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Abstract

The aim of this paper is to give a precise estimation of the extreme magnetic
storms frequency per time unit (year) throughout a solar cycle. An inno-
vative approach based on a proportional hazard model is developed. Based
on the Cox model, this method includes non-stationarity and covariate in-
fluence. The model assumes that the number of storms during a cycle is a
non-homogeneous Poisson process. The intensity of this process can be ex-
pressed as the product of a baseline risk and a risk factor. In the Cox model,
the baseline risk is a nuisance parameter. In our model, it is a parameter
of interest that will be estimated. The risk factor depends on a covariate,
the solar activity index. As in Extreme Value Theory (EVT) and especially
in Peaks Over Threshold (POT) modeling, all the high level events are used
to make estimations and the results are extrapolated to the extreme level
events. This study highlights a strong correlation between the occurrence
intensity of magnetic storms and their position on the solar cycle. The model
can be used to forecast occurrence intensity for the current 24th solar cycle.
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1 INTRODUCTION

Sun activity has a direct influence on Earth ionosphere and magnetic field.
Earth is protected by its magnetosphere and most of the time, solar ra-
diations have a weak impact. However, sometimes Earth is attained by a
more important solar flare or a large coronal mass ejection. These phenom-
ena cause severe disturbances of ionosphere properties and are analysed as
ionospheric or geomagnetic storms.

Strongest storms can affect the navigation applications as the SBAS
(Satellite-based augmentation systems) EGNOS (European Geostationary
Navigation Overlay Service), the European counterpart of the WAAS (Wide
Area Augmentation System), mainly in terms of integrity and continuity. For
example, the period from October 19th to November 7th 2003 was particu-
larly perturbed and the WAAS was disabled during about 30 hours [3]. This
event, called the Halloween event, is composed of several major magnetic
storms. Two of them (on 29-30 October) are among the strongest storms
since 1932 and they are the first and the second largest storms of the solar
cycle 23. During these two storms, the vertical position error limit for the
Vertical NAVigation (VNAV) function exceeded the upper limit defined by
the Federal Aviation Administration (50 meters) during more than 25 hours,
making the WAAS unusable for aircraft precision approaches [20].

The need for investigation of extreme storm risk is demonstrated with
these highly critical examples. The aim of this paper is to describe an inno-
vative approach for the estimation of the probability of occurrence of severe
ionospheric storms (per time unit (year)).

Many geomagnetic indices can be used to describe the ionosphere mag-
netic activity. Rifa [17], shows a high correlation rate between all these
indices. Thus, only one index is used to make the majority of analyses, the
three-hour ap index (for "planetary amplitude"). This index is obtained
using measurements of magnetic field variations from 13 geomagnetic obser-
vatories over the world. Thus, the main advantage of this index is its global
character. An extended description of this index and a review of the other
geomagnetic indices are presented in Section 3.1.

The data used are retrieved from the National Geophysical Data Center
of the NOAA (National Oceanic and Atmospheric Administration) [1]. They
consist of 80 years of registration, including 7 complete solar cycles, from the
17th (on the general list), which starts on September 1933, to the 23th, which
ends on December 2008. The ap index for the first three cycles of the data
set is plotted in Figure 1 on page 3.

Intensive storms being scarce, classical statistical methods for probability
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Figure 1: ap index during the first three solar cycles (from the 17th to the
19th). Vertical plain lines represent the change of cycle and dotted lines
correspond to the peak of each cycle.

estimation, such as empirical frequency estimation, are not accurate enough.
In many domains, the probability of scarce extreme events can be estimated
by extrapolation, using the Extreme Value Theory. Nevertheless, a direct
application of EVT is not achievable here.

Indeed, a first issue to investigate is the non-stationarity of the stud-
ied phenomenon. Since 1843, and the publication of the short article by
Schwabe [18], it is known that Sun activity (characterized by the number
of solar sunspots) is characterized by 11-year cycles. Corresponding cycles
are observable in the ap index data set (Figure 1). Hüsler [13] extends the
results of EVT for stationary processes to some non-stationary ones but no
general theory exists for non-stationary processes ([9], Chapter 6).

However, various non-stationary extreme models are proposed, as the
pragmatic approach of Coles (again Chapter 6 in [9]) or the work of Jonathan
and Ewans [14]. In this paper, authors model the seasonality of extreme
waves in the Gulf of Mexico. Occurrence rate and intensity of storm peak
events vary with season (the Generalized Pareto parameters are expressed as
a function of seasonal degree using a Fourier form). Our model could have
adopted these approaches but the following arguments show that it was not
relevant.

The main problem to the classical application of EVT comes from the
type of data used for this study. The ap index lies in the set {0, 2, 3, 4,
5, 6, 7, 9, 12, 15, 18, 22, 27, 32, 39, 48, 56, 67, 80, 94, 111, 132, 154, 179,
207, 236, 300, 400}. Thus, it is a discrete variable, taking a finite number
of values. On one hand, the discrete case is explored in [7] where Ander-
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son provides an extension of classical convergence results to some discrete
variables. However, in practice, working with a discrete support distribution
can be troublesome in some applications. As example, Cooley, Nychka and
Naveau [10] analyse hydrometric data but they found that the low precision
of the measurements makes the data almost discrete. Hence, a sawtooth
behavior of the parameter estimators was found with increasing threshold,
which hampered to clearly select a value for the threshold. On the other
hand, the fact that the ap index takes a finite number of values seems to be
incompatible with the application of EVT. Indeed, an assumption used by
Hüsler [13] in the study of exceedances behavior is violated when considering
a variable with a finite support. Similarly, the result obtained by Anderson
[7] assumes that the distribution support is unbounded. Hence, to the best
of our knowledge, the application of EVT to the ap index data set is not
achievable.

Thus, an innovative approach is developed to estimate the occurrence
probability of severe magnetic storms. This model, based on proportional
hazard modeling, is also based on EVT. As in the classical Peaks Over
Threshold method, the estimation results are obtained using high and less
rare events and extrapolated to extreme events.

The main contribution of this paper is the description of a new pro-
portional hazard model, which is detailed in Section 2, along with the Cox
method. Definitions of the handled objects and data pretreatments can be
found in Section 3. The descriptions of parameter estimators are gathered in
Section 4. Section 5 is dedicated to data applications and method extensions.

2 MODEL DESCRIPTION

The approach developed in this paper is based on the Cox proportional
hazard model. Firstly, the general notion of proportional hazard model is
presented and details on the particular Cox model are given. Secondly, the
counting process formulation of these models is introduced. Finally, our
model is described with all the modifications from the initial Cox model.

2.1 Cox model and Proportional hazard

First introduced in epidemiology [11], the Cox model is a survival model.
Survival analysis consists in considering an individual (or a sample of indi-
viduals) from a starting time (t0 = 0 without loss of generality) and observing
it to detect the occurrence of an event of interest that might happen once.
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The occurrence time can be represented by a random variable, T , which
also corresponds to survival time (since t0 = 0). The variable T is used to
define the instantaneous risk (or hazard rate) for an individual. The hazard
rate at time t, λ(t), is the probability that an event occurs in the infinitesimal
interval [t, t+ dt] for an individual who has not experienced the event until
t:

λ(t) = lim
dt→0

1

dt
P(t ≤ T < t+ dt|T ≥ t), (1)

where P(A) is the probability of the event A.
The Cox model expresses the instantaneous risk with respect to time t

and the covariates (X1, ...,Xp) as:

λ(t,X1, ...,Xp) = λ0(t) exp(

p∑

i=1

βiXi), (2)

where λ0(t) is the baseline risk.
A consequence of the model (2) is that the instantaneous risk is propor-

tional to a baseline risk and that the coefficient is the exponential of a linear
combination of the covariates. Thus, considering two individuals with covari-
ates (X

(1)
1 , ...,X

(1)
p ) and (X

(2)
1 , ...,X

(2)
p ) the risk factor for the first patient,

compared to the second, only depends on covariate effects:

λ(t,X
(1)
1 , ...,X

(1)
p )

λ(t,X
(2)
1 , ...,X

(2)
p )

= exp

(
p∑

i=1

βi(X
(1)
i −X

(2)
i )

)
.

In survival analysis, data used are often censored. In this paper, data
are uncensored since only complete solar cycles are considered. Hence, the
censoring question will not be developed further. For more details about
survival analysis and proportional hazard models, see Aalen, Borgan and
Gjessing [5].

2.2 Counting process

Now, consider a recurrent event that can happen several times for the same
individual and the counting process N(t) that counts the number of events
up to t. In analogy with Formula (1), we define a proportional intensity
model by:

P(N(t+ dt)−N(t) = 1) = λ0(t) exp(

p∑

i=1

βiXi)dt.
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Andersen and Gill, in [6], define a counting process formulation of the Cox
model, including the possibility for the event to be recurrent.

2.3 Our model

In this paper, a proportional hazard model is applied. The event of interest
is the occurrence of a storm and a solar cycle corresponds to an individual
(indexed by the subscript j). Only one covariate is considered, the solar
activity index of the cycle j, Xj , and the parameter β models its influence.
The model constructed has undergone meaningful modifications from the
Cox model:

- observations are not censored;
- the number of events (storm occurrences) up to time t, N(t), is con-

sidered. Hence the counting process is supposed to be an inhomogeneous
Poisson process with intensity depending on time and covariates;

- the variable Dj (length of cycle j, in years) is included as factor. Thus,
the measurement unit is the number of events per time unit and not per
cycle;

- λ0(t) is not considered as a nuisance parameter but as a parameter to
estimate;

- as in POT modeling in EVT, estimation is made using all the high level
storms and an extrapolation to the storms of extreme level is applied using
the parameter P400, the probability that a high level storm grows into a storm
of level 400 1. Utilization of this parameter assumes that the level reached
by a high storm does not depend on the instant of appearance. A chi-square
independence test showed that this assumption is acceptable (Appendix A).

Thus, in our model, the number of observed storms (of high level) during
cycle j up to time t, called Nj(t), is supposed to be a non-homogeneous
Poisson process of intensity λj(t) such as:

λj(t) = λ0(t)Dj exp(βXj),

i.e.

Nj([a, b]) ∼ P
(∫ b

a
λj(t)dt

)
,

with P(ξ) denoting the Poisson distribution of intensity ξ.
The baseline intensity λ0(t) takes into account the fact that storms occur

more likely during the second half of the cycle. It is the main parameter.

1400 is the value of the ap index characterizing extreme storms. More details about

high and extreme levels are given in Sections 3.2 and 3.3
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Throughout this paper λ0(t) represents the baseline intensity of high level
storms, λj(t) represents the instantaneous intensity of high level storms,
which takes into account the risk factor Dj exp(βXj) (for cycle j). The
extrapolated instantaneous intensity for extreme level storms (level 400) is
λ400,j(t), i.e. λ400,j(t) = λj(t)× P400. Unless the indices j are specified, the
parameters refer to a theoretical cycle with a mean solar activity (146.7 in
the case of the ap data set).

3 DATA AND PRETREATMENTS

Prior to model parameter estimation, in this Section, the used data and their
pretreatments are illustrated. The choice of the ap index is discussed and
definitions of a storm as well as high and extreme levels are given.

3.1 Geomagnetic indices

The most commonly used geomagnetic indices are listed below, each with its
advantages and disadvantages:

- the K index, introduced by Bartels in 1938, is given with a sampling
period of three hours. Each measurement corresponds to the maximal varia-
tion of the horizontal component of Earth magnetic field (sum of maximum
positive and negative deviations, in nano-Tesla) during the past three-hour
interval, compared to a reference quiet day. Each value of the K index is a
digit between 0 and 9. As its quasi logarithmic scale limits the use of the K
index, especially for calculation of averages, additional indices were created.

- The a index (for "amplitude") is a linear transformation of K. The
A index is the average of the 8 a-values per day. The K, a and A indices
are computed by various observatories around the world and measurements
have to be merged to describe the global behavior of ionosphere.

- Local variations are smoothed by considering weighted averages over the
world, represented by the ap and Ap indices, where p stands for "planetary"
and the capital letter A refers to the daily average. These two indices are
computed using the K index values from 13 observatories distributed over
Earth. Weights are fixed according to observatories latitudes. A planetary
version of K also exists (Kp) and Table 1 gives the relation between ap and
Kp. The Kp and ap indices have been available since 1932.

- The aa index (for "antipodal amplitude") is computed using the K in-
dex from only two nearly antipodal geomagnetic stations located in England
and Australia. Thus, this index can not be considered as global as the ap
index. However, it has the advantage of being available since 1868.
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- The Dst (Disturbance storm time) index is restricted to the equatorial
magnetic perturbation (see Figure 2). 57 years of data are available (against
80 for the ap index).

- The raw geomagnetic data are available for many geomagnetic obser-
vatories. Oldest data date back to 1883 for hourly values and to 1969 for
1 minute values. They consist of measurements of magnetic field variations
by means of magnetometers. One disadvantage of these data is the pres-
ence of recording gaps (with gap lengths varying from one month to several
years depending on the observatory). However, the principal drawback of
these data is the level of required pre-treatments. See [1] for more details on
geomagnetic indices.

The ap data set has the advantage of being larger than the Dst one
and it does not exhibit recording gaps, contrary to raw geomagnetic data.
Moreover, the chosen ap index is more global than the aa or Dst indices, as
can be seen in Figure 2.

Figure 2: Positions of observatories for the Dst (⋆) and the Kp/ap indices
(�).

3.2 Declustering and storm definition

Ionospheric perturbations are classified in a standardized way using the ap
index, according to Table 1 [19]:
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Ionosphere Condition Kp index ap index

Quiet 0-1 <7
Unsettled 2 7 to <15
Active 3 15 to <27
Minor storm 4 27 to <48
Major storm 5 48 to <80
Severe storm 6 80 to <132
Large severe 7 132 to <236

Extreme 8 236 to <400
Extreme 9 400

Table 1: Relation between Kp, ap and ionosphere activity.

In this work, a storm is defined by the event with the highest intensity
even though a storm normally presents different periods of high intensity
separated by less active ones. In order to detect the event of highest intensity,
a declustering process (referred to as "runs declustering" in [9], Chapter 5.3)
is applied. Two parameters have to be set:

- a low level, the threshold above which a storm is considered to begin
(typically 111, 132 or 154);

- the run length r which is the minimal number of observations below
the low level between two events for them to be considered as independent.

Thus, two exceedances of the low level separated by less than r mea-
surements are considered to belong to the same cluster (same storm). For
each cluster, the storm level is defined as the maximal level reached in the
cluster. The first occurrence of this maximum is also recorded, representing
the storm date. For a cluster, the storm length is the number of observations
between the first up-crossing and the last down-crossing of the low level.

Durations of magnetic storms are highly variable, from 3 or 6 hours
for a very high or extreme storm (level 300 or 400) to 90 hours for a low
level storm. Due to the declustering in this work, only one-time events are
considered (only the first maximum occurrence time is recorded). This is
not incoherent since our analyses focus on strong storms, which are brief
compared to longer lasting but weaker storms. Nevertheless, the duration of
strong storms should be taken into account for the probability of occurrence
definition (see Section 3.5).
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3.3 Data summary

The ap data set contains 7 complete solar cycles and after declustering only
23 magnetic storms of level 400 are detected. The number of events is too
low to estimate their frequency as a function of covariate. For storms of
level 300, 44 events are detected and this is still insufficient for frequency
estimation.

Consequently, as in Extreme Value Theory, less rare events are used to
estimate influence of each covariate and an extrapolation of the results to
extreme level is performed. In this paper, less rare events are the high level
storms (but not necessary extreme). Thus, all the storms of level greater
or equal to the low level parameter defined in the declustering process are
used. For example, if the low level is 111, a "high level storm" is any storm
of level 111, 132, 154, 179, 207, 236, 300 or 400. The "extreme level" is only
400. Mean probability of occurrence for each high level is given in Table 2.

Level Number of storms Freq.(×104) Freq.(year−1)

111 182 7.99 2.33
132 158 6.93 2.02
154 103 4.52 1.32
179 84 3.69 1.08
207 51 2.24 0.65
236 57 2.50 0.73
300 44 1.93 0.56
400 23 1.01 0.29

Table 2: Number of occurrences and frequency of storms by level.

Besides the three-hour ap index, a covariate representing the solar activ-
ity of a cycle is available and is denoted as X (the unity is the number
of sunspots). The solar activity of a cycle is the maximum of monthly
Smoothed Sunspot Number (monthly SSN). For an easier interpretation
of results, this covariate is centered. See [2] for more details on sunspot
number. For the seven cycles of the data set, the solar activity is X =
(119.2, 151.8, 201.3, 110.6, 164.5, 158.5, 120.8) with a mean of 146.7.

For each cycle, beginning and end dates are also available, as well as
peak date. Peak date corresponds to the date of maximal solar activity
within a cycle (characterized by the highest sunspot number). Lengths of
cycles are gathered in the vector D, with Dj being the length of the cycle j.
All the covariates for the ap data set are summarized in Table 3. In addition,
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beginning date of the current solar cycle (24th) can be found in the last line
of Table 3. Values of end and peak dates as well as length and solar activity
index of this 24th cycle are predictions (in gray), since it is not ended. End
of the 24th cycle is estimated around December 2019. The NOAA values are
used [4].

Cycle Beginning Peak X D Extreme
storms

17 Sep 1933 Apr 1937 119.2 10.4 5
18 Feb 1944 May 1947 151.8 10.2 2
19 Apr 1954 Mar 1958 201.3 10.5 7
20 Oct 1964 Nov 1968 110.6 11.7 3
21 Jun 1976 Dec 1979 164.5 10.3 2
22 Sep 1986 Jul 1989 158.5 9.7 1
23 May 1996 Mar 2000 120.8 12.6 3
24 Dec 2008 Nov 2013 87.9 11 -

Table 3: Beginning and peak dates, solar activity index X (in sunspots),
length D (in years) and number of extreme storms for each cycle from the
17th to the 24th (predicted values are written in gray).

3.4 Time Warping

Durations of the 7 complete solar cycles range from 9.7 to 12.6 years. Thus,
in order to analyse all the 7 cycles together, a time warping is applied to
each cycle: the position of a storm within a cycle is represented by a number
between −0.5 and 0.5 where −0.5 is the beginning of the cycle, 0.5 its end
and 0 its middle (peak). In Figure 3, the dash-dotted line represents the
warped time for the first complete solar cycle.
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Figure 3: The ap index during the first cycle (from September 1933 to Febru-
ary 1944). The dotted vertical line represents the peak and the dash-dotted
line the warped time.

Notice that the addition of the cycle’s length as factor in λj(t) = λ0(t)Dj exp(βXj),
assures that the measurement unit is the number of storms per year and not
per cycle. Thus, the time standardization may not be biasing the intensity
estimation. In the rest of this paper, unless otherwise indicated, warped time
is considered.

3.5 Precision on probability of occurrence

Due to the application of a declustering process, a storm is now defined
by three values: the maximal level, the first time when this maximum is
attained and the length of the cluster. Using this modeling, we can estimate
the probability:

P1(t) = P(a storm of level 400 begins at time t),

and we want to know the probability:

P2(t) = P(a storm of level 400 is ongoing at time t).

In the whole data set, the level 400 is reached 29 times, but only 23
storms of level 400 are counted after declustering. Among these 23 storms,
17 reach the level 400 only one time and 6 remain at this level two consecutive
measurement times.
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So, assuming that duration of an extreme storm is never exceeding 6
hours, and denoting p = P(storm stays at the level 400 two times), P2(t)
can be expressed as:

P2(t) ≃ P1(t) + P1(t− 1)× p.

Using a local stationarity argument, we can declare that P1(t− 1) ≃ P1(t).
Thus, an approximation of P2(t) is:

P2(t) ≃ P1(t)× (1 + p),

and using the ap data set, this is estimated by:

P2(t) ≃ P1(t)× (1 + 6/23).

4 ESTIMATION

4.1 P400 and β

Since P400 is independent of the position within the cycle (Appendix A), the
empirical frequency is used

P̂400 =
#{storms of level 400}

#{storms of level ≥ low level} .

A 95% confidence interval is computed via Gaussian approximation. With
m = #{storms of level ≥ low level}, the number of storm with a level above
the low level, we have:

P400 ∈
[
P̂400 ± 1.96

√
P̂400(1− P̂400)/m

]
.

For β, we use the fact that

Nj = Nj([−0.5, 0.5]) ∼ P
([∫ 1/2

−1/2
λ0(s)ds

]
Dj exp(βXj)

)
.

As in the Cox model, the sufficiency of the statistic Nj is verified and β
is estimated by its maximum likelihood estimator in a Poisson generalized
linear model. A confidence interval is also computed. More details can be
found in Appendix B.
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4.2 Baseline intensity λ0(t)

For the estimation of the baseline intensity, a kernel estimator is used. The
kernel estimator used here is a slightly modified version of the extension of
the Hjort’s estimator, proposed by Nielsen and Linton in [16]. In our model,
the covariate does not depend on time. Thus, some terms of the Nielsen and
Linton’s estimator become constant. All constant terms are gathered in a
normalization constant. Another difference is the fact that in our approach,
the parameter of interest is λ0(t) instead of λ(t), but the normalization
constant is set in order to have a consistent estimator.

Assuming that β is known, the estimator of λ̂0(t) is:

λ̂0(t) = C
J∑

j=1

∫ 1/2

−1/2
dNj(t− s)φ(s)

= C
J∑

j=1

∫ 1/2

−1/2
Nj(t− s)φ′(s)ds,

where J is the number of individuals (cycles), C a normalization constant
and φ the kernel, verifying φ(±1/2) = 0 (for the integration by parts) and∫ 1/2
−1/2 φ(s)ds = 1.

Bias and variance of this estimator are computed using step functions
and by passage to limit. Let φ be a step function,

φ(s) =
n∑

i=1

ai1Ai
(s),

where 1Ai
is the indicator function of the interval Ai, the Ai = [ti, ti+1] form

a partition of [−1/2, 1/2] (we can assume ti < ti+1 without loss of generality)

and ai are such that
∫ 1/2
−1/2 φ(s)ds = 1. Then, for each t ∈ [−1/2, 1/2],

λ̂0(t) =
J∑

j=1

C

∫ 1/2

−1/2
dNj(t− s)φ(s)

= C
J∑

j=1

{
a1Nj([t− t2, t− t1]) + ...

+anNj([t− tn+1, t− tn])

}
.
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Thus, since Nj([a, b]) ∼ P
(
Qj

∫ b
a λ0(s)ds

)
with Qj = Dj exp(βXj) and

since EP(ξ) = VP(ξ) = ξ, we get:

E λ̂0(t) = C

J∑

j=1

Qj

∫ 1/2

−1/2
λ0(s)φ(t− s)ds, (3)

where E is the expected value and V the variance. Similarly, for the variance:

V λ̂0(t) = C2
N∑

j=1

Qj

∫ 1/2

−1/2
λ0(s)φ

2(t− s)ds. (4)

Equations (3) and (4) are established for step functions. Extension to general
functions is straightforward by a monotone convergence argument.

In case of a kernel concentrated around zero we obtain:

E λ̂0(t) ≃ C
J∑

j=1

Qjλ0(t).

Hence, the choice C = 1/
∑

Qj is convenient and we get:

V λ̂0(t) ≃
1∑
Qj

λ0(t)

∫ 1/2

−1/2
φ2(s)ds.

In this paper, a Gaussian kernel is used, i.e.

φ(s) =
1√
2πh

exp(− s2

2h2
),

with h being the band-width parameter, determined later. Then, using the
fact that

φ2(s) =
1

2
√
πh

φ(
√
2s),

with φ(
√
2s) being the density function of a normal distribution N

(
0, (h/

√
2)2
)

and assuming sufficiently small h values, it follows that:

∫ 1/2

−1/2
φ2(s)ds ≃

∫ +∞

−∞
φ2(s)ds =

1

2
√
πh

.

To avoid edge effects, that make the estimated intensity tending artificially
to zero at t = ±0.5, a periodization of data is applied before estimation
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process. The band-width parameter h is chosen by cross-validation with
minimization of Integrated Square Error. See [8] or [12] for more details.

Note that, as indicated in Section 3.5, the intensity estimated by kernel
method does not correspond to the intensity we want to evaluate. Instead,
it corresponds to the probability P1 that a storm of level 400 begins at time

t. Hence a correction is applied multiplying by λ̂0(t) by 29/23.
Thus, the approximate confidence interval for λ0(t) is:

λ0(t) ∈


λ̂0(t)± 1.96

√
1∑
Qj

λ̂0(t)

2
√
πh


 .

We recall that Qj = Dj exp(βXj). Thus, in practice, a plug-in estimator of
Qj is computed, using β̂.

4.3 Simulations

Simulations are performed in order to assess the quality of estimation method.
Sample size (J = number of cycles used) varies from 2 to 300. For each value
of J , errors are computed over 700 estimation results. For a fixed number of
cycles, a simulation is performed as follow:
- Firstly, X, D and the parameter β∗ are generated according to values
of the ap data set. For example, for β∗, we use a normal distribution
N (0.006, 0.0022).
- Secondly, an intensity function λ∗

0 is created using Gaussian distributions
and periodic functions.
- Finally, for each cycle, an inhomogeneous Poisson process of intensity
λ∗
0(t)Dj exp(β

∗Xj) is simulated and estimations are performed using our
model.

Then, for each value of J , mean relative errors E
(
β̂−β∗

β∗

)2
and E

(
||λ̂0−λ∗

0
||2

||λ∗

0
||2

)2

are computed and plotted in Figure 4.
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Figure 4: Mean relative errors of estimation for λ0(t) (top) and β (bottom)
as functions of the number of cycles (in logarithmic scale). Mean values are
computed over 700 error values.

Relative square error for β is larger than for λ0(t) but it decreases more
rapidly for small values of J . Before J = 6, the relative square error is on
average greater than 30%. Indeed, for a very small number of cycles, the
maximum likelihood estimator of β has a large variance and estimation is
not very accurate. However, for 7 cycles (as in the ap data set) the mean
relative square error is about 0.14, which is acceptable.

In Figure 5, an example of the baseline intensity estimated with our
model and using a sample of 10 cycles is illustrated.
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Figure 5: Estimation of λ0(t) with a sample of 10 cycles. The curve to
estimate is plotted in gray.

In accordance with what is shown in Figure 4, one can see that kernel
estimation of baseline intensity is rather accurate. Other kernels are tested
(uniform, triangular and Epanechnikov) and results are not sensitive to ker-
nel change, for both simulated intensities and intensities estimated from real
data.

5 RESULTS

5.1 Baseline intensity λ̂0(t)

Figure 6 depicts the estimation of λ̂0(t) for a low level of 111 and a run length
r = 7 including the confidence area (i.e. the intensity for all the storms
of level greater or equal to 111, for a theoretical cycle with X = 146.7).
The band-width parameter is selected by cross validation and is equal to
0.035. The baseline intensity is higher during the second half of cycle with a
significant increase around t = 0, highlighting the difference between the two
halves of a solar cycle. This behavior is coherent with empirical observations
of frequency of geomagnetic storms (Figure 1).
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Figure 6: Estimated baseline intensity (years−1), with confidence interval, of
the storms of level greater or equal to 111, for a mean solar activity of 146.7.

5.2 P400 and β

For P̂400, the results for different low levels are gathered in Table 4.

Low level 111 132 154

P̂400 in % 3.14 4.19 5.93
95 % C.I. [1.85 ; 4.43] [2.48 ; 5.90] [3.53 ; 8.33]

Table 4: P̂400 (probability for a high storm to grow into a storm of level 400)
and 95 % confidence interval for each low level.

With a low level of 111, estimation of β gives: β̂ = 0.0060 with the 95% C.I. [0.0039; 0.0083].
Although this value seems to be small, significance of β̂ has been demon-
strated by a likelihood ratio test. The test of β = 0 against β = β̂ returns
a p-value of 7.02× 10−7. Thus, solar activity index X affects the number of
storms occurring during a cycle. Graphically, the influence of solar activity
index on the number of storms per cycle is observable in Figure 7.
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Figure 7: Total number of storms per cycle for a low level of 111, 132 or 154
as a function of solar activity (centered).

5.3 λ̂(t), λ̂400(t) and relative risk

The extrapolation for intensity of extreme level storms is made by multi-
plying λ̂(t) by P̂400 (with confidence interval). The final intensity obtained,
λ̂400, is shown in Figure 8 and corresponds to the intensity of occurrence of
extreme storms for a solar cycle with a mean solar activity of 146.7.
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Figure 8: Estimated instantaneous intensity (years−1), with confidence in-
terval, of the storms of level 400 obtained by extrapolation from the low level
111, for a mean solar activity of 146.7. The horizontal dash-dotted line rep-
resents the empirical frequency of storms of level 400 (stationary intensity).

Because of the properties of proportional hazard models, the occurrence
intensity for a cycle of solar activity 146.7 corresponds to a risk factor of 1.
Therefore, for a given solar cycle j0 with a risk factor exp(βXj0), the relative
intensity with respect to a solar cycle of solar activity 146.7 is:

λ400,j0(t) = λ0(t)× P400 × exp(β(Xj0 − 146.7))

Using β̂ and λ̂0, the risk factor of a cycle can be computed and the
relative intensity evaluated. For example, compared to the average level of
solar activity (146.7), a cycle with a high solar activity of 180 has a risk
factor of exp(β̂(Xj0 − 146.7)) = exp(0.0060 × (180 − 146.7)) = 1.22 with
the 95% C.I. [1.14; 1.32]. This implies that the extreme storms occurrence
probability is expected to be 1.22 times larger during this cycle.

5.4 Method sensitivity

Results presented in previous sections are given for a fixed low level (of 111).
In the following, the sensitivity of the employed method is evaluated by
studying its robustness to low level changes.To do so, results for three other
low levels, 132, 154 and 236, are compared to that obtained with a low level
of 111 (Figure 9).
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Figure 9: Estimated instantaneous intensity (years−1) of the storms of level
400 obtained by extrapolation from low levels 111 (plain line), 132 (dash-
dotted line), 154 (dashed line) and 236 (dotted line).

Figure 9 shows that no significant difference is observable between the
three curves, showing that our model is rather stable. In particular, esti-
mated intensities for low levels 132 and 154 are always in the 95% confidence
interval of the intensity estimated with a low level of 111. Even if the low
level is high (236) the curve shape remains coherent and most of the time
within the confidence interval.

5.5 Model extensions

5.5.1 Estimations on half-cycles

Since a difference of intensity is clearly observable between the two half-
cycles, a modified model is tested, where estimations are performed on each
half. The number of storms for a cycle is supposed to be a non-homogeneous
Poisson process, with a different intensity for each half and estimations are
made separately. However, inconclusive results are returned. Indeed, be-
cause of the presence of a normalization constant different for each half, the
occurrence intensity during the first half is higher than during the second
one. Hence, this approach is not further explored.
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5.5.2 Gradient utilization

In an alternative approach, the gradient is used to characterize the strength
of a storm (instead of the ap index level). Gradients are computed over one
time step (3 hours) and the storm gradient is defined as the maximal gradient
attained during a storm. This approach is tested due to the occurrence of
unexpected strong effects of low level storms caused by fast variations of the
ap index. The same study is performed with this new definition of storm
strength. The extreme gradient levels are those greater than 100 and the
low one is 35. The estimation of β gives:

β̂ = 0.0053 with the 95% C.I. [0.0038; 0.0069].

Resulting values are similar to those obtained with the ap index. The esti-
mated intensity for the storms of extreme gradient is plotted in Figure 10.
The step between the two halves of the cycle is more apparent than for the
previous estimation (Figure 8).

Figure 10: Estimated instantaneous intensity (years−1), with confidence in-
terval, of the storms with extreme gradient (≥ 100) obtained by extrapolation
from the low gradient level 35, for a mean solar activity of 146.7. The dash-
dotted line represents the empirical frequency of storms with an extreme
gradient.

Nevertheless, the gradient utilization exhibits a disadvantage. Since the
ap index represents a maximum over a three-hour period, the two values of
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ap index used for the gradient computation can be separated by nearly 6
hours or only by few minutes. The real dates of these values are not known
and the gradient is computed using a three-hour time step. However, the
computed gradient gives an approximation of the variation speed of the ap
index. Moreover, since gradient is used analogously to the ap index, the
original model is still appropriate here.

5.5.3 Application to the aa index

In a further sensitivity study, the proportional hazard model is applied to
the aa index.

aa index description

As the ap index, aa is derived from the K index but for aa, only 2
observatories are used instead of 13 as in case of ap (one observatory is
located in England and the other one in Australia). Thus, these two indices
are correlated ([17]) but utilization of aa is motivated by the larger size of the
data set. Indeed, this index has been available since 1868, and 12 complete
solar cycles, from the 12th (which starts on December 1878) to the 23th, are
covered (against 7 for the ap index). Especially due to its derivation process,
the utilization of the aa index implies adjustments; the derivation process of
aa is as follow:

- Firstly, for a given observatory, each magnetogram measure corresponds
to a K value. For example, during an extreme storm with K = 9, the
Canberra magnetometer measurement is greater than 450 nT (nanoTesla)
and the Hartland one is greater than 500 nT. Then, for each value of K, the
scaling factor rK is found using Table 2 in [15] and does not depend on the
observatory. The scaling factor for K = 9 is rK = 667 nT.

- Secondly, weighted average of the two rescaled values is computed.
Weights depend on observatory latitude [15] and since locations of observa-
tories are changing during the considered period, the weights vary too, as
indicated in Table 5.
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Period British obs. Australian obs.
(wEng = corr. wt.) (wAus = corr. wt.)

1868-1919 Greenwich Melbourne
(1.007) (0.967)

1920-1925 Greenwich Toolangi
(1.007) (1.033)

1926-1956 Albinger Toolangi
(0.934) (1.033)

1957-1979 Hartland Toolangi
(0.934) (1.033)

1980-present Hartland Canberra
(1.059) (1.084)

Table 5: Sources of aa index for different time intervals and corresponding
weights.

- Finally, the mathematical expression of aa is:

aa = 1/2[wEng.rKEng
+ wAus.rKAus

]. (5)

For an extreme storm with K = 9 measured after 1980 the corresponding aa
index is aa = 1/2[1.059 × 667 + 1.084 × 667] ≃ 714.69 rounded to 715 (the
maximal value of aa).

Definition of an extreme storm

The previous relation raises the question of rescaling low and extreme
levels used for estimation. A particular attention is taken to the change
of magnetic observatories over time, in both England and Australia. These
changes are handled by creating two different levels for the periods 1868-1956
(cycles 12 to 18) and 1957-present (cycles 19 to 23) since for each period,
weights are quite equivalent. In order to detect all the extreme storms, the
lower level has been selected for each period.

An extreme storm is characterised by an ap index of 400 or a K index
of 9 according to Table 1. When the corresponding extreme level for aa is
computed using Equation (5), only 3 storms are detected as extreme since
1878 (the beginning of the first complete solar cycle) and only 2 since 1932
(the period when the ap index is also available). 23 extreme storms are
counted with the ap index. These numbers are too different and comparison
is not achievable.

Since the aa index is less global than the ap index, the following rule is
adopted: considering the time period when the two indices are available, an
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extreme storm for the ap index should also be detected as extreme for the
aa index, even if additional local events are detected. Under this condition,
the aa extreme level of 500 seems to be adapted with 23 extreme storms
detected for aa against 23 for the ap index (only the second period level is
given, the first is automatically computed and is 472). Thus, an extreme
storm for aa is defined as a storm of level greater or equal to 500 and the
total number of extreme storms detected for the aa index is 33.

Results

The model is then applied to the aa data set with an extreme level of
500, a low level of 130 and a run length of 2. The low level selection is less
important than the extreme one because of the model non-sensitivity to this
parameter, that remains valid in this application. The low level of 130 is
selected similarly to the extreme level. The solar activity index covariate X
is now X =(74.6, 87.9, 64.2, 105.4, 78.1, 119.2, 151.8, 201.3, 110.6, 164.5,
158.5, 120.8) with a mean solar activity of about 119.7. The estimations for
β and P500 are:

β̂ = 0.0068 with the 95% C.I. [0.0055; 0.0081],

P̂500 = 2.49% with the 95% C.I. [1.65; 3.33].

The β̂ value is in the 95% confidence interval of the estimation using
ap. Since more cycles are available, the confidence interval has been now
shortened. Influence of solar activity is a little bit more apparent (Figure
11).
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Figure 11: Total number of storms per cycle for low levels of 130, 150 and
170 according to the solar activity (centered).

The final intensity estimation λ̂500 is plotted in Figure 12.

Figure 12: Estimated instantaneous intensity (years−1) of the storms defined
by aa ≥ 500 (plain line). Estimation is obtained by extrapolation from the
low level 130, for a mean solar activity of 119.7. The dotted lines represent
the 95% confidence interval. The gray horizontal line corresponds to the
empirical frequency of extreme storms. The gray curve with stars is the
intensity estimated with the ap data set (for a low level of 111).
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The empirical frequency of extreme storms is now 0.23 (since 1878),
against 0.29 for the ap data set. This decrease can be explained by addition
of solar cycles with a lower solar activity index (the mean solar activity since
1878 is 119.7, against 146.7 for the period 1932 to present).

Figure 12 should be read carefully since intensity curves correspond re-
spectively to a theoretical cycle with a mean solar activity of 146.7 for the
ap index and 119.7 for the aa index. Results using the aa index only for the
ap index period of availability are also computed (and then correspond to
the same mean solar activity) and plotted in Figure 13.

Figure 13: Similar to Figure 12 with the aa index considered on the 7 com-
plete cycles of the ap data set.

The most important result of this paragraph is the similarity of the two
intensity curves in Figure 13, showing that the method is stable against a
change of data set.

5.6 Prevision

The model proposed here also can be used for forecasting the intensity of
extreme storms for the current 24th solar cycle. Data needed are:
- beginning date;
- solar activity index (the X covariate);
- peak date;
- end date, and so, cycle length D.

Beginning date is known but the three other data must be estimated since
the 24th cycle has not ended. NOAA predictions are used and presented
in Table 3. Estimation (from the beginning to present (April 2013)) and
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prediction are represented in Figure 14 (plain line). Solar activity index of
the current cycle is estimated at 87.9 and the mean solar activity index of
the previous seven cycles is 146.7. Thus the risk factor of the 24th cycle
(compared to a cycle with mean solar activity of 146.7) is exp(β̂(87.9 −
146.7)) = 0.70. Thus, occurrence intensity for the current cycle is 0.70 times
weaker than the one estimated for a cycle of mean solar activity (gray dash-
dotted line in Figure 14).

Figure 14: Estimation and prediction of instantaneous intensity (years−1)
of the storms of level 400 for the 24th solar cycle, with confidence interval.
For comparison, in dash dotted gray, same intensity for a cycle with a mean
solar activity index of 146.7.

6 CONCLUSION

In this paper, an ionospheric storm occurrence risk estimation is performed.
As extreme storms are rare events, classical methods for probability estima-
tion can not be applied. Moreover, the occurrence probability of ionospheric
storms varies over time and the estimation method should take into account
this non-stationarity. Based on the Cox model, the construction of an inno-
vative approach using a proportional hazard model has been motivated by
the proportional hazard assumptions. In this model, the intensity function
can depend on time and a covariate influence can be handled. Mathemat-
ically, the number of storms for a cycle is modeled by a non-homogeneous
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Poisson process of whom the intensity depends on time and one covariate
(the solar activity index).

However, extreme events are too scarce to apply straightforward estima-
tions. Then, adopting an Extreme Value Theory process, estimations are
made using high events, less rare, and the occurrence intensity across a so-
lar cycle is extrapolated to extreme events, as in the classical Peaks Over
Threshold method.

The ap index is chosen to describe ionospheric perturbations. Advantages
of this index are its global character, the large amount of data (7 complete
solar cycles) and the completeness of time series.

Sensitivity of the model is investigated in two different ways:
- firstly, the model response to a change of low level parameter is ex-

amined (this level is used to define the high level storms). Analysis are
performed for different low levels. First results of ap index are given for a
low level of 111 and a comparison is made using three other low levels: 132,
154 and 236. The shape similarity between all the intensity curves confirms
the stability of the method.

- Secondly, the data set used for estimation is changed. In the first ap-
proach, the maximal ap value reached during a storm is used to characterise
its strength. A second approach considers gradients of storms to classify
them as high or extreme events. In a third step, an analogous study is per-
formed using the aa index. All the results obtained are coherent, showing a
strong similarity between all the estimated intensity curves.

The main results of this study show a strong correlation between the
occurrence intensity of magnetic storms and their positions on the solar
cycle. This intensity is higher during the second half of the cycle.

This work also shows that solar activity has an influence on occurrence
intensity of extreme storms. With the proportional hazard model, the oc-
currence intensity of a cycle can be expressed as a relative risk compared to
a cycle with a mean solar activity index (146.7 for the ap data set and 119.7
for aa). The proposed model can also be used to forecast the intensity of
occurrence of extreme storms for the current 24th solar cycle.

Appendix

A Chi-square test

The utilization of the parameter P̂400 (the probability for a high level storm
to grow into an extreme level storm) for the extrapolation supposes that the
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level reached by a storm does not depend on its occurrence time. P̂400 is
then estimated using the empirical frequency. To verify this independence
assumption, a Chi-square test is performed.

The warped time interval [−0.5, 0.5] is partitioned into two parts of low
and high intensity using the final estimated instantaneous intensity λ̂400.
The period of low intensity is defined as Tl = {t |λ̂400(t) < 0.30} and the
period of high intensity as Th = {t |λ̂400(t) ≥ 0.30}. A threshold of 0.30 is
the lowest possible which makes the application of a Chi-square test possible
(under the hypothesis of independence the expected number of storms in
each cell should be greater or equal to 5).

The numbers of high and extreme storms for Th and Tl are gathered in
a 2× 2 contingency table (Table 6).

Extreme storms High storms
Th 19 538
Tl 4 164

Table 6: Number of extreme and high storms for low and high intensity
periods, respectively.

The Chi-square statistic is computed for this contingency table and the
corresponding p-value (for a significance level of α = 5%) is 0.50. Thus,
the independence hypothesis is not rejected. The same test is applied with
different thresholds for the warped time partition into Th and Tl (0.40, 0.50
and 0.60) and always leads to the same conclusion with p-values of 0.67, 0.39
and 0.61, respectively.

B Maximum likelihood estimator of β

The use of Nj (the total number of high level storms in cycle j) instead of
Nj(t) for the estimation of β raises the question of sufficiency of this statistic.
Consider only one cycle and the model:

N(t) ∼ P (λ0(t)dt D exp(βX)) , for t ∈ [−0.5, 0.5].

Then, consider ∆1,∆2, ...,∆n a partition of [-0.5, 0.5] into n sub-segments.
For i = 1...n, note N(∆i) =

∫
∆i

dN(t) the number of events in ∆i. The
{N(∆i), i = 1...n} are independent variables (by definition of a Poisson pro-

cess) and N(∆i) ∼ P
([∫

∆i
λ0(s)ds

]
D exp(βX)

)
. Noting Ci =

∫
∆i

λ0(s)ds D,
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the Log-likelihood with respect to the counting measure (in which we inte-
grate the weights 1/N(∆i)! ) is:

− exp(βX)

n∑

i=1

Ci +

n∑

i=1

[N(∆i) log(Ci)] + βX

n∑

i=1

N(∆i).

β is linked to the N(∆i) only by the term
∑n

i=1 N(∆i). Hence there is no
loss of information when using the total number of events per cycle for the
estimation of β.

It is now possible to compute the maximum likelihood estimator. For the
jth cycle, the likelihood with respect to the counting measure with weights
1/Nj ! is, noting α =

∫ 1/2
−1/2 λ0(s)ds

exp (−αDj exp(βXj)) (αDj exp(βXj))
Nj ,

and the Log-likelihood for all the J cycles:

−α
J∑

j=1

Dj exp(βXj) + log(α)
J∑

j=1

Nj

+

J∑

j=1

Nj log(Dj) + β

J∑

j=1

NjXj .

The derivatives in α anb β respectively give:
J∑

j=1

Dj exp(βXj) =

∑J
j=1Nj

α
,

and

α

J∑

j=1

DjXj exp(βXj) =

J∑

j=1

NjXj .

Replacing α by the solution of the first equation, we obtain:
J∑

j=1

DjXj exp(βXj)

J∑

j=1

Nj =

J∑

j=1

Dj exp(βXj)

J∑

j=1

NjXj .

This implicit equation can be resolved only numerically (by the secant method).
The Fisher information matrix is also computable:

(
α−1

∑J
j=1Dj exp(βXj)

∑J
j=1DjXj exp(βXj)∑J

j=1DjXj exp(βXj) α
∑J

j=1DjX
2
j exp(βXj)

)
.

The (2,2) coefficient of the inverse matrix of the Fisher information matrix
provides the variance of β̂, used for the construction of a confidence interval.
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