in particular on )
and this can be done using viscosity solutions’ theory ([32], [5], [4]). One can consider Equation (1.1)
with H = H; on §2; and use Ishii’s definition of viscosity solutions for discontinuous Hamiltonians
(cf. [25]) which reads

(u*)¢ + He(z,t, Du*) =
and  (vi)e + H*(x,t, Dvy) =

0 inRY x (0,T) for subsolutions u
0 inRY x (0,T) for supersolutions v,



where the “upper-star” denotes the upper semi-continuous envelope while the “lower-star” denotes
the lower semi-continuous envelope. Following this means that we have to complement Equa-
tions (1.3) by

min{u; + Hy(z,t, Du),uy + Ho(x,t, Du)} <0 on H x (0,T), (1.5)
max{u; + Hi(x,t, Du),uy + Ho(x,t, Du)} >0 on H x (0,T) . (1.6)

A first question we address in [6] is to investigate the uniqueness properties for (1.1) or equivalently
(1.3)-(1.5)-(1.6). Unfortunately, and this leads us to describe the second aspect of [6], one can define
(in general) several value functions for the associated control problem(s) and all the natural value
functions satisfy (1.3)-(1.5)-(1.6). We are not going to describe these different control problems in
the introduction : we refer the reader to Section 2. But we just mention that the differences mainly
concern the “admissible” control or dynamics on the interface H: this set can be chosen in different
way creating such non-uniqueness and (to our point of view) there is no criterion to declare one of
these value functions more natural than the others.

There are more and more articles on Hamilton-Jacobi-Bellman Equations or control problems
on multi-domains (also called stratified domains). We start by recalling the pioneering work by
Dupuis [19] who use similar methods to construct a numerical method for a calculus of variation
problem with discontinuous integrand. Problems with a discontinuous running cost were addressed
by either Garavello and Soravia [22, 23], or Camilli and Siconolfi [14] (even in an L*°-framework)
and Soravia [33]. To the best of our knowledge, all the uniqueness results use a special structure of
the discontinuities as in [17, 18, 24] or an hyperbolic approach as in [3, 16]. Recent works on optimal
control problem on stratified domains are the ones of Bressan and Hong [12] but also Barnard and
Wolenski [9] and Rao and Zidani [28] (who mention a forthcoming work with Siconolfi [29]): in
these three last works, uniqueness results are provided by a completely different method than ours,
which relies on control arguments. The advantage of their methods is to allow them to handle more
general stratified domains (non-smooth domains with multiple junctions) but with more restrictive
controlability assumptions and without the stability results we can provide. We finally remark that
problems on network (see [31],[2], [13]) share the same kind of difficulties : indeed one has to take
into account the junctions as we have to deal with the interface H.

The paper is organized as follows: in Section 2, we introduce the main ingredients and assump-
tions for the control problem(s) and following [6] we recall how to define the dynamic and cost in
a proper way. We define two different value functions (U™ and U™). The difference with [6] is
that U™, UT are not necessarily continuous since we have weakened the controlability assumption
and the first consequence is that the connections with the Bellman Equation (1.3)-(1.5)-(1.6) in
Section 3 has to be stated in terms of discontinuous viscosity solutions (cf. Theorem 3.3). Then,
still in Section 3, we provide properties, satisfied either by U™ or by general sub and supersolutions
which play a key role in order to obtain comparison results. Uniqueness-comparison properties
are described in Section 4: we slightly modify the approach of [6] by emphasizing the role of a
“local comparison result” which is given in the Appendix. As in [6] this “local comparison result”
relies on the regularization of the subsolutions but this is a little bit more technical here since the
controlability assumption is replaced by a weaker hypothesis (“controlability in the normal direc-
tion” on H). In Section 5, we study the stability properties of the problems we have introduced
in Section 3: for the problem satisfied by U™, it is a “classical” stability result, but contrarily to
the standard results in viscosity solutions’ theory, we face a difficulty because of the discontinuity



on H, difficulty which is solved in an unusual way by the controlability assumption in the normal
direction. For the problem satisfied by U™, we prove the stability of controlled trajectories and
costs, a rather delicate result since we have to show that the limit of trajectories with “regular
strategies” (a notion which is defined in Section 2) is a trajectory with a “regular strategy”. In this
second case, we have no pde approach and therefore this is the only kind of results we may hope to
have. Finally Section 6 is devoted to describe several extensions, in particular to time-dependent
multi-domains problems.

Acknowledgements — We would like to thank Nicoletta Tchou for several constructive re-
marks on the preliminary versions of this paper.

2 The optimal control problem

THE CONTROL PROBLEM — We fix 7" > 0 and consider that, on each domain €2; (i = 1,2) we
have a controlled dynamic given by b; : ; x [0,7] x A; — RY, where A; is the compact metric
space where the control takes its values. We have also a running cost I; : ©; x [0, 7] x A; — R.
Throughout the paper, we make the following assumption on the initial cost:

(H,) The function g is bounded and continuous in RV,
Our main assumptions for the control problem are the following

(H{) For anyi=1,2, A; is a compact metric space and b; : Q; x [0,T] x A; — R is a continuous
bounded function. More precisely there exists My > 0, such that for any x € RN, s € [0,T]
and a; € A;, 1=1,2,

|bi(x, s, 0;)| < M .

Moreover there exists Ly € R such that, for any 2,2 € Q;, s,5' € [0,T] and o; € A, i = 1,2,

bi(z,8,05) = bi(2, 8", 04)] < Ly(|z = 2| + [s = 5']) .

(HZ) For any i = 1,2, the function l; : Q; x [0,T] x A; — RY is a uniformly continuous, bounded
function. More precisely there exists M; > 0, such that for any x € RN, s € [0,7] and
o €Ay, i=1,2,
lli(z,s,05)] < M.

Moreover there exists a modulus of continuity m; : [0,4+00) — [0,400) such that, for any
2,2 €Qy, 5,8 €0, T] and o; € A;, i = 1,2,

‘li(zﬂgaai) - li(Z,S,,Oéi)’ < ml(’Z - Z/’ + ‘S - S/‘) .

(H},) For eachi=1,2, z € Q;, and s € [0,T], the set {(bi(z,s,),li(z, s, ;) : a; € A;} is closed
and convez.



(HY) There is a § > 0 such that for any i =1,2, 2 € H and s € [0, T
Bi(z,s) -n;(z) D [-9,] (2.1)
where B;(z,s) := {bi(z,s,ai) tay € Ai} )
Assumption (H{) and (HZ) are the classical hypotheses used in control problems. Hypothesis
(H{,) expresses some controllability condition but only in the normal direction when the point

belongs to the boundaries shared by the sets €;. In the sequel, we refer to (H) as the intersection
of all the four hypotheses (H{,)—(HE).

BOUNDARY DYNAMICS — In order to define the controlled dynamics and trajectories which may
stay for a while on the common boundary H, we introduce the boundary dynamic as follows: if
s €10,T], z € H we set

bH(Z’ S, CL) = b7‘l (Za S, (aly a9, AUJ)) = :U‘bl(z’ S, al) + (1 - :U’)b2(z? S, 012) s

where 1 € [0,1], ay € Aj, g € Ay. For any z € H and s € [0,7] we denote by

AO(Z? S) = {(Z = (al?OQ’:U‘) : bH(Z’Sa (041,042,,11,)) : 1’11(2) = O}’
and the associated cost on H is

l’H(Z, S, a’) = lH(Z7 S, (0417042“11,)) = /J/ll(Z, S,Oél) + (1 - M)ZQ(Za 87042) .

Notice that the dynamic and cost on H are not symmetric if one swaps the indices 1 and 2 (although
this could be overcome by changing also p).

TRAJECTORIES — We are going to define the trajectories of our optimal control problem by using
the approach through differential inclusions which is rather convenient here. This approach has
been introduced in [34] (see also [1]) and has become now classical.

Our trajectories X ¢(-) = ((Xa,6)1,(Xau)2, .-, (Xo1)n)(-) are Lipschitz continuous functions
which are solutions of the following differential inclusion

X, 4(8) € B(Xpi(s),t —s) forae sc[0,t); Xu4(0) =z (2.2)
where
B; if Q;
Bleys) = { D159) iz e (23)
co(Bi(z,5) UBs(z,s)) ifzeH,

the notation @o(E) referring to the convex closure of the set £ C RY. We point out that if the
definition of B(z, s) is natural when z € €, it is dictated by the assumptions to obtain the existence
of a solution to (2.2) for z € H (see below).

As we see, our controls a(-) can take two forms: either a(s) belongs to one of the control sets
Aj;; or it can be expressed as a triple (aq, a9, ) € Ay X A2 x [0, 1]. Hence, in order to define globally
a control, we introduce the compact set

AZ:A1 XAQX [0,1]



and define a control as being a function of L*°(0,¢; A) which can be seen as a subset of A :=

L*>(0,T; A). Let us define
&= {s € (0,t) : Xg(s) € Qi}, Ey = {s € (0,t) : Xpu(s) € 7-[},

where actually these sets depend on (z, t) but we shall omit this dependence for the sake of notations.
We then have the following

Theorem 2.1. Assume (Hg,), (HY), (H2) and (H},). Then

(i) For each x € RN, t € [0,T) there exists a Lipschitz function X, : [0,t] — RN which is a
solution of the differential inclusion (2.2).

(i) For each solution X;(-) of (2.2), there exists a control a(-) € A such that for a.e. s € (t,T)

Xoa(s) = Z bi(Xa(s),t — s,0i(s))1g,(s) + by (Xa(s),t — 5,a(s)) g, (s) (2.4)
i=1,2

where a(s) = (ax1(s), aa(s), 1(s)) if Xus(s) € H.
(iii) Ife(-) = ni(-) or na(-) we have
b (Xaa(5),t — 5,0(5)) - €(Xas(s) =0 for ae. s €y .
In other words, a(s) € Ao(Xu4(s),t — ) for a.e. s € Ex.

Proof. The proof is done exactly as in [6], the only minor modification consisting in adding the
time variable in the vector field b. U

REGULAR AND SINCULAR DYNAMICS — It is worth remarking that, in Theorem 2.1, a solution
Xz t(+) can be associated to several controls a(-). So, to set properly the control problem we
introduce the set 7, ; of admissible controlled trajectories starting from x,

Top = {(Xz4(-),a(")) € Lip(0,;RY) x A such that (2.4) is fulfilled and X, ;(0) =z}
Given (z,s) € H x [0,t], we call singular a dynamic by(z, s,a) with a = (a1, a2, u) € Ap(z, s) when
bi(z,s,a1) -ni(z) <0, ba(z,s,a2) n2(z) <0.

Conversely, the reqular dynamics are those for which the b;(z, s, ;) - n;(z) > 0 (i = 1,2). The set
of regular controls is denoted by

Ageg(z’ S) = {CL = (OZl,CMQ,/L) € AO(Z’S) ; bi(Z,S,Oéi) : nz(z) > 0? 1= 152} ;
and the regular trajectories are defined as

Toid = {(Xm(-),a(-)) € Tor: forae. s €&y, a(s) € Ag®(X(s),t — s)} .

xT



THE COST FUNCTIONAL — Qur aim is to minimize a finite horizon cost functional such that we
respectively pay [; if the trajectory is in €);, and [ if it is on H. The final cost is given by g.

More precisely, the cost associated to (X 4(-),a) € Ty is

t
J(z,t; (Xpt,a)) == / U(Xapu(s),t — s,a(s)) ds + g( Xz (1)) (2.5)
0
where the Lagrangian is given by

E(Xm(s), t—s, a(s)) = Z l; (Xm(s), t— s, ai(s))]lgi(s) + Iy (Xx,t(s),t — s, a(s))]lgH (s). (2.6)
i=1,2

THE VALUE FUNCTIONS — For each # € RY and ¢t € [0,T), we define the following two value
functions

U™ (z,t) := inf J(x, t; (Xpy, 2.7
@1)= o, ol (0t (e ) &%)
Ut (z,t) := inf J(z,t; (Xpp, a)). (2.8)

(Xo,t,0)€TE

A first key result is the Dynamic Programming Principle (the proof being standard once
we have the definition of trajectories, we skip it).

Theorem 2.2. Assume (Hg,), (HS), (HZ) and (HY,). Let U=, U" be the value functions defined
in (2.7) and (2.8). Then for each (x,t) € RN x [0,T), and each T € (0,t), we have

U™ (z,t) = inf {/OT ((Xpu(s),t —s,a(s)) ds + U™ (X (1), — 7')} (2.9)

(Xz,t,0)ETz ¢

Ut (z,t) = inf {/ 0(Xapu(s),t — s,a(s)) ds + U (Xg4(7),t — 7')} . (2.10)
(Xu,t,0)eT,E Lo

We will prove that both value functions are continuous, but here it is not so immediate since
we only assume controlability in the normal directions. We postpone this proof which uses some
comparison for the semi-continuous envelopes.

3 The pde formulation of the problem

In order to describe what is happening on the hypersurface H, we shall introduce two ”tangential
Hamiltonians”, namely Hr, H;*®. We introduce some notations to be clear on how they are defined.

We shall consider the tangent bundle TH := UzeH({z} X TZH) where T,H is the tangent space
to H at z (which is essentially RV=1). Thus, if ¢ € C*(H), and z € H, we denote by Dy¢(x) the
gradient of ¢ at x, which belongs to T, H.

Also, the scalar product in T,H will be denoted by <u,v> (we drop the reference to T,H for
simplicity, since no confusion has to be feared in the sequel). In this definition, both vectors u,v



should belong to T,H for this definition to make sense. Hence, to be precise we should use the
orthogonal projection P, : RN — T,H when at least one of the vectors u,v lives in RY, but we
shall omit this point when writing (by(x,¢,a), Dy¢(z,t)) . Indeed, for any control a in Ag(z,t) or
Ay (x,t), by(z,t,a) can be identified with Pyby(z,t,a) since by/(z,t,a) has no component on the
normal direction to H, by definition. To avoid confusions, the notation u - v will refer only to the
usual euclidian scalar product in R¥.

The Hamiltonians Hp, H® will be written as Hy/Hy®(z,t, p) where ((z,p),t) € TH x [0,T].
They are defined as follows:

HT(x7tap) = ASI(lp) { - <bH(m,t,a),p> - l’H(I’,t,a)} ) (31)
o(x,t

Hy®8(z,t,p) = Argél(p ) { = (by(=,t,a),p) — ln(z,t,a)}, (3.2)
o T,

where Ag(z,t), Ay®(x,t) have been defined above.

The definition of viscosity sub and super-solutions for Hy and H;® have to be understood on
‘H as follows:

Definition 3.1. A bounded usc function u: H x [0,T] — R is a viscosity subsolution of
ug(x,t) + Hp(x,t, Dyu) =0 on H x[0,T]

if, for any ¢ € CH(H x[0,T)) and any mazimum point (x,t) of (z, ) = u(z,s)—d(z,s) in Hx[0,T],
one has
¢ (x,t) + Hr(z,t, Dyo(z,t)) <0.

Notice that of course, (z, Dy¢(z,t)) € TH, so that this is coherent with the definition of Hr.
A similar definition holds for Hy®, for supersolutions and solutions. Of course, if v is defined in a
bigger set containing H x [0, T (typically RY x [0,T]), we have to use ulyx[o,7] (the restriction of
u to H x [0,7T]) in this definition, a notation that we will omit when not necessary.

For the sake of clarity we introduce now a global formulation involving a complementary Hamil-
tonian on the interface H. To begin with, we recall that a subsolution (resp. a supersolution of
(1.1) when H(x,t,p) = Hy(z,t,p) if x € Q; and H(x,t,p) = Ha(x,t,p) if x € Q9 is a bounded usc
function u (resp.a bounded lsc function v) which satisfies

ut + Hi(x,t,Du) <0 in Oy x (0,7),
ug + Ho(x,t, Du) <0 in Qy x (0,7), (3.3)
up + min{H (z,t, Du), Hy(z,t,Du)} <0 inI x (0,7),
vy + Hi(x,t, Dv) > 0 in Q; x (0,7),

resp. vy + Ho(x,t, Dv) > 0 in Q9 x (0,7, . (3.4)
vy + min{H; (x,t, Dv), Hy(z,t,Dv)} >0 inI x (0,7T)

Recall that since each b; is defined on Q; x (0,T) x R, then H; is well-defined on T' x (0, 7).
Next we have the following definition.



Definition 3.2. We say that a bounded usc function u is a subsolution of
up +H (z,t, Du) = 0 in RY x (0,7) (3.5)
[ resp. w+H"(z,t,Du) =0 in RY x (0,T) | (3.6)
if it satisfies (3.3) and
ug(x,t) + Hp(z,t, Dyu) <0 on H x[0,T],

[ resp.  wi(w,t) + HF®(x, t,Dyu) <0 on H x[0,T], ]

in the sense of Definition 3.1.
A lsc function v is a supersolution of (3.5) or (3.6) if it satisfies (3.4).

Notice that in this definition, a complementary condition is required only for the subsolution,
nothing more is added for the supersolution.

3.1 Properties of U" and U™

We shall prove later on that both U™ and U~ are continuous, but for the moment we have to
treat them a priori as discontinuous viscosity solutions of some problem. We recall that, for any
bounded function v, the lower and upper semi-continuous envelope are defined by

ve(z,t) := lminf v(z,s), v*(z,t):= limsup v(z,s).
(z,5)=(z.t) (z,5)—=(,t)
Then, as we mention in the introduction the definition of viscosity solution for discontinuous solu-
tions is modified by taking (U™ ), instead of U~ for the supersolution condition, and (U™)* instead
of (U™) for the subsolution condition.

We claim that the value functions U~ and U™ are viscosity solutions of the Hamilton-Jacobi-
Bellman problem (1.3)-(1.5)-(1.6), while they fulfill different inequalities on the hyperplane #.

Theorem 3.3. Assume (H,), (Hg) and (H). Then value functions U~ and U* are both viscosity
solutions of uy + H(x,u, Du) = 0. Moreover, U~ is a subsolution of u; + H ™ (x,t, Du) = 0 while
U™ is a subsolution of uy +H" (x,t, Du) = 0.

Proof. The proof follows the arguments of [6, Thm 2.5] with some adaptations due to the fact that
U~,UT can be discontinuous. We briefly show how to adapt the arguments. In order to prove
that (U7 ), is a supersolution we consider a point (x,t) where (U™), — ¢ reaches its minimum, ¢
being a smooth test function. If z belongs to some 2;, the proof is classical since everything can
be done in €; around the time ¢.

Thus we assume that = € ‘H and that the minimum is strict in B(x,r) X (t — 0,t + o) for some
r,o > 0. There exists a sequence (x,,t,) € B(z,r) X (t — 0,t + o) which converges to (z,t) such
that U™ (2, t,) — (U7 )4(x,t) and by the dynamic programming principle,

Ot = ] O Ot 0) a1 0 (i =)

9



where 7 < ¢. Using that (i) U™ (2, t,) = (U™ )« (, t)+0, (1) where 0,,(1) — 0, (i) U™ (Xy, 1, (7), tn—
7') >U; (X:cn,tn (1), tn — 7') and the maximum point property, we obtain

Oz, tn) + op(1) > inf { /OTE(Xxn,tn(s),tn — s, a(s)) ds + ¢(an,tn(7'),75n - 7')} .

(Xﬂcn stn 7a)€7—5€n tn

Now we use the expansion of ¢(X,, 4, (7),tn — 7), and noting X(-) = Xg,4,(-) for the sake of
notations, we rewrite the inequality as 0,(1) < sup(x q) [y 6[#](s) ds where

ol6](s) =

(= B(X ().t = 5.01(5)) = b1(X(5), b — 5,01(5)) - DH(X(5), by — ) + 6u(X(5), by — 5) ) 1, (5)
(= B(X(),tn = 5,05(5)) = b2(X(5), tn = 5,0(5)) - DH(X(5), b = 5) + d1(X(5), tn — 5) ) 1, (5)
n )t = 5) + Gi(X(5), tn — 5) ) ey (5)

— Iy (X(s),tn — s,a(s)) — b (X (s),tn — s,a(s)) - DH(X
_ ))

— s, DH(X ))
>>

Gu(X (), tn — 8) + Hyp (X( )tn — 5, DH(X

IN

o~

Gu(X (), tn — ) + Hy <X 8),tn — 5, DP(X 1e, (s
)

(
) tn
) ]152

(
+ | ¢e(X(s),tn —s) + Ha( X(s

_|_

NN

]lgH
T

Using that Hq, Hy, Hp < max(Hy, Hy) (only on ‘H for Hr), letting n — oo and then dividing
by 7 and sending 7 to zero, we obtain

max (¢¢ + Hi, ¢y + Ha) (z,t, D(x,t)) >0,

which is the viscosity supersolution condition. The proof for (UT), is exactly the same, with Hr
replaced by H;®, which satisfies also Hy® < max(Hy, Ha) on H.

For the subsolution condition, we have to consider maximum points of (U™ )* — ¢, ¢ being again
a smooth function. If such maximum point are in 21 or €25, the proof is again classical. Hence we
consider the case when (U7)* — ¢ reaches a strict local maximum at (x,t) with x € H, t € (0,7).

Then there exist a sequence (zy,t,) — (x,t) such that U™ (zy,t,) — (U7 )*(x,t) and our first
claim is that we can assume that xz,, € H. Indeed, if x,, € 1, we use assumption (Hé) : there
exists «; such that by (z,t,a1) - ni(z) = 6. Considering the trajectory with the constant control oy

YV (s) =b1(Y(s),tn —s,00) , Y(0) =y,

it is easy to show that 7.}, the first exit time of the trajectory Y from Qi tends to 0 as n — +oo.
By the Dynamic Programming Principle, denoting (Z,,%,) = (X(7}),t — 7}), we have

n

1

U™ (p,tn) < / nﬁ(Y(s) tn — s,00) ds + U™ (T, b)) = U™ (Zp, tn) + 0n(1),
0
where 0,(1) — 0. Therefore U™ (Z,,,,) — (U7 )*(x,t) and &, € H.
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Assuming that z,, € H, we can use again the Dynamic Programming Principle
T
U™ (zp,ty) < / (Xt (8) tn — s,a(s)) ds + U™ (X, ¢, (1), tn — 7),
0

with constant controls a(s) = a; with b;(z,t, a;) - n;(x) < 0. Arguing as above we get
Or(z,t) — bi(z,t,05) - Do, t) — iz, t,04) <O

Moreover, combining Assumptions (HZ,) and (H{,), one proves easily that this inequality holds for
any a; with b;(x,t, a;) - n;(x) <O0.

Taking these informations into account, if we assume by contradiction that
min {¢¢(z,t) + Hi (z,t, Dp(x, 1)) ; ¢(x,t) + Ho(z,t, D(z,t)) } >0,

this means that there exists ay, ag with if by (z,¢,0q) - ny(x) > 0 and be(x,t, ;) - na(xz) > 0 such
that, for i = 1,2
dr(z,t) — bi(z,t,05) - Doz, t) — iz, t,05) > 0.

For (y, s) close to (x,t) and for such ay, s, we set

ba(y, s, ) - na(y)
1(y,5,01) - n1(y) + ba(y, s, a2) - na(y)

ﬁ =
H(y,8) = 5
Then we solve the ode

i(s) = pf(x(s), t — s)br(x(s),t — s, 00) + (1 — pf(2(s),t — s))ba(x(s),t — s, 2) .

By our hypotheses on by and bo, the right-hand side is Lipschitz continuous so that the Cauchy-
Lipschitz applies and gives a solution z(s). Moreover, by our choice of pb, it is clear that 0 < pf < 1
and that z(s) - ny(z(s)) = 0, which implies by Gronwall’s lemma that s — z(s) remains on H, at
least until some time 7 > 0. Using again the Dynamic Programming Principle and the usual
arguments, we are lead to

(1) <¢t(x, t) —bi(z,t,0q) - Do(x,t) — U1 (x,t, a1)>
+ (1 — p¥(x,1)) <¢t(:c,t) —ba(z,t,a9) - Do(x,t) — la(x,t, a2)> <0,

a contradiction.

Finally the Hp-inequality follows from the same arguments : in particular, if by (x,t, aq)-ny(z) <
0 and by (z,t, 1) - na(z) < 0, the above pi-argument can be applied readily.

The same proof works also for (UT)*, except that some situation cannot occur since we are
only considering regular dynamics. O

Our next result is a (little bit unusual) supersolution property which is satisfied by U™ on H,
which is done exactly as in of [6, Thm 2.7] once we have the following extension result

11



Lemma 3.4. Let us assume that (Hg) holds and let ¢ € C'(H x [0,T]). Then there exists a
function ¢ € C* (RN X [O,T]) such that ¢ = ¢ in H x [0,T].

Proof. The proof is rather classical so that we omit it. O

We are going to consider control problems set in either €); or its closure. For the sake of clarity
we use the following notation. If z € €;, and o4(-) € L>([0,T]; A;), we will denote by Y (-) the
solution of the following ode

let(s) = bi(Yxi,t(S)at —s,04(s)) Y£7t(0) =zx. (3.7)

Theorem 3.5. Assume (H,), (Hq) and (Hg). Let ¢ € CY(M x [0,T]) and suppose that (x,t) is
a minimum point of (z,s) — (UT).(2,s) — ¢(z,8) in H x [0,T]. Then we have either

A) there exist n >0, i € {1,2} and a control a;(-) such that, Y} (s) € Q; for all s €]0,n] and

(U )u(2,t) = /0 ' LYy (s),t = s,i(s)) ds + (U)LY 4(n),t —n) (3.8)
]03r) it holds
O o(x,t) + Hp®(x,t, Dyo(x,t)) > 0. (3.9)

Proof. Since x € H, by assumption (H}), there exists a regular optimal control a(-) € 7;? such
that

t
Ut @t) = [ H(Xa(s)ot = 5.0() ds + g(Xaa(0)
0
Moreover, by the Dynamic Programming Principle, we have, for any 7 > 0
Ut (a, 1) :/ ((Xps(5),t — 5,a(s)) ds + Ut (X (7).t —7) .
0
We argue depending on whether or not there exists a sequence (7j)x converging to 0 such that

7, > 0 and X, (73,) € H.

If it is NOT the case then this means that we are in the case A) since, for n small enough,
the trajectory X, +(-) stays necessarily either in ©; or in Q9 on ]0,7]. Therefore we can assume for
instance that X, (-) = Y} ;(-) and take 7 = 7 in the above equality.

On the contrary, if IT IS the case, we can use the minimum point property: assuming without
loss of generality that ¢(x,t) = Ut (z,t), we extend ¢ to RY x [0,7] thanks to Lemma 3.4 and

write, for k large enough,
- Th -
3at) = [ H(Xails)t = 50(9) ds+ SNt~ )
0
The rest of the proof is the same as [6, Thm 2.7]: we obtain a contradiction by assuming

¢z, t) + Hp® (3,8, Dyo(z,t)) < —n <0,

using the normal controllability condition (H{,) instead of the more general (and usual) one which
was used in [6]. O
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Remark 3.6. Notice that the alternative above with H;?g only holds for UT, and not for any
arbitrary supersolution (see Theorem 3.9 where Hr is used and not Hy®).

3.2 Properties of sub and supersolutions

Theorem 3.7. Assume (Hg) and (Hp). If u: RY x [0,T] — R is a bounded viscosity subsolution
of ug + H(x,t, Du) = 0, then u is a subsolution of uy + H* (z,t, Du) = 0.

Proof. 1t is enough to check the subsolution condition only on H since the property clearly holds
in each ; by definition.

We recall that u*[zx[o 77 is the restriction of u* to H x [0,T]. Let ¢(-) be a C'-function on H
and (Z,t) a maximum point of u*|3;xj0,7) — ¢ on H x [0, T]. Our aim is then to prove that, for any
a € A)?(z,t) we have

or(z,t) — (b (Z,1,a), Dyd(z,1)) — Iy (Z,t,a) <0. (3.10)

This proof follows [6, Thm. 3.1] so that we only mention here the modifications. First, we extend
¢ by ¢ given by Lemma 3.4. Then for ¢ < 1 and (z,s) € H x [0,T] we consider the function

7 _ _dH(Z)Q_ 2 e ] — _
(2,8) = u(z,s) — ¢(z,8) —ndy(z) = |z — x| —|s —t| ;== u(z,s) —Y(2,5), (3.11)

where dy(+) is the signed distance function from #H which is positive in ©; and negative in Q.
Note that dy is at least C'! because of (Hg,) and Ddy, = —n; = ny on H.

Writing a = (a1, g, it), we assume that we are in the situation when b1 (Z,t, 1) -n;(Z) < 0 (and
the same for index 2), since the case of non-strict inequalities can be recovered by hypothesis (H‘é)
as in Thm. 3.3 (recall that a being a regular control, the opposite signs are forbidden). We choose
1 > 71 where 7 is a solution of the following equation (which has a solution under the assumption
above of strict signs):

¢1(2,1) — b1 (3,1, 1) - (DG(z,1) + ima(z)) — 1 (2,8,01) = 0.

The rest of the proof follows the cited reference: thanks to the penalization terms, for ¢ small
enough, u* — 1. reaches its max at some point (z.,t;) € Qg x [0,T]. Then, using the equation in
Qo x [0,T] or on H leads to

Qgt(j,f) - bQ(jat_, Oé2) : (DQE("E,{) + 771’12((?)) - ZQ(jat_, 042) < 06(1) .
We let € tend to zero first, and then n to 77. Using the specific value of 7 leads to
&t(ja Z) - b’H(i.a t_a a) ’ D(g(i.a Z) - ZH('i.? Ea a) <0,

that we interpret as (3.10) since by (T, t,a) has no component on the normal direction to H and by
construction, Dy (dly) = Dy o. O

The following lemma follows directly from [6, Lem. 3.2]
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Lemma 3.8. Assume (Hg) and (Hg). Let v : RY x [0,T] — R be a Isc supersolution of vy +
H(z,t,Dv) =0 and v : RN x[0,T] — R be a Lipschitz continuous subsolution of uy+ H(x,t, Du) =
0. Then, if x € Q; (i € {1,2}), we have for all o € [0, ]

oNb; . .
v(x,t) > i(n)fe [/ (Ve (s),t —s,05(s)) ds + v (Y, (0 A 0;), t — (0 A 6;)) } ) (3.12)
a;(+),9: [Jo

and

oNb; ) )
u(x,t) < i(n)fg [/ Li(Yy(s),t = s,05(s)) ds + u(Y; (o A 0;), t — (0 A ;) } , (3.13)
;i (+),0; |Jo

where Yit is the solution of the ode (3.7) and the infima are taken on all stopping time 0; such that
Yxi,t(ﬂi) € 08 and 17; < 0; < T; where T; is the first exit time of the trajectory Yo from §; and 7;
is the one from ;.

The following important result highlights the following fundamental alternative: given z € H
either there exists an optimal strategy consisting in entering in €2 or €9, or all the optimal strategies
consist in staying on H at least for a while.

Theorem 3.9. Assume (Hg,) and (Hg). Let v : RY x [0,T] — R be a Isc supersolution of vy +
H(z,t,Dv) = 0. Let ¢ € C(H x [0,T]) and (z,t) be a minimum point of (z,s) — v(z,s) — ¢(z, ).
Then, the following alternative holds:

A) either there existn > 0, i € {1,2} and a sequence xj, € ; converging to x such that v(xy,t) —
v(z,t) and, for each k, there exists a control of(-) such that the corresponding trajectory
Y (s) € Q; for all s € [0,n] and

{L’k,t
n . .
v(xg, t) > / 1i (Y, +(s),t —s, af(s)) ds +v(Y;, ;(n),t —n) ; (3.14)
0

B) or there holds
¢1(x,t) + Hr(z, t, Dyo(z,t)) > 0. (3.15)

Proof. As in [6, Thm. 3.3], we are going to prove that if A) does not hold, then necessarily the
second possibility holds. Up to a standard modification of ¢, we may assume that the max is strict.
For € > 0 we consider the function

dy(2)?

0(z,5) = B(2,5) — dda(2) + TEZ

where dy(+) is the distance function from #H as in the proof of Theorem 3.7.

There are two cases: either for e small enough, the minimum point (z.,t.) lies on H x [0, 7]
and this leads directly to (3.15) as in [6, Thm. 3.3]; or we may assume that for instance, z. € Q;
for € small enough. In this second case, the argument by contradiction in [6, Thm 3.3. - 2nd case]
applies, using Lemma 3.8. U
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4 Uniqueness result

We first prove a local comparison result which is based on auxiliary results in the appendix. To
this end, we denote by Q(”‘“O’to)(r, h) the open cylinder Q(mo’to)(r, h) := B(xg,r) X (to — h,t9) where
0 <tg—h <ty <T, whose parabolic boundary is given by

8,Q010) (1 h) := B(x,7) x {to — h} UB(x0,7) X [to — h,to) .

In the sequel, we assume that zp € H and that, thanks to (H,), r is small enough in order that
there exists a W2>-diffeomorphism ¥ = W (4, such that by setting 2 := \I/(B(xo, 7“))), we have

U(H N B(xo,7)) = {zy =0} N Q.
We denote this assumption by (Hg).

Theorem 4.1. Assume (H7) and (Hg). If u and v are respectively a bounded usc subsolution
and a bounded Isc supersolution of wy +H ™ (z,t, Dw) = 0 in Qo) (r h) . Then

[[(w —v)+ ||L°O(Q(107t0)(r,h)) < [[(u—wv)4 ||L°O(apQ(zo¢o)(r7h)) (4.1)

Proof. We make the change of variable : @(z,t) := u(V™(z),t),

functions 4, v are respectively sub and supersolution of (6.1) with
Hamiltonian H~ associated to

z,t) = v(V(z),t). The
= Q x (to — h,tg), for an

OL=2

bi(x,t,-) == DU(U ™ (2)b; (¥ (2),t,-) , i, t,-) =1V (2),¢,-) fora €Q, t €[t~ h,to).

These dynamics and costs satisfy (H) for some new constants denoted by My, Ly, My, 1y, 5.

We apply Lemma 6.1 which gives (6.2) which is exactly the result we want by making the change
back. O

We now turn to one of our main results, which is the

Theorem 4.2. Assume (Hg,) and (Hp). Let u be a bounded, Lipschitz continuous subsolution of
ug +H™ (2, t, Du) = 0 in RN x (0,T) and v be a bounded, Isc supersolution of v; +H~(z,t, Dv) =0
in RNV x (0,7). If u(z,0) < v(x,0) in RY, then u < v in RN x (0,T).

Proof of Theorem 4.2. We first prove the

Lemma 4.3. For K > 0 large enough, (z,t) == —Kt — (1 + |z|>)Y/? satisfies 1 + H ™ (x,t, D) <
—1.

Proof. We just estimate as follows:
Yy +H (2,1, DY) < =K + My|DY| + My < —K + My + M; .

Hence taking K > My 4+ M; 4 1 yields the result. O
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Using the function ¢ of Lemma 4.3, we introduce, for u € (0,1) close to 1, the function
up(x,t) := pu(z,t) + (1 — p)(x,t). Because of the convexity properties of Hy, Ho, Hr, it satisfies
(up)e + H™ (2,t, Duy) < —(1 — p). Then we consider

M, = sup (uy(z,t)—v(z,1)).
RN x[0,7]
Since u,(x,t) = —o0 as [x| — oo (uniformly with respect to t € [0,7]) and v is bounded, this “sup”
is actually a “max” and it is achieved at (x¢, ). Notice also that M,, — M := SUDPRN x (0,77 (u(x, t)—

v(w,t))) as y — 1. We argue by contradiction, assuming that M > 0, which implies that M, > 0

for p close enough to 1. From now on, we assume that we have chosen such a p and therefore
M, > 0.
m

Next we remark that to > 0 since u,(x,0) —v(z,0) <0 in RN and we first treat the case when
zo € H. In that way, since (H) holds, we can choose 7 > 0, small enough in order that (H))
holds. On the other hand, we choose any h such that tg — h > 0, say h = t.

The next step consists in introducing the function
uu(x,t) == uy(z,t) + (1 - ,u)Q(t —tg— |z — ﬂ:0|2) .

We claim that @, is a subsolution of (,); + H™ (z,t, Du,) = 0 for p close enough to 1. Indeed, a
direct computation gives

()t + 1™ (2, 0y, Duy,) < (up)e + H (2,0, Duy) + (1 - N)Q{l + 2Myr}

—(1—p) + (1= p)*{L +2Myr} <0

IN A

for p sufficiently close to 1.

Thus, we use Theorem 4.1 with the pair of sub/supersolution (%, v) and we obtain in particular
M, = up(zo,to) — v(zo, to) = Upu(wo,to) — v(wo,t0) < (U — V)4l oo (9,000 (1,1)) -
However, on the parabolic boundary (u, —v) < M. Indeed, on 0B(x,r) x (to — h,tg), we have
au(z,t) —v(z,t) = uy(z, t) —v(z, t) + (1 — ,u)2(t —ty — 7’2) <M,-(1- ,u)27“2 ,
while on B(zg,r) x {to — h},
Up(x,t) —v(x,t) = uu(x, t) —v(z,t) + (1 - ,u)2(t —tg— |z — x0]2) <M, —-(1- ,u)2h .

This gives a contradiction.

We can argue in the same way if x¢g € 21 or zg € o : in fact this is even easier since we
may choose r such that either B(zg,r) C Q1 or B(xg,r) C Q9; with this choice we only deal with
classical Hamilton-Jacobi Equations without discontinuities and we have just to apply classical
results.

The contradiction shows that M < 0 and the proof is complete. U

As a consequence, we have the following
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Theorem 4.4. Assume (H,), (Hg) and (Hg). Then
(i) The value function U™ is continuous and the unique solution of

ug +H ™ (x,t, Du) =0 in RN x (0,T), (4.2)
u(z,0) = g(z) in RN . (4.3)

(i1) U™ is the minimal supersolution of (1.3)-(1.5)-(1.6)-(4.3) and U™ is the maximal subsolution
of (1.3)-(1.5)-(1.6)-(4.3).

Proof. The proof of (i) is a direct consequence of Theorem 3.3 and 4.2 : indeed (U™ )* and (U™ ), are
respectively sub and supersolution of (4.2) by Theorem 3.3 and since (U™ )*(x,0) = (U™ ).(z,0) =
g(x) in RY, Theorem 4.2 implies that (U~)* < (U~), in RY x [0,T], which implies that U~ is
continuous because (U™), < U~ < (U7)* in RN x [0,T] and therefore (U~), = U~ = (U7)* in
RY x [0,T]. As a consequence U~ being both upper and lower semicontinuous, it is continuous.
The uniqueness is a direct consequence of Theorem 4.2.

For (ii), the first part is also a direct consequence of Theorem 4.2 since any supersolution of
(1.3)-(1.5)-(1.6)-(4.3) is a supersolution of (4.2)-(4.3).

Finally, for U, we follow the same idea as for U™ above and of [6] : if u is a subsolution of
(1.3)-(1.5)-(1.6)-(4.3), then by Theorem 3.7, it satisfies

w, + Hp®(z,t,Du) <0 onH,

and in order to compare it with the supersolution (U™),, we use Theorem 3.5 (instead of Theo-
rem 3.9 for the supersolutions in the case of H™) together with the regularization of the appendix
(done on H™ and not H ™). We skip the details since it is a straightforward adaptation of the proof
of Theorems 4.1-4.2.

Notice that, as a consequence, we have (U)* < (U™), in RY x [0, T] since (U™)* is a subsolution
of (1.3)-(1.5)-(1.6)-(4.3), which implies the continuity of U¥.

Remark 4.5. We emphasize the key role of Theorem 3.5: U™ is the only supersolution of the H™-
equation for which we have such a property and this is why we do not have a complete comparison
result for this equation (contrary to the H™ one).

O

5 Stability

c JE
al'

3 ’ g5
7 7
converging locally uniformly. Let us begin with a standard stability result for sub/super solutions.

In this section we prove stability results when we have a sequence of dynamics and costs b

Theorem 5.1. Assume (Hg,) and that, for all e > 0, b5,5,15,15 satisfy (HL)-(HE,) with constants
uniforms in €. Let H (i = 1,2) and H5 be defined as in (1.4) and (3.1) respectively with these
dynamics and costs. If

(b5, 5,15,15) — (b1, ba, 11, 13) locally uniformly in RN x [0,T] x A,

¢ — g locally uniformly in RY
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then the following holds

(i) if, for all e > 0, ve is a lsc supersolution of
ug + HZ (x,t, Du) = 0 in RN x (0,T), (5.1)
then v = liminf, v, is a lsc supersolution of
ug + H ™ (x,t, Du) = 0 in RN x (0,T), (5.2)
where H™ is defined as in (1.4) and (3.1) through the functions (b1, b2) and (I1,[2).

(ii) If, for e > 0, u. is an usc subsolution of (5.1) and if by, by satisfy (H¢) then 4 = limsup® u.
is a subsolution of (5.2).

We point out the unusual form of this stability result : if for supersolutions, the half-relaxed
limit result holds true, it is not the case anymore in general for the subsolution. This is related to
the Hr inequality which sees only the subsolutions on H. For exemple, if H = {x € RV : zy = 0}
and if u.(z) = sin(xy/¢e), then limsup® u.(z,0) = 1 on H while u.(z,0) = 0. In this example it is
clear that the lim sup™ u. comes from the value of u. outside H and it is clear that one cannot recover
an Hp-inequality which sees only the values on H. Assumption (H‘é) prevents these pathological
situations to hold.

Proof. This proof follows almost completely from standard arguments for stability results on viscos-
ity solutions (see, for instance [5]): we apply the standard stability results in RY for the Hamiltonian
defined in the introduction, and in H for Hy. Since we can flatten the boundary this last result is
essentially a result in RV~

The only case that need to be detailed is the proof of (ii) and more precisely u fulfilling the
inequality u; + Hp(z,t, Du) < 0 on H. To do so, we use the

Lemma 5.2. Under the assumptions of Theorem 5.1 (ii), H5 converges to Hr locally uniformly.

We postpone the proof and return to the proof of Theorem 5.1 (ii). We first remark that,
thanks to (H,), we can argue as in the proof of uniqueness and suppose that we are working with
H = {zn = 0} (see assumption (Hg) and its consequences).

If € CL(H x [0,T)) and if (z{,t0) is a strict local maximum point of u(y’,0,s) — ¢(y’,s) in
H x [0,T], our aim is to prove that

¢1(x0, to) + Hr ((0,0), to, Dué(x, o)) <0 . (5.3)

By the definition of lim sup® u., there exists a sequence (Z.,t.) converging to (x(,0,ty) such that
a(xh,0,to) = limg ue (e, t.). If (Z-)n # 0, we set K. = |(Z.)n|""/?, otherwise K. = ¢~!. Notice
that K, — +oo as e — 0.

We consider the function 9. (z,t) := u-(z,s) — ¢(2', s) — K. |xn|. By classical techniques, using
that ¥ (Z.,t.) — u(2’,0,ty) — ¢(a’,ty) (this key property justifies the choice of K.), one proves
easily that there exists a sequence (., t.) of maximum points of 1. which converges to (z(,0,to).
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Ifz. € Q Cc {z € RN : 2y >0}, z — |zy| is smooth in a neighborhood of z. and, since u, is
an usc subsolution of (5.1), we have

¢t(xe,2707t6) + Hf(.%'g,tg,D'H(ﬁ(.%';,O,te) + KeeN) < 0

but, recalling that K. — +o00 as ¢ — 0, this inequality cannot hold for € small enough because of
(H{). To be more precise, since the b5 converge locally uniformly to b; which statisfy (HY), we
can take a uniform § = ¢ in Lemma 6.3 which proves the claim.

In the same way x. cannot be in 5. As a consequence, x. is on H and is a maximum point
of (v/,8) = us(y',0,s) — ¢y, s). But u, is an usc subsolution of (5.1), therefore the H5-inequality
holds and we conclude in the classical way using Lemma 5.2.

Now we prove Lemma 5.2. By the definition of HF,

H%(z,t,p) = ASl(lpt) { — <b%($,t,a),p> - l%(x,t,a)}.
olx,

IfxeH,te (0,T) and if (x¢,t.)c is a sequence in H x (0,T") converging to (x,t) and if p. — p, we
use this definition to write

Hja“(xmtmpa) = _<b§;{($e7te7ae)7pa> - l’?—[(xaataaae) > _<b’€;{($67t67a)ape> - l’aﬂ(xmtma) (5-4)
for any a € Ag(x.,t).
Again by definition, we have
by (Teste, ac) = pebi(we, te, ) + (1 — pe)ba(ze, tey 05)

and extracting subsequences, we can assume that b3, (z., ., a.) converges to by (x,t,a). In the same
way, 15,(zc,te,a) — ly(x,t,a). It remains to show that

Hrp(z,t,p) = —<b7.l(x,t, d),p> —ly(z,t,a) .

This can be done using Inequality (5.4) and the arguments of Lemma 6.5 : if

HT(x,tap) = —<b7{($,t,d),p> - Z’H(x,tad) )

we can build a sequence a. € Ag(x.,t.) such that

—<b§_[(x€,t€,d€),p€> - l’?—[(xsatsade) — —<bq.[($,t,&),p> - lq.[(x,t,&) .

Passing to the limit in the inequality (5.4) with a = a., we have the desired conclusion. U

We now turn to the stability of the minimal and maximal solutions. To do so, we denote by
=t [resp. T, 7] the set of admissible [resp. admissible and regular] trajectories associated to the

dynamics b5, ¢ = 1,2. We also define the costs functionals J° as in (2.5), but with ¢ and ¢°.

Lemma 5.3. Under the assumptions of Theorem 5.1, if for any e > 0, (X®,a%) € Ty, the following
holds
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i) There exists a subsequence (X°",a*"), converging to an admissible trajectory (X,a) € Ty+.
More precisely, X — X wuniformly in [0,T] and

J(x,t; (X, a™)) — J(x,t, (X, a))  uniformly in [0,T].

it) If, moreover, (X¢,a%) € 7;3‘%’5 for any € > 0 (i.e., the trajectories are regular), then we have

reg

a subsequence for which the limit trajectory is also reqular: (X,a) € T, ;.

iii) The results in i) (and i) ) hold true also if we assume that for each € > 0, the trajectories
(X<, 0%) € Top. (€ To5.), and we assume that (zc,t.) — (x,t) ase — 0.

Proof. The proof of i) is almost standard and we only provide it for the reader’s convenience. On
the contrary, the proof of ii) reveals unexpected difficulties (but which come from the particular
features of the control problem).

PROOF OF i) — Since we want to pass to the limit both on the dynamic and the cost, we rewrite
the differential inclusion in a different way, taking into account both at the same time.

We fix (z,t). Since the trajectories go backward in time, we introduce the variable o(s) :=t—s,
starting at o(0) = ¢t. Then, for any € > 0, using the admissible trajectory (X¢,a%) we set

Ye(s) := /08 fs(Xa(T),O'(T),aa(T)) dr

where the Lagrangian ¢¢ is defined as in (2.6), but with {§,15. In order to take into acount both X¢
and Y¢ at the same time and the function o(-), we consider the mixed variable Z := (X,Y,0) €
RY x R x [0,7T], and translate the differential inclusion in terms of Z.

To do so, we use (H?é) and introduce, for i = 1,2, the sets
BL;(Z) := {(bj(X,0,0;),[{(X,0,05), 1) : a; € A; }

BLE(2) = BL:(2) if X €,
" |®@(BL{(Z)UBL5(Z)) if X € H.

It turns out that the triple Z¢ := (X¢,Y*¢, o) is a solution of the differential inclusion
Z%(s) € BL? (Z%(s)) forae. s€[0,t), with Z5(0) = (x,0,t).

We first notice that since the b5, are uniformly bounded, the Z¢ are equi-Lipschitz and equi-
bounded on [0,7]. Therefore we can extract a subsequence (denoted by Z°) which converges
uniformly on [0,7] to some Z = (X,Y,0). Moreover, for any given § > 0 and for £ > 0 small

enough, we have, for any s € (0, t)
BEE"(Z%) C Bﬁ(Z) + (5BN+2 ,
where By is the unit ball in RV+2, centered at the origin. Using this information, it is immediate

that Z(s) € BL(Z(s)). In particular the limit trajectory is admissible: there exists a control a(:)
such that (X, a) € Tz+. (See Filippov’s Lemma [1, Theorem 8.2.1] or the proof of Theorem 2.1 in

[6])-
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We deduce also that necessarily,
Yer(s) = Y(s) = / ((X(r),0(7),a(r)) dr  uniformly in [0,¢].
0

Finally, since g¢° — ¢ locally uniformly in R and X¢* — X uniformly on [0, 7], we deduce that
J(x,t; (X, a®)) converges to J(x,t, (X, a)) uniformly with respect to ¢t € [0, T].

PROOF OF ii) — The difficulty comes from two facts: the first one is that we have to deal with
weak convergences in the b5, 05,-terms but the problem is increased by the fact that some pieces
of the trajectory X (-) on H can be obtained as limits of trajectories X¢(-) which lie either on H,
Q1 or Q. In other words, the indicator functions 1{x-cy3(-) do not converge to 1yxeyy(+), and
similarly the 1{x-cq,}(-) do not converge to 1yxcq,}(-). We proceed in three steps.

Step 1. We first recall that

X€(3) = Z bf(Xa(s),a(s),af(s))]l{xseﬂi}(s) + b5, (XE(S),O'(S),aE(S))]l{Xse’H}(S)
i=1,2

converges weakly (i.e. in L>°(0,7T") weak—) to

X(s) =Y bi(X(s),0(s), i) Lixea,(s) + bu (X (s),0(s), a(s)) Lixeny(s) (5.5)
i=1,2

for some control a(-) such that (X,a) € T, ;. This weak convergence does not create any difficulty
if X(s) isin ©; for ¢ = 1,2 but it is a little bit more complicated if X (s) € H since the term
by (X (s),0(s),a(s)) Lixeny (s) is a weak limit of

D b5 (X5(s),0(s), 05 () Lixeea () Lxeny (s) + b5 (X (5), 0(5), a°(5)) T {xeeny (5) L (xeny (5)
i=1,2

and we have to check that both terms cannot generate singular strategies. In order to examine
carefully the mechanism of the weak convergence on H, we write, for 0 <7 <t

Xe(r)—x = Z /OT bf(Xe(s),a(s),ai(s))]l{xgegi}(s) ds—l—/OT by (Xe(s),a(s),as(s))]l{xsey}(s) ds,

i=1,2

and we use a slight modification of the procedure leading to relaxed control as follows. We write
/ b1 (X5(s),0(s),05(s)) Lixeeq,(s)ds = / /A b (X5 (s),0(s), 1) vi(s, daq)ds,
0 0 1

where v{(s,-) stands for the measure defined on A; by v{(s, ) = 6oz (E)lixecn,y(s), for any
Borelian set £ C A;. Similarly we define 5 and v4, for the other terms. Notice that vy is a bit
more complex measure since it concerns controls of the form a = (ay, a9, 1) on A, but it works as
for 1 so we omit the details.

These measures are uniformly bounded in ¢ since they all have a total mass less than (or equal
to) one. Hence, up to successive extractions they all converge weakly to some measures vy, vo, V.
Since the total mass is v{ + v5 + 1§, = 1, we obtain in the limit vy 4 5 + 13y = 1. Using that (also
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up to extraction form the proof of ) above), X¢ converges uniformly on [0, ¢] and the local uniform
convergence of the b, we get that

/ b (X°(s),0(s),on) vi(s, day) = b1 (X (s),0(s), 1) vi(s, day), weakly in L(0,T) .
Aq e Aq

Introducing 71 (s) := fAl v1(s, day) and using the convexity of A; to gether with measurable selec-

tion argument (see [1, Theorem 8.1.3]), the last integral can be written as by (X (s), o(s), aq (s))mi(s)
for some control a% € L*°(0,T; Ay). The same procedure for the other two terms provides the con-
trols ab(-), af(-) and functions my(-), m%(-). In principle, those controls can be different from a; (-),
as(-) and a(-) but this will not be a problem since o (-), ag(-), a*(-) are just intermediate controls

which are used to prove that the strategy a(-) is regular.

Step 2. We then deal with the b;-terms. If dg,(x) denotes the distance from x to €; then
dq,(X°¢) is a sequence of Lipschitz continuous functions which converges uniformly to dg,(X) and,
up to an additional extraction of subsequence, we may assume that the derivatives converges
weakly in L™ (weak— convergence). As a consequence, % [do, (X#)] 1 xepy converges weakly to

d
&5 [do, (X)) L ixery-
In order to use this convergence we have to compute % [dgi(Xa)]. Using the extension of n;

outside H in such a way that Ddg,(z) = —n;i(z)L{,cq,}, together with the regularity of (2; and
Stampacchia’s Theorem we have

d

ds

[do,(X®)] = X4(s) 1 (X°(s)) L xeeq;)(s) for almost all s € (0,7).

Indeed, on one hand , the distance function is regular outside H while, on the other hand, X £(s) -
n;(X¢(s)) =0 a.e. on H. Therefore the above convergence reads, for i # 7,

XE(s) - 13 (X5 () (xeeq;) ()L xeny () — X(s) - mi(X () Lxea,y (5)L (xeny(s) = 0
in L(0,T) weak *, or equivalently using the above expression of X¢(s),

b?(Xa(S),O'(S),Oé;(S)) 1 (X°(8))Lixeeq;} ($)Lixeny(s) — 0 in L%(0,T) weak— x .
This implies that for i = 1,2

b; (X(s),a(s),aﬁ(s)) ‘n;(X(s))m(s) =0 a.e. on {X(s) e H}, (5.6)

)

which means that, in these terms, the involved dynamics are regular since they are tangential
(provided we take the ozg as controls).

Step 3. We are now ready to prove that (X,a) € T;ﬁg, i.e. the dynamic in the by-term of (5.5) is
regular. To do so, we introduce the convex set of regular dynamics for z € ‘H and 0 < s < t that
we denote by

K(z,8) = {bu(z,5,a:) ,ax € Ay®(z,5)} C RN .

We notice that, for any z € H and s € [0,T], K(z,s) is closed and convex, and the mapping
(z,8) — K(z,s) is continuous on H for the Hausdorff distance. Then, for any 1 > 0, we consider
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the subset of [0, ] consisting of all times for which one has singular (n-enough) dynamics for the
control a(-), namely

Eg’lng — {s € [0,t] : X(s) € H and dist <b7.[(X(s),t —s,a(s)); K (X(s),t — 5)) > 77}

and we argue by contradiction, assuming that, for some n > 0, |[E" | > 0.

sing

If we take s € E"

sing’
separating by (X (s),t — s,a(s)) from K(X(s),t — s) and we may construct an affine function U, :
RY — R of the form Wy(z) = ¢(s) - z + d(s) such that

since K(X(s),t — s) is closed and convex, there exists an hyperplane

U, (bH(X(s),t - s,a(s))> —lif s e Esmg, U, > +1on K(X(s),t—s).

Since the mapping s — by (X (s),t — s,a(s)) is measurable and s — K (X(s),t — s) is continuous
(this can be seen as a consequence of Remark 6.7), we can assume that the coefficients c(s), d(s) are
in L (they are bounded because the distance i > 0 is fixed). Hence we may consider the integral

I ::/0 (Us(X5(s))Lgn (s)ds.

smg

On the one hand, since Uy is an affine function, by weak convergence of X¢ as ¢ — 0 and the fact
that X = by, when s € E__, we have

sing’

I€—>/ )1 s"mg( )ds:/Ot‘I’s<bH(X(S)7t—370(3))>]1Eging(3)d3< —[Edngl <

On the other hand, we can also use the decomposition

t
I° :/ c(s)Lpn Z bs )(8 Oé;:)]l{XEeQi}(s) ds
slng
0 i=1,2 (5.7)
¢ t
4 [ ey, (WX ().t = 5,07 (6D L wecry () ds+ [ d(s) 1y (5)ds.

0 sing 0 sing

Notice that, in the second term above, a(+) is a regular control for the trajectory X¢, and we want

to keep this property in the limit as € — 0. To do so the key remark is the following: fix £ > 0 and
s € [0,t] for each a®(s) € A[™(X®(s),t — s) there exists a a°(s) € A[™(X(s),t — s) such that

b3 (X"(s),t = s,a%(s)) = b3 (X (5), = 5,0°(s)) = 0(1),

where o.(1) represents any quantity which goes to zero as ¢ — 0. Indeed, for ¢ > 0, we can
apply Remark 6.7 for each s fixed and a measurable selection argument (see Filippov’s Lemma [1,
Theorem 8.2.10]) to obtain the existence of the control a(s) € Ay (X®(s),t — s) and then deduce
the estimate by recalling that X¢ converges uniformly to X. Moreover, by construction and using
again a measurable selection argument (see Filippov’s Lemma [1, Theorem 8.2.10]), there exists a
control a,(s) € K(X(s),t — s) such that

c(8)by (X (8),t — s,a4(s)) = aeK(r)r(l%?)’tis) c(s)by (X (s),t — s,a).
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Therefore, using the two above informations, we have

| g ()X (9. 0" (D v (5) s > [y (el (X (5) b= (5) Ly () dsoe(1
(5.8)

Now we can pass to the weak limit in (5.7)-(5.8) using the measures v; and vy;. We obtain

;i_r)r(l)fe Z/O Smg Z/ — s, a;(s))vi(s, dai)—i—/AbH(X(s),t—s,a*(s))uq.[(s,da) ds

i=1,2

sing

t
- A smg

Next we remark that, by (5.6), for i = 1,2

—|—/0 d(s)Lgn (s)ds

Z / — s, i(s))vi(s, day) + /AbH(X(s),t — 8,a4(8))vy(s,da) | ds.

1=1,2

/A' bi(X(s),t — s, ai(s))yi(s, da;) = bl'(X(S),O'(S),Oég(S))ﬂ'@'(S) € K(X(s),t—s)

and by (X (s),t — s,a.(s)) € K(X(s),t — s) by construction. Therefore, since 11 + v5 + vy = 1 and
K(X(s),t — s) is convex, we have

Z/ — s, a;)v4(s, dog) + /AbH(X(S),t—s,a*)uq.[(s,da*) >1

i=1,2

We end up with lim._,o ¢ > |E | > 0 which is a contradiction with the fact that lim I¢ =
smg| = 0 and we deduce that for

almost any s, the limit dynamic bq.[( (s),t —s, a(s)) is regular, which ends the proof.

sing

| < 0 by assumption. This proves that for any n > 0, |

| sing

PROOF OF i) — This result follows by remarking that the arguments above holds true also is we
consider a sequence (z¢,t:) — (z,t) as ¢ — 0. We decided not to write it directly in the general
case for the sake of simplicity. O

Remark 5.4. Through the above proof, it can be easily seen that this stability result extends to the
case when the domain depend on € : indeed the proof is done using (Hg,), reducing to the case when
M = {zn = 0} through Assumption (H). To extend the result, we have to suppose that the Q, Q5
converges in a Cl-sense to Q1,y which means that the V. in (HY) have to converge in C*. Note
that, this convergence has to be assumed W if the required result is the convergence of solutions
(instead of only sub or supersolution).

Finally, we have a stability result for the maximal and minimal solutions:

Theorem 5.5. Let us assume the hypotheses of Theorem 5.1. Then the associated value functions
U_ and U converge respectively to U~ and UT.
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Proof. Let us first remark that the convergence of U_ to U™ follows classically from the stability
and comparison results Theorem 5.1 and Theorem 4.4. Moreover, the same results ensure us that
U* > limsup® Ul. Indeed, we only now that UT is the maximal subsolution of (5.2), therefore
the stability can be applied only to the subsolutions inequality.

In order to conclude we need to prove that Ut (z,t) < lim inf* Ut (x,t) for all (x,t) € RV x[0, T7.
For each € > 0, there exists a (X%, a%) € 7?2%6 such that

Uj(acg,tg) = J%(xe, te; (X5, a%))

and we first consider a subsequence (X, a°") such that liminf U} (z.,t.) = lim U} (z.,,t.,).
Then we use Lemma 5.3, parts ii7): up to another extraction, we may assume that an (2, te,) =
o (e, te,; (X, a5m)) = J(x,t; (X, a)) for some (X, a) € 7,5 Hence,

liminf US (2, t.) = J(z,t;(X,a)) > inf  J(x,t;(X,a)) = U (z,t),
(X,a)eT,

which ends the proof. O

6 Further Remarks and Extensions

The simplified (but relevant) framework we describe above can be extended in several directions
and we start by remarks concerning the different regions (1, s).

Because of the regularity assumptions we impose on the interfaces, there is no difference between
(Hg,) and using a possibly infinite number regular open subsets (£2;); with either 1 < i < K or
1 € N and satisfying the following assumptions

(Hy) For alli # j, ;N Q=0 and RN =, ; for any z € T := RV \ (UZ Qi), there exist
ezactly two indices i,j such that z € ﬁlﬂﬁ_j =Ty 5y Moreover I' := U” Tyigy is Cl in the
controllable case and W™ in the non-controllable case.

Concerning the regularity assumption on I', we point out that, since our key arguments are
local, we are always in a two-domains framework and even in a two-mains framework with a flat
interface. This is why we have chosen to present the paper with just two domains €27 and 5. On
the other hand, this regularity is used through some change of variable and it is necessary in order
that the transformed Hamiltonians satisfy the right assumptions to prove the comparison result.
In the controllable case, the solutions are Lipschitz continuous and it could be enough to have
continuous b;’s and a C' change preserves this property. On the contrary, in the non-controllable
case, the solutions may be just semi-continuous and the Lipschitz continuity of the b;’s is necessary.
Here we need a W2 change to preserve this property.

Because of the same argument, the 2; may depend on ¢ and (this is an other way to formulate
it) even we may assume that the §2; are domains in RY x (0, T) with the same regularity assumption
as the one we use above (one has just to use (Hg) with RY being replaced by RN x (0,7)). This
is a consequence of the fact that, through our change of variable, ¢t and the tangential coordinates
on T play the same role. A corollary of this remark is that if n;(-) = (n¥,n!) € R x R is the unit
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normal vector pointing outwards defined on 0€;, then we have to assume nf # 0. This is required
to avoid, for example, the pathological situation of ; cc RY x (0,T).

As far as the control problem is concerned, it is clear from the proof that we can take into account
without any difficulty : (i) general discount factors (¢;(z,t, ;)), (ii) infinite horizon control problem
with multiple domains in the non-controllable case (extending the results of [6]) and (iii) the case
where one has an additional control problem on I' : here it suffices to check that the proof of
Theorem 3.9 (of [6, Thm. 3.3]) extends to this case. To do so, we make two remarks

(a) The control problem on I' is associated to an Hamiltonian G and (3.15) should be replaced
by
max (¢ (z,t) + HT(x,t,DH¢(x,t)),¢t(x,t) + G(w,t,DH(ﬁ(x,t))) >0.

(b) The proof is going to consider (in the flat boundary case)

(0) :==max{¢y(z,t) + Hi(zo, v(z0), Du(xp) + den), de(,t) + Ha(zo,v(20), Dud(zp) + den),
gbt(x’ t) + G(x’ t DHQS(x’ t) + 56N)}

but ¢¢(z,t) + G (z,t, Dud(z,t)+den) = ¢¢(x,t) + G(z,t, Dyd(z,t)) since the G-Hamiltonian takes
only into account the tangential part of the gradient and this quantity can be assumed to be strictly
negative, otherwise we would be done. Therefore we see that the G-term plays no role in the proof.

To conclude, let us mention that the (interesting) cases of non-smooth I' where the different
regions can be separated by triple junction or the case of chessboard situations are still (far) out
of the scope of this article.

Appendix: the flat interface case

In this appendix, we assume that we are in a local “flat” situation. More precisely, we denote
by € a bounded open subset of RV (we actually have in mind the image of a ball B(z,r) by a
diffeomorphism 1 which purpose is to flatten the interface). We assume that 0 € © and consider

le{$N>O}ﬂQ, QQZ{xN<O}mQ.

We use the notations ' := 94 ﬂan = @ﬂ{x]\/ = 0}, so that Q: Ql UQuUT. Following Section 4,
for 0 < h <ty < T, we denote by Q := Q x (tog — h,tp) and 9,Q = Q x {to — h} UIQ x (tg — h, ty)
its parabolic boundary. We also denote by ey the N-th unit vector in RY.

For i = 1,2, we are given dynamics l~)l and costs l; in each QZ and we define fIZ-, }NIT, H?g
exactly as we did for the same Hamiltonians without the tilde. With the convention of Section 3,
this allows us to consider the problem

Wy +H (z,t,Dw) =0 inQ. (6.1)
In all the following we assume that the dynamics and costs b;,l; satisfy (H¢) with constants

denoted with a tilde: M, Ly, M;, my and 8. Of course, this is the case after our reduction to the
flat case if the b; and [; satisfy (H).

We have the following comparison result for (6.1).
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Lemma 6.1. Assume that the dynamics b; and costs l; satisfy (Hg). If 4 is an usc subsolution of
(6.1) and v a lsc supersolution of (6.1), then

18— 84 ey < 10T = )4l - (6.2)

Proof. As in [6] the first steps consist in regularizing the subsolution. To do so, depending on the
context, we write either z or (2/,zy) where 2’ € RN~! for a point in €. Moreover, for the sake of
simplicity, we will use both notations: H(z,t,p) or H(2',xn,t,p).

STEP 1 — We first define the sup-conv in time and in the z’-variable for @ as follows

i ) 2 — )2 t— 1?2
ta(ot) = e (i, ) — esplc) (22 Y0 2D )

for some (large) positive constant K to be chosen later. By the definition of the supremum, if it is
achived at 3/, 1, we have

/ /12 /(2
— t—t
2"yl —|—‘ | >——ﬂ(x,t),

oy’ ) — Kt
u(y y TN, ) exp( ) ( aQ Ck2

I, 02 _ 12 . . . . .y
and therefore — R atgl < 2||ul|so - Since we want to use viscosity inequalities for u at
(y/,zn,t"), we need these points to be in @ and thanks to the above inequality, in order to do it,

we have to restrict (z,t) to be in
Ou = {x e Q: dist(z,0Q) > (2||a||00)1/2a} X <t0 — bt (2] |so) Y2a, o — (2||12||00)1/2a)> .

Our result on 1, is the

Lemma 6.2. The Lipschilz continuous function i satisfies (iiq); + H™(x,t, Diig) < m(a) in Qq
for some m(«) converging to 0 as « tends to 0.

Proof. We first remark that @, is Lipschitz continuous with respect to time ¢ and to the z’-variable
by the classical properties of the sup-convolution. Moreover, it is Lipschitz continuous also with
respect to the xy-variable thanks to the coerciveness of the Hamiltonian (see also Lemma 6.3

below).

To check that it is a subsolution of the H*—equation, we consider a test-function ¢ and a point
(z,t) where @, — ¢ reaches a local maximum. Then considering a maximum in (z, s) of 44(z,s) —

¢(z, s) leads us to consider a maximum in (z,s,y’,t’) of @(y', zn,t") — exp(Ks) <‘Z:—Qy/‘2 + '8;—5‘2) -

o(z,s). If

+
a2 2

e A e A
o )

oz, t) == a(y, zN,t) — exp(Kt) <
(we still write 3/, ¢’ for the variables where the max is attained for simplicity of notations) we deduce
several things : first, we have a max in 2z’ and s which gives

20y — '
Dyo(x,xy,t) = % exp(Kt),

2t/—t x/_yIQ t_tlz
¢t($’,xN,t):%exp(Kf)—Kexp(Kt)<| — | +| a2| )
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Then, if 2y > 0, we write down the viscosity inequality for @ and H;, the proof being similar
for H2 if xy < 0 and HT if xy = 0 thanks to Lemma 6.5 below.

Using as test function (v, zn,t") — ¢(2', zn,t') + exp(Kt) <‘x;7§”2 + 't;—tf), we have

20t —t ~ 20y — o
% exp(Kt) + Hy <y',ﬂ:N,t', % exp(Kt) + Oy (2, 2N, 1) eN> <0. (6.3)

Notice that, combining the previous results, we have
/|2 |t _ t/|2

/
_y ~
o2 + o2 >+H1(yl,$N,tlaD¢)§0-

o1(x,t) + K exp(Kt) <|x

In order to obtain the right inequality, we have to change 3’ in 2’ and ¢’ in . The only difficulty
to do it, compared to the usual arguments, is the 9, ¢(z’, xn,t')-term in (6.3) which we need to
control. This is done using the

Lemma 6.3. Assume that the dynamics b; and costs l; satisfy (Hg). Then, there exists a constant
Ch such that, fori=1.2 and p = (p/,pn), we have

Hi(z,t,p) > 8|pn| — Car(1+ [P])
where § is given by assumption (HE) and Cp = max{ My, M} in (HY) and (HZ) .

We postpone the proof of Lemma 6.3 and conclude the proof of Lemma 6.2. Using the lemma
for (6.3) yields

|t — 1]

~ ~ /_ /
|00y <57 (CM (% exp(Kt) + 1) L2

exp(Kt)> . (6.4)

On the other hand, by the Lipschitz continuity of b; and the continuity of i1, (in (H%)) we have
(LYo, ¥ p) = Hi(w,tp)| < Lo(ly' = ' + [t = t)lp| + oiuly’ — ' + [t = t])

Hence ¢ (x,t) + H; (m,t,D(b) < r.h.s, where

| /_y/|2 N |t—t/|2

a2

a2

7 / / / 2ly’ — 2’|
r.h.s := —K exp(Kt) + Ly(ly — 2|+ |t — t|)<T exp(Kt) + |(9xN¢D
+u(ly’ =2+ | =) .
Therefore, thanks to (6.4),

/|2 |t—t,|2

7' —y = 2y’ — 2|
rh.s < —Kexp(Kt)< = T + Lyexp(Kt)(ly' — /| + yt/—t\)T
EbeXp(Kt) / ’ / A 2‘y/_xl‘ 2’t/_t’
+7S (ly =2+t —t]) | Cum S T3
LyCy _
+ (ly = a'|+ |t —t]) + m(ly — 2’|+t —¢]) .

5
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Since by construction |y’ — 2| + [t — t| < 2(2i||)/?cx the last line gives the m(«) which appears
in the statement of Lemma 6.2. For the other terms, tedious but straightforward computations
and the use of Cauchy-Schwarz inequality show that they give a negative contribution provided K
is big enough. And the proof of Lemma 6.2 is complete.

Now we turn to the proof of Lemma 6.3. We provide the proof in the case of Hy, it is similar
for Hy. The (partial) controlability assumption (H¢,) implies the existence of controls ay, s € Ay
such that

—Bl(x,t, 041) ey = S >0 s —Bl(x,t, 042) ey = —5.

Now we compute H 1(z,t,p) assuming that py > 0 (the other case is treated similarly).

Fll(x7tap) > —Bl(x,t,al)‘p—[l(ﬂt,t,()él)
> —bl(x,t,al)‘(p,+pNeN)—l1($,t,Oél)
> Opy —bi(a,t,on) - p — Lzt o)
> opn — Culp'| = Cur
the last line coming from the boundedness of by and I;. This concludes the proof. U

STEP 2 — We then define @, := 1, * p. where p.(2/,t) is a standard (positive) mollifying kernel
defined on RY~1 x [0, T as follows

' t

1
’
ps(x 7t) - mp(;v g) )

where p € C*(RY ™! x [O,T]),/ p(y)dy =1, and supp{p} = Brn-14)o,7)(0,1).
RN=1x[0,T

We assume that the support of p. is the ball B(0,¢) so that again, we define the convolution
only in

Qo = {z € Q: dist(z,00) > (2|[i]|c) 2o +e} x <t0—h+(2HﬁHOO)1/2a+a,to - (2Hauoo)1/2a) :
Lemma 6.4. The function v := @5, — m(a)t satisfies vy +H ™ (x,t, D0) <0 in Qqc.

We skip the proof of this lemma which is analogous to the corresponding one in [6] since 1, is
Lipschitz continuous.

STEP 3 — We are now able to prove the comparison result for @ and ¢ in Q. At the level (a,€)
we have to argue in Qa,e First, we point out that for any n > 0, @, — nt is C' with respect to
time ¢ and the xq,...,xny_1 variables and therefore on I' N Qaﬁ it is both a test-function for the
v-inequality and it satisfies a strict subsolution inequality in the classical sense. Thanks to Theorem
3.9 we can argue as in [6, Theorem 4.1] and conclude that v — (g —nt) cannot achieved a minimum
point in I' N Qa .. Moreover, since 4, — nt is a strict subsolution, in N Qa . and QN Qa - the
conclusion follows by standard arguments. Thus v — (4, — nt) cannot achieve a minimum point in
Qa,s and this immediately yields

185, = 0t = ) 4llpm o,y < 1@ =0t = Dl 0,0,
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Letting 1 tend to 0 we obtain |[(ag, — 6)+HL°°(QQ )< Il(ag, — 6)+HL<>°(8PQQ .) - In order to prove the
final result, we have to pass to the limit as ¢ — 0 and then as o — 0. ’

Letting ¢ tend to 0 is easy since @, is continuous (we may even argue in a slightly smaller
domain/cylinder). Therefore

e = (@)t = )41l e 3,y < 0 = (@) = D e
Fix now o > 0 and (y,5) € Qq,. For all 0 < a < o we have

(ta(y, s) —m(a)t = o(y,s))+ < |[[(ta —m(@)t =) 1]l ,0.) - (6.5)

Let us observe that by the properties of the sup-convolution and the fact that 4 is upper-semi-
continuous we have that lim SUPa0 H(f{a —m(a)t =0) 4|l 1o (9,6,) < @=0) 19,0 - Therefore,
by the pointwise convergence of i, — u, passing to the limsup in (6.5) we deduce

(@(>5) — 505D+ < 1@ = D+l Y0 5) € Qa
Since « is arbitrary we get ||(a — 6>+HL°°(Q) < |[(a— 6>+“L°°(BPQ) and the result is proved. O

Let us now prove the needed regularity properties on the tangential Hamiltonian Hy. We do it
for a non-flat boundary for the sake of completeness.

Lemma 6.5. Assume (Hg) and (Hg). The tangential Hamiltonian defined in (3.1) satisfies the
following Lipschitz properties with respect z € H and py

|Hr(z,t,pu) — Hr(z,t, qu)| < Mylpn — qul - (6.6)
Moreover, for any z,2z' € H and t,t' € [0,T]
|Hr(z,t,pw) — Hr (', p)| < M|(2,t) = (', 8)|lpu] + m(|(2,1) — (=, )]) (6.7)
where, if My, My, Ly,my, 8 are given by (H{,) and (HZ),
M := (Ly 4+ 2My(Ly + MyLy)67 1),
Ly, being the Lipschitz constant of ny and
m(t) = (Ly + 2M;C6 1)t +my(t)  fort >0.
Proof. The proof easily follows from Lemma 6.6 below and standard arguments. O

Lemma 6.6. Assume (H) and (Hy). For any (z,t),(2',t') € H x [0,T] and for each control
a € Ag(z,t), there exists a control a’ € Ay(2',t') such that, if C := Ly + MyLy

|bH(Z’t’a) - b?—l(zl’t/’al)ﬂ < (Lb + 2Mbé671)|(zat) - (Z’t/)|
’l'}'l(zvt7a) - l?—l(zlvt/val))‘ < 2Mlc_’571‘(27t) - (th/)‘ + ml(‘(zvt) - (Z7tl)‘) :
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Proof. Let us consider a control a € Ay(z,t), i.e. by(z,t,a) -ni(z) =0. Fix (Z,t') € H x [0,T],
we have two possibilities. If by (2/,t',a) - ny1(2") = 0 the conclusion easily follows because o’ = a €
Ag(2',t') and
Ibu(z,t,a) — by (2,1, a)| < Ly|(z,t) — (2, 1), (6.8)
‘l'H(Zv t a) - l'H(Z/7 tlv a)’ < ml(’(z7 t) - (2/7 tl)‘) : (6'9)

Otherwise by (2',t',a) -n1(2") # 0. Let us suppose, for example, that by (2,1, a)-ni(z) > 0 (for
the other sign the same argument will apply so we will not detail it). We first remark that by (Hé)

by (2,1, a) -ni(2)] = |by (2,1, a) - n1(2)) — by(z,t,a) -n1(2)| < C|(z,t) — (¢, 1) (6.10)

with C' := Ly + MyL,. By the controllability assumption in (H‘é) there exists a control a; € A
such that by (2,1, a1) - ny1(2’) = —dny(z') . We then set

i 0
o= by (2t a) -ni(2) + 6’

since [ €]0, 1[, by the convexity assumption in (Hg,) , the exists a control a’ such that
Aoy (2t a), Iy (2t a)) + (1 — @) (by (2t a1), Iy (2, a1)) = (by (2, ', d'), Iy (2, ', d)).
By construction by (2',t',a’) - ny(2') = 0, therefore o’ € Ay(2’,t’). Moreover, since

_ by ('t a) - m(2)
1 — g
( Iu) bH(Zlat,7a) : nl(z,) +0

by (6.10), we have
lba (2,1, a) — by (2, a)| < (1 — @) |bu (2, t',a) — by (2t a1)| < 2MuC67Y|(2,t) — (<, 1) ,
and the same inequality holds for Iy, replacing M} by M;. Hence, thanks to (6.8)-(6.9), we obtain

lba (2, t,a) — by (2, ', a"))| < (Ly + 2M,C6Y)|(2,t) — (2, 1))
(2,1, 0) = lu(2', 1, )| < 2MC8 (2, 1) — (2, 8)| +mu(|(2,0) — (£ 4)]) -
and this concludes the proof. O

Remark 6.7. The results of Lemma 6.5 and 6.6 still hold in the case of Hy®, changing the
constants in (6.6) and (6.7) and in the result of Lemma 6.6. The simplest way to prove it is the
following : we only do it for by, by but a correct argument would require a proof in (bi,l1), (ba,l2).
We first remark that if

b’H (27 t? a’) = Mbl(za t7 041) + (1 - M)bZ(Za t7 042) )
and if |(z,t) — (2, )| is small enough, we may assume without loss of generality that, for i =1,2,

bi(z,t, o) - mi(2) > 3(Ly + 2MCo ) |(2,t) — (¢/,1)] . (6.11)
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Indeed, by the controllability assumption in (HE,), there exists a control &; € A; such that b;(z,t, &;)-
n;(z) = on,(z). Then, by taking |(z,t) — (2, t')| small enough, we can always assume that 3(Ly +
2M,C6 Y |(2,t) — (2, 1) is between b;(z,t,&;) - ni(2) and bi(z,t, ;) - n;(2). We can then choose
wi € 10,1] such that

(uibi(z, t, i) + (1 = pa)bi(z, 8, 64)) - m(2) = 3(Ly + 2MyCO )| (2, 1) — (2/,1)] -
Finally Assumption (HY) ensures that there exists controls &; such that
bi(z,t, ;) = puibi(z, t, ;) + (1 — pi)bi(z,t, &;) .
To obtain a new by (z,t, a), we choose fi € [0,1] such that
[fb1(z,t,a1) 4+ (1 — )ba(z,t,a2)] -my(2) =0.

To conclude we remark that a careful examination of the estimate on i in the proof of Lemma 6.6
shows that, if we start from a control a € Ay®(z,t) verifying (6.11) the associated control @' €
Ao(2',t') is in fact in Ay E(2',t).

Remark 6.8. If the b; are only assumed to be continuous, we have similar estimates involving the
modulus of contuity my, instead of the Lipschitz constant Ly (as we did for the l; with my).
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