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1 Introduction
Severe magnetic storms are feared events for integrity and continuity of GPS-
EGNOS navigation system and an accurate modeling of this phenomena is nec-
essary. Our aim is to estimate the intensity of apparition of extreme magnetic
storm per time unit (year).

Our data set, retrieved from [1], consists of 80 years of registration of the so
called 3 hours ap index (for "planetary amplitude"). The ap index quantifies the
intensity of planetary geomagnetic activity, using data from 13 observatories.
Although the equatorial region is not covered by these 13 observatories, they
are spread all over the earth and the coverage of the ap index is rather global.
The ap index is the linear transformation of the quasi log-scale index Kp, with
the same sampling step of 3 hours. The Kp index, and hence the ap index,
corresponds to a maximal variation of the magnetic field over a 3 hours period.
See [1] for more details on geomagnetic indices. The ap index is available from
1932 to present but for our analysis we will use only the 7 complete solar cycles
of the data set, from the 17th (on the general list) which starts on September
1933, to the 23th which ends on December 2008.

There are other data available for the study of the ionosphere magnetic
activity, each of them with advantages and disadvantages:

- the aa index (for "antipodal amplitude"). Although this index is available
since 1868, it is calculated from only two nearly antipodal geomagnetic stations
in England and Australia. Thus, this indice does not take into account all the
magnetic activity of the ionosphere.

- the Dst (Disturbance storm time). This index is restricted to the equatorial
magnetic perturbation (see Figure 1). Moreover, there are only 57 years of
registration available against 80 for the ap index. Nonetheless, this indice gets
the advantage to be an unbounded integer contrary to the ap index which lies
in a finite set of non consecutive positive integers (see Section 2).

- the raw geomagnetic data are also available for many geomagnetic observa-
tories. Oldest observations date back to 1883 for hourly values and to 1969 for
1 minute values. They consist of the measure by magnetometers of magnetic
field variations. The disadvantage of this data is the presence of gaps in the
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recording (with gap lengths varying from one month to several years depending
on the observatory). The principal disadvantage of these data is the quantity
of pre-treatments required.

Since all these index show a strong correlation rate [11], we chose to use
only one indice to make our analyses. We opted for the ap index. The main
advantage of this data set is the large amount of data. Moreover, there is no
gap in the ap index, contrary to raw geomagnetic data. Finally, the ap index is
more global than aa index or Dst, as one can see on Figure 1.

Figure 1: Positions of the observatories for the Dst (F) and the Kp/ap indices
(�).

Intensive storms being scarce, classical statistical methods for probability
estimation, as empirical frequency, are not precise enough. In many domains,
the Extreme Value Theory (EVT) enables to estimate the probability of scarce
extreme events. But, because of, among other things, the finite discrete form
of our data and the obvious non stationary behavior, the EVT cannot be applied.

In Section 2, we develop the arguments showing that a use of classical EVT
is not achievable. In Section 3, we describe our new proportional hazard model.
This is the main contribution of this paper. The description of parameter estima-
tors could be found in Section 4. The Section 5 is dedicated to the presentation
of applications to our data set.

2 Difficulties to directly apply EVT
As said before, the first obstacle to direct application of EVT is the bounded
discrete form of our data. The ap index varies in the set {0, 2, 3, 4, 5, 6, 7,
9, 12, 15, 18, 22, 27, 32, 39, 48, 56, 67, 80, 94, 111, 132, 154, 179, 207, 236,
300, 400}. The application of Extreme Value Theory assumes the continuity of
the probability distribution and it is well known that EVT does not apply to
discrete finite observations, see for example [5].

The fact that finite discrete data do not enter in the scope of the theory is
not the only issue. Indeed, in case of peaks over threshold modeling, one has to
choose a threshold. The choice of the optimal threshold is made analyzing the
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Figure 2: The ap index during the first complete cycle (17th on the general list,
from September 1933 to February 1944). The dotted vertical line represents the
peak.

behavior of the parameters according to a threshold variation. This is, generally
speaking, not possible with discrete data. For example, see the work of Cooley,
Nychka and Naveau [8], where the low precision of the measure makes data al-
most discrete. Here, when the threshold grows up, one can observe a sawtooth
behavior of parameters estimators and this makes the threshold selection trou-
blesome.

A second problem is that ap index data obviously show a non stationary
pattern. It is well known that the sun activity follows cycles with a duration
of about 11 years. Corresponding cycles are observable in ap index behavior
and must be taken into account for model assessment. This behavior implies
that the probability of a magnetic storm occurrence depends on the position
into the cycle. See Figure 2, for example. One can see the first complete
solar cycle of the data set. Its middle is indicated by a vertical dotted line.
One obviously remarks that strong storms (characterized by a high ap index
level) occur principally during the second half of the cycle. Thus, it is not
realistic to model this behavior by a standard stationary extreme value model
(e.g. with constant parameters). A more efficient approach will be to include
non-stationarity in parameters estimation. But once again, for this type of
processes, there is no general theory allowing such a modeling.

In various research fields like hydrology, non stationary extreme models are
proposed. For example, see the work of Jonathan and Ewans [10]. In this paper,
authors want to model the seasonality of extreme waves in the gulf of Mexico.
Occurrence rate and intensity of storm peak events vary with season. To model
this seasonal effect, the authors have chosen to express the Generalized Pareto
parameters as a function of seasonal degree using a Fourier form. But this
approach supposes that the classical EVT can be applied, and this is not the
case with the data set used in this paper.
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3 Model description
In this section, we give a precise definition of what we call a storm, describe data
and pretreatments (mostly declustering and time warping). We also describe
the model we built and its advantages.

3.1 Storm definition, declustering
Ionospheric perturbations are classified in a standardized way using ap index,
according to the Table 1:

Ionosphere Condition Kp-index ap index
Quiet 0-1 <7
Unsettled 2 7 to <15
Active 3 15 to <27
Minor storm 4 27 to <48
Major storm 5 48 to <80
Severe storm 6 80 to <140
Large severe 7 140 to <240

Extreme 8 240 to <400
Extreme 9 ≥ 400

Table 1: Relation between Kp, ap and ionosphere activity

We introduce a declustering process of the data in order to consider only one
event with the highest intensity even through there are different periods of high
intensity separated by less active ones (lower indices). See Chapter 5.3 in [7]
for example. This so called Runs Declustering process allows to precisely define
what we consider as a storm. We have to set two parameters:

- a low level, the threshold above which we consider that a storm begins
(typically 111, 132 or 154);

- the run length r, the minimal number of observations below the low level
between two events for them to be consider independent.

Thus, two exceedances of the low level separated by less than r measures
will be consider to belong to the same cluster (same storm).

Then, for each cluster, we define the storm level as the maximal level reached
in the cluster. The first time when this maximum is attained is also saved, it
represents the storm date. For a cluster, we define the length of the storm as the
number of observations between the first up-crossing and the last down-crossing
of the low level.

Durations of magnetic storms are very variable, from 3 or 6 hours for an
extreme storm (level 300 or 400) until 90 hours for a low level storm. But,
due to this declustering, we consider only one time event (since only the first
maximum occurrence time is saved). This is not incoherent since we focus on
strong storms, which are brief compared to lower storms but it should be take
into account for the probability of occurrence definition.
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3.2 Precisions on probability of occurrence
As said before, a storm is now defined by three values: the maximal level, the
first time when this maximum is attained and the length of the cluster. This
modeling allows to estimate the probability:

P1(t) = P(a storm of level 400 begins at time t)

And we want to know the probability:

P2(t) = P(a storm of level 400 is ongoing at time t)

In the whole data set, the level 400 is reached 29 times, but only 23 storms
of level 400 are counted after the declustering. Among these 23 storms, 17 reach
the level 400 only one time and 6 remain at this level two consecutive times.

Hence, we can say that:

P2(t) = P1(t) + P1(t− 1)× P(storm stays at the level 400 two times)
' P1(t)× (1 + P(storm stays at the level 400 two times))
' P1(t)× (1 + 6/23)

3.3 Data description
After the declustering there are only 23 magnetic storms of level 400. There
are not enough individuals to estimate their frequency as a function of the
covariates. For the storms of level 300, one counts 44 events and this is still
insufficient.

Consequently, we have to use storms of lower levels to estimate the influence
of each covariate and extrapolate these results to the extreme level. We will use
all the storms of level greater or equal to the low level parameter defined in the
declustering process to make estimations. For example, if the low level is 111,
we call "high level storm" every storm of level 111, 132, 154, 179, 207, 236, 300
or 400. The "extreme level" will be only 400.

The mean probability of occurrence for each high level is given in Table 2.

Level 111 132 154 179 207 236 300 400
Number of storm 182 158 103 84 51 57 44 23
Frequency ×104 7.99 6.93 4.52 3.69 2.24 2.50 1.93 1.01
Frequency in year−1 2.33 2.02 1.32 1.08 0.65 0.73 0.56 0.29

Table 2: Number of occurrences and frequency of storms by level

Besides of the 3 hours ap index, we dispose of a covariate representing the
solar activity of a cycle. This solar cycle activity characteristic is the maximum
of the monthly Smoothed Sunspot Number (monthly SSN). For an easier inter-
pretation of the results, this covariate will be centered. See [2] for more details
on the sunspot number.

The lengths of the cycles are also available, we call Dj the length of the jth
cycle.
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3.4 Time Warping
The durations of the 7 complete solar cycles range from 9.7 to 12.6 years. Thus,
in order to analyze all the 7 cycles together, a data warping is applied to each
cycle: the position of a storm on a cycle is represented by a number between
−0.5 and 0.5 where −0.5 is the beginning of the cycle, 0.5 its end and 0 its
middle (peak). In the Figure 3, the dash-dotted line represents the warped time
for the first complete solar cycle.

Figure 3: The ap index during the first cycle. The dotted vertical line represents
the peak and the dash-dotted line the warped time.

3.5 Proportional hazard model
The model we built is inspired by the Cox model. First introduced in epidemi-
ology, the Cox model is a proportional hazard model which permits to express
the instantaneous risk with respect to time and some covariates (X1, ...., Xp).
In epidemiology, these variables are risk factors as well as treatments. The in-
stantaneous risk λ(t,X1, ...Xp) is defined using the occurrence probability in an
infinitesimal interval

P{there exists an event ∈ [t, t+ dt] } = λ(t,X1, ...Xp)dt

In the Cox model, this instantaneous risk is a relative risk with respect to a
reference risk λ0(t), often related to a control treatment. The influence of the
covariates is modeled by the exponential of a linear combination of them. That
is to say:

λ(t,X1, ...Xp) = λ0(t) exp(

p∑
i=1

βiXi)

where βi quantifies the influence of the ith covariate. For more details about
the Cox model, see [4].
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The model constructed here has undergone meaningful modifications from
the Cox model:

- an event (a storm occurrence) may occur several times within a cycle.
Hence we use Poisson distributions instead of Bernoulli ones;

- the variable Dj is included as factor, thus the measurement unit is the
number of events per time unit and not per cycle;

- λ0(t) is not considered as a nuisance parameter but as a parameter to
estimate;

- the estimation is made using all the storms of high level and an extrapo-
lation to the storms of extreme level 400 is applied using the parameter P400,
the probability that a high level storm grows into a storm of level 400. The uti-
lization of this parameter assumes that the level reached by a high level storm
does not depend on the instant of appearance. A chi-square independence test
showed that this assumption is acceptable. For precisions on this test, see Ap-
pendix B.

Thus, in the model we developed, the number of observed storms (of high
level) during the cycle j at time t, called Nj(t), is supposed to be a non-
homogeneous Poisson process of intensity λj(t) such as :

λj(t) = λ0(t)Dj exp(βXj)

i.e.

Nj([a, b]) ∼ P

(∫ b

a

λj(t)dt

)
The basic intensity λ0(t) takes into account the fact that storms occurs more
likely during the second half of the cycle. We want to estimate it. Note that only
one covariate is used here, the solar activity index Xj and that the parameter
β models its influence.

3.6 A model extension
We have seen that there is a strong difference between the two halves of a solar
cycle. Thus, we tried to implement a modified model, where the estimation was
made separately on every half. Thus, the variable Dj was replaced by Dj,1 and
Dj,2, the lengths of the first and second half of the cycle, and then, Nj(.) was a
non-homogeneous Poisson process of intensity:

λj,1(t) = λ0(t)Dj,1 exp(β1Xj) if t < 0
λj,2(t) = λ0(t)Dj,2 exp(β2Xj) if t ≥ 0

But the estimation in this model led to incoherent results. Indeed, because of
the presence of a normalization constant different on each half (see Section 4.2),
the basic intensity during the first half was higher than during the second one.
Hence, this approach was abandoned.
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4 Estimation

4.1 P400 and β

Since P400 is independent of the position in the cycle, the empirical frequency
is used

P̂400 =
#{storms of level 400}

#{storms of level ≥ low level}
And noting m = #{storms of level ≥ low level} we get the corresponding 95%
confidence interval:

P400 ∈
[
P̂400 ± 1.96

√
P̂400(1− P̂400)/m

]
For β, we use the fact that

Nj = Nj([−0.5, 0.5]) ∼ P

([∫ 1/2

−1/2

λ0(s)ds

]
Dj exp(βXj)

)

As in the Cox model, we verify the sufficiency of the statistic Nj and β is
estimated by its maximum likelihood estimator in a Poisson generalized linear
model. A confidence interval is also computed. All the details could be found
in Appendix A.

4.2 Basic intensity λ0(t)

Here, we use a kernel estimator. Assuming that β is known, we have :

λ̂0(t) = K

J∑
j=1

∫ 1/2

−1/2

dNj(t− s)φ(s) = K

J∑
j=1

∫ 1/2

−1/2

Nj(t− s)φ′(s)ds

where J is the number of individuals (cycles) , K a normalization constant
and φ the kernel, verifying φ(±1/2) = 0 (for the integration by parts) and∫ 1/2

−1/2
φ(s)ds = 1.

The bias and the variance of this estimator are calculated using step func-
tions and by passage to the limit. Let φ be a step function,

φ(s) =

n∑
i=1

ai1Ai
(s)

where the Ai = [ti, ti+1] form a partition of [−1/2, 1/2] (we can assume ti < ti+1

without loss of generality) and the ai are such that
∫ 1/2

−1/2
φ(s)ds = 1. Then, for

each t ∈ [−1/2, 1/2],

λ̂0(t) =

J∑
j=1

K

∫ 1/2

−1/2

dNj(t− s)φ(s)

= K

J∑
j=1

{
a1Nj([t− t2, t− t1]) + ...+ anNj([t− tn+1, t− tn])

}
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Thus, since Nj([a, b]) ∼ P
(
Qi

∫ b

a
λ0(s)ds

)
with Qi = Dj exp(βXj) and since

EP(ξ) = VP(ξ) = ξ, we get:

E λ̂0(t) = K

J∑
j=1

Qj

∫ 1/2

−1/2

λ0(s)φ(t− s)ds

Similarly, for the variance:

V λ̂0(t) = K2

N∑
j=1

{
a2

1VNj([t− t2, t− t1]) + ...+ a2
nVNj([t− tn+1, t− tn])

}
= K2

N∑
j=1

Qj

∫ 1/2

−1/2

λ0(s)φ2(t− s)ds

In the case of a kernel concentrated around zero we obtain

E λ̂0(t) ' K
J∑

j=1

Qjλ0(t)

Hence, the choice K = 1/
∑
Qj is convenient and then we get

V λ̂0(t) ' 1∑
Qj

λ0(t)

∫ 1/2

−1/2

φ2(s)ds

In practice we used for φ a Gaussian kernel, i.e.

φ(s) =
1√
2πh

exp(− s2

2h2
)

with h the band width parameter, determined later. Then, using the fact that

φ2(s) =
1

2
√
πh
φ(
√

2s)

where φ(
√

2s) is the density function of a normal distribution N
(
0, (h/

√
2)2
)

we can say that for h sufficiently small∫ 1/2

−1/2

φ2(s)ds '
∫ +∞

−∞
φ2(s)ds =

1

2
√
πh

In order to avoid edge effects, a periodization is applied before the estima-
tion process. The band width parameter h is chosen by cross-validation with
minimization of the Integrated Square Error. See [6] or [9] for more details.

Remark: as indicated in Section 3.2, the intensity estimated by the kernel
method does not correspond to the intensity we want to evaluate. Indeed,
the intensity we estimate correspond to the probability P1 that a storm of level
400 begins at time t. Hence we apply a correction by multiplying λ̂0(t) by 29/23.

Thus, we obtain the approximate confidence interval for λ0(t)

λ0(t) ∈

λ̂0(t)± 1.96

√
1∑
Qj

λ̂0(t)

2
√
πh


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5 Results

5.1 Instantaneous intensity

The graphic in Figure 4 gives the estimation result of λ̂0(t) for a low level of
111 with the confidence area (i.e. the intensity for all the storms of level greater
or equal to 111). The bandwidth parameter is selected by cross validation and
is equal to 0.035. As expected, the basic intensity is higher during the second
half of the cycle. One can also see a significant increase near of the x-axis zero,
highlighting the difference between the two halves of a solar cycle.

Figure 4: Estimated instantaneous intensity (years−1) of the storms of level
greater or equal to 111, for a mean solar activity of 146.7

5.2 P400 and β

For P̂400, the obtained results for different low levels are gathered in the Table
3.

Low level 111 132 154

P̂400 0.031384 0.041905 0.059299
95 % C.I. [0.018477 ; 0.044291] [0.024765 ; 0.059045] [0.035266 ; 0.083333]

Table 3: P̂400 (the probability for a high storm to grow into a storm of level
400) and 95 % confidence intervals for each low level

With a low level of 111, the estimation of β gives:

β̂ = 0.0059651 with the 95% confidence interval [0.0035873; 0.0083429]

Although this value seems to be small, the significance of β̂ has been shown
by a likelihood ratio test. The test of β = 0 against β = β̂ returns a p-value
of 7.02 × 10−7. Thus, the solar activity index X affects the number of storms
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occurring during a cycle. Graphically, the influence of the solar activity index
on the number of storms per cycle is observable on Figure 5.

Figure 5: Total number of storms per cycle for a low level of 111 according to
the solar activity (centered)

5.3 Instantaneous intensity: extrapolation to level 400
and relative risk

The extrapolation to the storms of extreme level 400 is made by multiplying by
P̂400 (with confidence interval). We obtain the final intensity shown in Figure 6.
This curve corresponds to intensity of apparition of extreme storms for a solar
cycle with a mean solar activity of 146.7. Recall that in the equation:

λj(t) = λ0(t)Dj exp(βXj)

the risk factor is exp(βXj). Then, using β̂, we can evaluate the relative risk for
a cycle with a given solar activity index. For example compared to the average
level of solar activity (146.7), a cycle with a high solar activity of 180 has a
relative risk of exp(33.3× 0.0059651) = 1.22.
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Figure 6: Instantaneous intensity (years−1), with confidence interval, of the
storms of level 400 obtained by extrapolation from the low level 111, for a mean
solar activity of 146.7. In dash-dotted line the empirical frequency of storms of
level 400

5.4 Method stability
The results presented in the previous sections are given for a fixed low level (of
111). This asks the question of the model sensitivity to this parameter. The
stability of the employed method can be evaluated by testing the stability to a
low level change. The results for two other low levels, 132 and 154, are given
in Figure 7. The two last curves seem to be smoother but this is partly due to
the bandwidth parameter which is now equal to 0.045 (always selected by cross
validation). For more precision, see Figure 8 where the three instantaneous
intensity curves are plotted together. One can see that there is no significant
difference between the three curves and that the method is rather stable.

Figure 7: Similar to Figure 6 with a low level of 132 (left) and 154 (right)
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Figure 8: Instantaneous intensity (years−1) of the storms of level 400 obtained
by extrapolation from the low levels 111 (plain line), 132 (dotted line) and 154
(dashed line)

5.5 A model extension
In an alternative approach, we consider the gradient of a storm to characterize
its strength (instead of the ap index level). Gradients are calculated on one time
step (3H) and the storm gradient is defined as the maximal gradient attained
during a storm. This approach has been setting up because of the observation
of storms with low levels (less than an ap index of 111) but strong effects due
to fast variations of the ap index. We have led the same study with this new
definition for the storm strength. The extreme gradient level are those greater
than 100 and the low one is 35. The estimation of β gives

β̂ = 0.0053499 with the confidence interval [0.0038128; 0.006887]

These values are similar to those obtained with the ap index. The estimated
intensity for the storms of extreme gradient is plotted in Figure 9. One can see
that the step between the two halves of the cycle is stronger.
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Figure 9: Instantaneous intensity (years−1), with confidence interval, of the
storms with extreme gradient (≥ 100) obtained by extrapolation from the low
gradient level 35, for a mean solar activity of 146.7. In dash-dotted line the
empirical frequency of storms with an extreme gradient

We should precise that the use of the gradient involves one disadvantage.
Since the ap index represents a maximum over a 3 hours period, the two values
of ap index used for the gradient calculation can be separated by nearly 6 hours
or only by few minutes. The real dates of these values are not known and the
gradient is calculated using 3 hours time step. However, the calculated gradient
gives an approximation of the variation speed of the ap index. Moreover, since
the gradient is used analogously to the ap index, the original model is still
appropriate here.

6 Conclusion
This study highlights that the intensity of magnetic storm occurrence strongly
depends on the position on the solar cycle. The probability is higher during the
second half of the cycle. The solar activity also has an influence on this intensity
and, giving an activity index, allows to express a relative risk (compared to a
cycle with the average level of solar activity 146.7).

The analyses has been performed for different low levels in order to check
his stability. The first results are given for a low level of 111 and a comparison
is made using two other low levels: 132 and 154. The shape similarity of the
three curves attests of the method stability.

The model we built also allows us to make predictions about the current
solar cycle. For the beginning date of this 24th cycle, we have chosen December
2008, a date accepted by a panel of experts (although there is no consensus). For
the solar activity index, we have used the NOAA prediction with a maximum
of 87.9 attained on November 2013 [3]. The end of the 24th cycle is estimated
around December 2019 or January 2020. The estimation (from the beginning
to present) and the prediction are represented on Figure 10 (plain line).
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Figure 10: Estimation and prediction of instantaneous intensity (years−1) of
the storms of level 400 for the 24th solar cycle, with confidence interval. For
comparison, in dash dotted gray, the same intensity for a cycle with a mean
solar activity index of 146.7

7 Appendix

A Maximum likelihood estimator of β
The use of Nj instead of Nj(t) for the estimation of β arises the question of the
sufficiency of this statistic. Consider only one cycle and the model:

N(t) ∼ P (λ0(t)dt D exp(βX)) for t ∈ [−0.5, 0.5]

Then, consider ∆1,∆2, ...,∆n a partition of [-0.5, 0.5] into n sub segments. For
i = 1...n, note N(∆i) =

∫
∆i
dN(t) the number of events in ∆i. Giving that

N(t) is a Poisson process we know that the {N(∆i), i = 1...n} are independent
variables and that N(∆i) ∼ P

([∫
∆i
λ0(s)ds

]
D exp(βX)

)
. We note Ci =∫

∆i
λ0(s)ds D. Then the Log-likelihood with respect to the counting measure

(in which we integrate the weights 1/N(∆i)! ) is

− exp(βX)

n∑
i=1

Ci +

n∑
i=1

[N(∆i) log(Ci)] + βX

n∑
i=1

N(∆i)

We see that β is linked to the N(∆i) only by the term
∑n

i=1N(∆i). Hence
there is no loss of information to use the total number of events per cycle for
the estimation of β.

We can now compute the maximum likelihood estimator. For the jth cycle,
the likelihood with respect to the counting measure with weights 1/Nj ! is, noting
α =

∫ 1/2

−1/2
λ0(s)ds

exp (−αDj exp(βXj)) (αDj exp(βXj))
Nj

15



and the Log-likelihood for all the J cycles:

−α
J∑

j=1

Dj exp(βXj) + log(α)

J∑
j=1

Nj +

J∑
j=1

Nj log(Dj) + β

J∑
j=1

NjXj

The derivatives in α anb β respectively give :

J∑
j=1

Dj exp(βXj) =

∑J
j=1Nj

α

and

α

J∑
j=1

DjXj exp(βXj) =

J∑
j=1

NjXj

Replacing α by the solution of the first equation, we obtain:

J∑
j=1

DjXj exp(βXj)

J∑
j=1

Nj =

J∑
j=1

Dj exp(βXj)

J∑
j=1

NjXj

This implicit equation resolves only numerically (by the secant method).
We can also compute the Fisher information matrix:(

α−1
∑J

j=1Dj exp(βXj)
∑J

j=1DjXj exp(βXj)∑J
j=1DjXj exp(βXj) α

∑J
j=1DjX

2
j exp(βXj)

)

The (2,2) coefficient of the inverse matrix of the Fisher information matrix
provides the variance of β̂, used for the construction of a confidence interval.

B Chi-square test:
The chi-square independence test is performed a posteriori. When the instan-
taneous intensity is estimated, the time interval [−0.5, 0.5] is separated into two
parts, of low and high intensity. The intensity threshold for this partition will
be the empirical frequency of extreme storms, which is about 0.29 storm per
year (horizontal dash-dotted line in Figure 6). The two parts correspond to the
times where the instantaneous intensity is respectively below and above this
threshold.

Then, the chi-square test is applied to the proportions of extreme level storms
for each area and returns a p-value of 0.26, leading to the acceptance of the
independence hypothesis. The same test is applied with different thresholds for
the partition into two areas (0.40, 0.50 and 0.60) and always leads to the same
conclusion.
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