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Figure 1: Our Model-Based Discrete Texture Synthesis. Given a 2D or 3D exemplar texture composed of discrete vector
elements, our model captures the pairwise element interactions that govern the texture’s spatial organization, and accounts for
their complex shapes. New output textures can then be generated to fill specified domain.

Abstract

We present a novel shape-aware method for synthesizing 2D and 3D discrete element textures consisting of collec-
tions of distinct vector graphics objects. Extending the long-proven point process framework, we propose a shape
process, a novel stochastic model based on spatial measurements that fully take into account the geometry of the
elements. We demonstrate that our approach is well-suited for discrete texture synthesis by example. Our model
enables for both robust statistical parameter estimation and reliable output generation by Monte Carlo sampling.
Our numerous experiments show that contrary to current state-of-the-art techniques, our algorithm manages to
capture anisotropic element distributions and systematically prevents undesirable collisions between objects.

1. Introduction

The recently coined term of discrete element textures refers
to 2D or 3D texturing data organized as the collections of
individual, visually distinguishable objects. By definition,
these textures naturally use an object-based representation,
with each element becoming a separate, manipulable entity
(in our context, 2D cubic Bézier curves or 3D triangular
meshes). This contrasts with their raster counterparts, whose
features, although visible, lose geometric information when
sampled onto regular grids.

The past few years have seen an increased interest in the
development of techniques for handling and creating dis-
crete textures. Discrete textures indeed present many desir-
able properties for computer assisted creation. Their resolu-
tion independence and unmatched fineness make them ap-
pealing for artists struggling against aliasing artifacts. Their
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compact representation, suitable for object instancing, con-
siderably reduces memory storage requirements. In addition,
their object-based representation paves the way for novel de-
sign and editing procedures, greatly exceeding the possibili-
ties offered by sampled images.

But despite their advantages, discrete textures still suffer
from a severe lack of dedicated creation tools, a domain in
which raster textures clearly keep the upper hand. Part of
the explanation comes from the lack of obvious spatial orga-
nization and adjacency relationships between their entities,
which impedes even the simplest layout analysis.

Here, we address the challenging issue of by-example dis-
crete texture synthesis: Once an artist has manually created
a discrete element texture over a small domain, an automatic
procedure for filling wider regions with visually similar tex-
tures immediately becomes desirable in order to spare him
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from tediously filling regions (see Figure 1). Such a tool pro-
vides flexibility to the creation process since it enables one to
quickly create artwork for different domains and/or textures.

Contributions Unlike raster textures, the visual signa-
ture of a discrete texture is not conveyed by specific co-
occurrences of sampled colors, but by the visual aspect and
spatial arrangement of their elements. Thus, discrete texture
synthesis by example consists of identifying, capturing, and
reproducing what makes the organization of the exemplar el-
ements specific. In order to reach this goal, we propose three
main contributions:

e We introduce relevant spatial relationship measurements
between elements that improve element interaction mod-
eling by accounting for their actual geometry.

e We propose a novel stochastic texture model consisting of
a shape process that extends the long-proven point pro-
cess theory, and we provide a robust statistical parameter
estimation for it.

e We demonstrate the applicability of our shape process by
synthesizing 2D and 3D discrete textures that benefit from
the advantageous properties of our simulation procedure
(i.e. shape preservation, no unexpected interpenetrations,
no initialization dependence).

2. Related Work

Our method belongs to the domain of discrete element place-
ment. Depending on the shape model chosen to guide the
analysis and synthesis of the element distribution, existing
work falls into two main categories. The first category en-
compasses all point-based approaches which resort to one or
several spatial point positions to locate each element. The
second category studies the placement of more elaborate 2D
shapes, such as the bounding boxes of the elements. Before
providing detail on element placement methods, we briefly
review the use of point processes in Graphics, since our
shape process model aims at extending such models.

Point Processes in Graphics There has recently been a
renewed interest in the generation of random point pat-
terns in Computer Graphics. Initially, literature focused
mostly on point processes with the blue noise property
(see e.g. [LDO8, Wei08, Fat11] and the references therein).
More recently, several contributions focused on simulating
point processes with more varied spectra or correlation func-
tions [LWSF10,ZHWW 12, OG12]. Such approaches show
that pairwise point distances are the key characteristics of
point processes. In this paper, we extend this framework and
propose a novel shape process which can be thought of as
random points with shapes attached to them. These models
are called particle processes or germ-grain processes in the
stochastic geometry literature [SKM95,SWO08]. As for point
processes, the main characteristics we focus on are the dis-
tances between pair of shapes, but we also consider the rel-

ative direction between shapes in order to deal with discrete
textures whose elements are anisotropically distributed.

Point-Based Element Placement Unlike raster texture
synthesis where an appropriate color must be assigned to
each fixed pixel location, the biggest challenge in discrete
textures synthesis is to handle the arbitrary positioning of
long-range element shapes. Pioneering works often reduce
elements to shapes attached to anchor points. The spatial dis-
tribution of the anchor points is then considered as a good
approximation for the distribution of the elements during
analysis and synthesis. A common choice for such points
are the centroids of their bounding boxes fitted by principal
component analysis (PCA) [BBT*06, BBMT06, IMIMOS,
HLT*09, AJPWS10, LZZ11]. As highlighted in [HLT*09,
LZZ11], this centroidal model implicitly assumes that the el-
ements exhibit an isotropic spatial extent. These approaches
thus perform poorly on discrete textures with elongated or
complex shapes. They are also unable to capture possible
correlations between the different element shapes and their
spatial distribution. Li et al. [LWSF10] alleviates this prob-
lem by performing isotropic point sampling in a distorted,
shape-guided space. It is nevertheless limited to the specific
type of blue noise-like distributions.

Most recently, Ma et al. [MWT11] use multiple point
samples per element, and their synthesis method proves to be
a valuable designing tool for artists [KIZD12]. Indeed, the
tracking of several samples on top of the element surfaces
better captures their shape, and enables consistent element
deformations. Still, their disconnected element representa-
tion may lead to interpenetration issues which are corrected
via physics simulation during synthesis. Although physi-
cal simulation enables the enforcement of additional phys-
ical properties to their outputs, we believe it contradicts our
strictly by-example objective, and boils down to adding prior
knowledge to their method. In addition, their Expectation-
Maximization (EM) approach inspired by [KEBKOS5] is sen-
sitive to the quality of initialization.

Shape-Aware Element Placement Rather than points,
some patch-based texture techniques explicitly handle axis-
aligned [DMLGO2], or PCA-fitted [GZW03] element boxes.
Statistics of the pairwise interactions based on these boxes
are assembled in co-occurrence lists or histograms, and en-
forced on the output textures via iterative procedures. Yet,
some measurements, such as the relative orientations be-
tween elements, remain limited to the simplistic centroidal
assumption. Besides, though preventing interpenetrations,
the bounding box model is hardly representative for com-
plex element shapes. To the best of our knowledge, only two
approaches directly consider element shapes to guide syn-
thesis [HHDO3, LLW12]. However, as in [LWSF10], they
mainly focus on blue-noise distributions, where each ele-
ment repels one another by a roughly constant distance.

In this paper, we propose a new discrete texture model that
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fully considers element shapes, disregards the centroidal as-
sumption, and prevents irrelevant interpenetrations. It solely
relies on meaningful pairwise interactions, and its parame-
ters are robustly estimated from the exemplar configuration.

3. Overview

As previously motivated, the goal of our synthesis is to cap-
ture and reproduce the pairwise spatial interaction statistics
observed between the exemplar elements. Since we want
to explicitly deal with arbitrary shapes and not points, we
first define in Section 4 measurements that accurately as-
sess the spatial interaction between element pairs, and ac-
count for both their spatial extents and relative orientation.
With such measurements at hand, we conceive a stochastic
shape-aware texture model in Section 5 that organizes and
probabilistically sums up the observed spatial interactions.
Derived from the extension of point processes to our shape-
driven objective, the texture model constitutes a shape pro-
cess for which we provide an automatic parameter estima-
tion and synthesis procedure in Section 6.

Two distinct critical challenges are faced by our shape
process texture model. Indeed, contrary to existing tech-
niques, we want it to natively support:

e shape anisotropy: to account for the extent and privileged
direction of the elements during the analysis of their rela-
tive spatial organization;

e distribution anisotropy: to handle layouts where spatial
statistics strongly differ in some directions.

As demonstrated by the results presented in Section 7,
those two complementary objectives are fulfilled thanks
to our shape-aware spatial interaction measurements and
orientation-dependent parametric model.

Notations We consider 2D or 3D vector textures composed
of a finite set of discrete elements x = {x|,...,xy}. Eachel-
ement x, = (up,sn) is summed up as the combination of a
spatial position u, in a bounded 2D or 3D domain P, and a
shape s, € S. In our context, the shape space S is the discrete
union of all the shapes observed within the input exemplar
denoted by z. The u; positions are made coincident with the
centroids of the elements’ fitted bounding boxes. But con-
trary to existing work, these positions do not take part in the
evaluation of the pairwise element interactions, and are sim-
ply used in the context of numerical integration and random
sampling.

4. Pairwise Shape Interactions

In the context of point processes, a pair of points is fully
described by the distance between the points and their rel-
ative orientation. For discrete textures, the interaction be-
tween two elements cannot be as easily described due to the
shapes of the involved elements. We adapt the aformentioned
spatial measurements to our case in this section.
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Distance between Element Shapes An intuitive way of
evaluating the interaction strength between an element pair
is to consider the length of the shortest path between their
shapes, here denoted dgpp, (Xn,xm). But because of the com-
putational cost of such computations, the tractability of this
approach lies in the assessment of an appropriate shape ap-
proximation. Contrary to Ma et al.’s [MWT11] argument in
favor of point-based sampling, we believe that the loss of
connectivity would be detrimental to the estimation of accu-
rate element interactions. Hence, instead of samples, we rely
on coarser versions of the elements’ actual geometries. Con-
sisting in either 2D polylines or 3D low-resolution meshes,
our proxy geometries are respectively obtained through the
progressive simplification of the elements’ original geome-
tries using the Douglas-Peucker algorithm in 2D [Ram72],
or successive error-bound edge collapses in 3D [GH97] (see
Figure 2). Evaluating dgpp (Xn,Xm) then comes down to com-
puting the minimal distance between pairs of 2D segments,
or 3D triangles. While closed-form solutions exist for seg-
ments, shortest distances between triangles are computed via
an iterative projected gradient descent.

3D meshes

Inputs 2D polylines

Figure 2: Proxy Geometries. In order that our element in-
teractions account for shape connectivity, we resort to sim-
plified proxy geometries to compute shortest path distances
in tractable computation times.

Relative Orientation between Elements As previously
stated, part of our textures’ spatial layout information is con-
veyed by the relative orientation between their elements.
Straightforwardly considering the line passing through the
pair of centroids overlooks their spatial extent, and does
not yield reliable directions when the elements lie close to
one another, a commonplace phenomenon in most textures.
Known as a challenging issue [Blo05], a sensible description
of the relative position of arbitrary shapes is mandatory for
our technique to capture anisotropic distributions. Inspired
by [MWO99], we find in the gravitation force direction be-
tween two element shapes, a robust indicator of the relative
orientation between them. Theoretically defined in the con-
tinuous case as for a pair of elements (x,x ), the gravitation
force vector between two elements is approximated along
the different principal axes of the two elements using the cu-
bature integration method [BEG91].

Figure 3 compares the behavior of our distance and rel-
ative orientation measurements with their centroid-based
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equivalents. Those examples show that the gravitational
force direction is generally less slanted and perceptually
more satisfying in most cases.

i

Figure 3: Shape-Aware vs. Centroidal Interactions. Our
element interactions account for two complementary spa-
tial measurements: the interspace between the element pair
computed on their proxy geometries (constant in this figure
and symbolized by the small red circles in the top row) and
their relative orientation given by the gravitational force in-
tegrated over their principal axes (red bottom compasses).
The centroidal counterparts are represented in blue: dotted
line circles on top, and blue compasses at the bottom. The
two interaction models differ on both measurements and our
proposed shape-aware interactions are perceptually more
satisfying.

5. Our Shape Process Model

With our pairwise element interactions formalized, we
build up our analysis to the scale of the texture. Our
model draws inspiration from pairwise interaction point pro-
cesses [BM89] that we extend to handle complex shapes.
These point processes, that are commonly used for the de-
scription of spatial data, are defined by their density f

F(x) oc [TBCen) [ TTCon, xm) (1

where B is the first-order infensity function related to the ob-
ject frequencies, and I is the second-order interaction func-
tion. The spatial stationarity of our exemplars allows us to
assume that B does not vary with the element position, and
to consider it as a constant for each examplar.

The tailoring of the I" function to our problem is one of
our key contributions. In accordance with our interaction
measurements introduced in Section 4, I'(x;,xn) is chosen
so that it only depends on the shape distance and relative
orientation of the element pair (x;,x). Intuitively, I" must
express that two objects cannot get too close or interact if
they are too distant, and that these distance thresholds may
depend on their relative orientation. Nonetheless, I" should
remain as simple as possible to allow for statistical parame-
ter estimation. We thus propose a piecewise constant interac-
tion function in order to supply our model with statistically
significant populations of measurements. To do so, we parti-
tion the space of possible relative directions into a finite set
of canonical directions e;, along which the observed pair-
wise element distances are then distributed into K intervals.

Given two elements (x,,xn) whose relative orientation leans
towards e;, their interaction is modeled as:

F(xn7xm) — { Yik if 6i,k < dshp (xn,Xm) < 6[,k+1 ?)

1 if 6i.K < dshp (xnvxm)

where §;; are the distance thresholds associated with the
direction e;. A visual representation of such an interaction
function is provided on the right part of Figure 4. Particularly
important for simulations, the bottom case of Equation (2)
specifies that the organization between elements whose in-
terspace exceeds the last distance threshold along their rela-
tive orientation is considered as random.

With this general form for I', our model density f in Equa-
tion (1) can be rewritten as

B Il T vt 3)

€\ [8ix,0ik+1)

where n; ;. is the number of e;-oriented element pairs whose
distance falls into the [5; x,; 4+1) interval. Experts may no-
tice that our shape process model constitutes a generaliza-
tion of the classic Strauss interaction model for random
points [BM89], when objects are points, K = 1, and with-
out any orientation dependence.

6. Model Fitting and Sampling

Our shape process model described in Section 5 is entirely
controlled by its intensity 3 and pair interaction function I.
‘We now explain how a specific model can be learned from
any input discrete texture z, and how we synthesize new out-
put textures associated with this model.

As summarized by Figure 4, the fitting of I to z starts with
the subdivision of its support according to a set of canoni-
cal directions e;, and by a set of distance thresholds &; 5 for
each direction. We then statistically estimate the optimal in-
teraction values v; ; of each subdivision cell, as well as the
intensity P.

6.1. Tailoring of the Interaction Function Subdivision

Choosing Canonical Directions In order to provide a bal-
anced partition of the possible relative element orientations,
the set of unit directions e; must exhibit a symmetry with re-
spect to the origin. A constant, even subdivision of the [0, 27)
angular interval is sufficient in 2D (8 directions in all our ex-
amples), while we resort to the HealPix sphere parameteri-
zation in 3D (4 subdivisions for the azimuthal angle, 3 for
the polar angle) [GHB*05].

Adjusting the Distance Thresholds Instead of proposing
an automatic detection scheme for §; ;, we take a more prag-
matic approach. We choose the same fixed set of quantile in-
dices gy, for all directions e; (always {0,0.1,0.2} here), and
compute the corresponding quantiles from the Cumulative
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Exemplar —»|  Proxy geometry

Directional PDF
of distances

Canonical directions

Directional CDF
of distances T

Parameter values obtained by
likelihood maximization

Subdivision tailoring
Model fitting

Quantile orders

Figure 4: Computation of the Interaction Function. While the distance thresholds (3; ;) are chosen as quantiles of the observed
distance distributions (see Section 6.1), the interaction strength parameters (Y; ;) are computed by maximizing our model’s log
pseudo-likelihood (see Section 6.2). Note that each canonical direction e; creates its own set of parameters.

Density Function (CDF) of the shape distance distribution
along each canonical orientation, as illustrated by the cen-
tral part of Figure 4. Quantiles, known for their robustness
in histogram specification, also prove to be solid data-driven
distance thresholds for our model.

6.2. Statistical Estimation of the Interaction Strengths

Once the support of I" has been subdivided, we must deter-
mine the optimal values for the intensity  and the various
interaction strengths ; , with respect to the discrete texture
exemplar z.

Following classical spatial statistics methods for point
patterns [BT00], the linear parameters 3 and ;4 of the den-
sity f are adjusted to any exemplar z by maximizing the
model’s log pseudo-likelihood (log PL) of the configuration
z. Since we want to explicitly handle entities (uy,s,) made
of the union of a position u, € P and a shape s, € S, here
the usual point-based log PL is written:

/ f(zU(u
Pxs f(z)
(€]

The involved f-ratios, or conditional intensities, represent
the conditional probabilities of observing a given element,
at a specific location, given z. These conditional intensities
are explicitly related to the parameters  and ; x (see supple-
mental material for explicit formulas). Intuitively, the dis-
crete summation over the elements of z in Eq. (4) tries to
maximize the explanation by the model of the presence of
the observed elements (un,s,). Conversely, the continuous
integral over P x S acts to justify the absence of an element
at all other locations u, with any possible shape s.

logPL:Z log ——F—— )) duds

(wsyez (Z tn, Sn))

The existence of a unique set of parameters maximizing
log PL has been recently demonstrated [BCDOS]. In practice,
these optimal parameters are estimated by approximating the
integral of (4) using an adapted quadrature rule over P x S,
and revealing the maximization of logPL as a generalized
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linear model regression (Poisson regression) [BTO0O0] (theo-
retical and implementation details regarding the log PL com-
putation and maximization are given in supplemental mate-
rial). For illustration, an example of interaction function I'
with automatically fitted v; ; values is displayed on the right
part of Figure 4.

6.3. Texture Synthesis as Model Sampling

A key feature of our model-based approach is that once
the model parameters have been adjusted to the exemplar
z, synthesizing new discrete texture outputs is straightfor-
ward using Monte-Carlo Markov Chain (MCMC) simula-
tions. More specifically, we use here a simple Metropolis-
Hastings algorithm with equiprobable element birth and
death events [GM94] that is first initialized with an empty
configuration. Based on iterative birth or death perturba-
tions, the synthesis algorithm ensures the convergence of the
configuration sequence it generates to the targeted probabil-
ity density. By using the density function f of our model
trained on z, our output discrete textures are guaranteed to
globally respect the same oriented shape-distance statistics
as the ones observed throughout z.

Boundary Handling The stationarity assumption of the
MCMC sampling forces cautious handling of the boundaries
of the synthesis window. In our situation, synthesis is carried
out with toroidal border conditions. Since pairwise interac-
tions make elements repel one another, without toroidal con-
ditions, the elements aggregate on the borders of the rectan-
gular domain where they have less neighbors. Additionally,
synthesis can be effortlessly achieved for arbitrary domain
shapes by spatially varying the model intensity B near the
domain border, as illustrated in Figure 1 and Figure 6.

7. Results and Comparisons
7.1. Results

The first column of Figure 5 presents 2D discrete element
textures synthesized using our method. 3D results are dis-
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Figure 7: Element Categories. When subsets of input ele-
ments exhibit strong visual differences (e.g. size disparity,
specific orientations), it is possible to have our texture model
account for this phenomenon via element category. Here,
splitting the elements based on color substantially improves
the alternation of red and green objects in the output.

played in Figure 6 and Figure 1 (right). Observe that in
all these results element collisions are avoided, even when
the element shapes are elongated, and that the distribution
anisotropy is fairly well reproduced. As in previous work,
for few of these results, we have recourse to element cate-
gories as explained below.

Element Categories A refinement of our synthesis can be
achieved by introducing the concept of element categories as
in [IMIMO8, HLT*09]. Element categories improve results
for special exemplars for which subsets of the texture ele-
ments do need to be treated separately (see Figure 7). For
instance, in Figure 5 (f), the bimodal distribution of the el-
ements’ absolute orientations is best preserved with the re-
sort to two distinct categories. Our model lends itself par-
ticularly well to this refinement by simply duplicating the
model parameters: one . parameter per category ¢, and one
(¢, c) (¥n;Xm) function per category pair (cs,cm). Results
of Figure 5 (f) and Figure 7 use two categories while all
the other results use only one. The diversity of these results
demonstrates that with only one category our shape aware
algorithm performs well for most discrete textures.

7.2. Comparison with Existing Techniques

Figure 5 presents a thorough comparison of our results with
four previous works. The exemplar distributions range from
regular (Fig.5 (a.e,f)) to fairly random (Fig.5 (b,c,d)); from
isotropic (Fig.5 (a)) to anisotropic and structured (Fig.5
(b,e)). Input elements can either be rather simple shapes
(Fig.5 (c)) or highly complex (Fig.5 (e)). In contrast with
our results, no previous method systematically prevents ele-
ment collisions and captures anisotropic distributions in all
cases.

Comparison with Barla et al. [2006] In Barla er al.’s
method, pairwise element interactions are only based on
the distance between element centroids, and as such per-
forms well only for isotropic elements shapes (Fig.5 (a)).

As for the spatial distribution, this technique uses a cen-
troidal Voronoi distribution jittered with small local pertur-
bations learned from the inputs. The results show that this
approach is not able to capture complex anisotropic distribu-
tions (Fig.5 (b,e,f)).

Comparison with Ijiri et al. [2008] Based on the moni-
tored, greedy growing of its elements’ centroid triangula-
tion, Ijiri et al.’s technique provides satisfactory results for
densely packed textures (Fig.5 (a)). Nonetheless, it still suf-
fers from the same lack of shape awareness as its predeces-
sors and may fail to prevent undesirable overlap between
element shapes. It also performs poorly on sparser distri-
butions (Fig.5 (b,d)) where the skewed triangulation faces
hinder neighborhood matching and subsequent relaxation,
leading to holes or accumulations in the output. Lastly, since
the boundary vertices of the input triangulation are excluded
from the neighborhood matching, Ijiri et al.’s method is
overall not suited to small inputs (Fig.5 (b,e)) where iden-
tical elements are pasted over and over, revealing distracting
lattice structures.

Comparison with Hurtut et al. [2009] Similarly to ours,
Hurtut ez al.’s approach is based on a statistical spatial pro-
cess, yet its differs in two essential aspects. First, whereas
we propose a shape process, they use a point process with
a centroid-based approach, and therefore all their results
present undesirable element collisions. Second, their distri-
bution model assumes strictly isotropic textures, and thus
fails to capture anisotropic distributions (Fig.5 (b,e)). It still
performs slightly better than Barla er al. thanks to its global
pairwise interaction analysis.

Comparison with Ma et al. [2011] Ma et al.’s state of the
art method relies on a multiple sample based element rep-
resentation and cast texture synthesis into an Expectation-
Maximization (EM) initialized by random patch copy. Since
the rectangular patches refer to objects that can go beyond
their boundaries, elements collisions may appear in the ini-
tialized random output. We observed that these unwanted
collisions are not always resolved by the EM algorithm,
as illustrated in Figure 5. It must be noted that this issue
is not strictly related to the EM algorithm itself. Our sta-
tistical model would suffer from the same problem if we
also adopted a point based element representation, which
pleads in favor of our more accurate proxy geometries for
representing objects. Ma et al. manage to prevent such col-
lisions in 3D using a physics solver. However, this solution
is not straightforwardly applicable in 2D illustration since
no physics law may a priori blend with the layout of most
examplars. A physics solver also tends to produce outputs
that locally differ from the user’s exemplars. Remaining col-
lisions usually undergo severe deformations in order to re-
spect the local spatial configuration of the exemplar sample
neighborhoods, which raises the issue of the reconstruction
of each output element based on its associated set of de-
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Figure 5: 2D Generated Textures. We show here the 2D discrete textures produced by our approach compared to previous
works for various input. All our results are obtained with the same default parameters, except in (f) for which we segment
the input in two distinct categories (cf. Section 7.1). We observe the preservation of the global distribution of the mutual
element interspaces which accurately characterize the input distributions. Thanks to its piecewise-constant oriented interaction
functions, our model indeed captures the pairwise element interactions at all scales and directions. Note that, unlike most
previous work, highly anisotropic shapes are correctly handled (b,c,e). All previous methods also fail to prevent unwanted
element collisions.
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Figure 6: 3D Generated Textures. Although these two 3D exemplars contain a fairly limited set of complex elements, our model

synthesizes consistent results in arbitrary 3D volumes.

formed samples. Several options can be considered depend-
ing on the trade-off between element deformations and local
faithfulness to the exemplar spatial organization. We tested
three different strategies: a rigid transform fitting (rotation,
translation and scaling), an interpolating Thin-Plate Spline
(TPS) mapping which exactly respects the sample spatial or-
ganization returned by the EM algorithm, and a relaxed TPS
mapping. Best rigid transforms generally produce the most
visually pleasing results, and have therefore been preferred
for illustrating Ma et al.’s results in Figure 5. We show the
three reconstruction strategies on a collision area in Figure 8.

&
&
° .

o

$
A M\“ N

Fitted similarity mapping

WA M ;\mw\

Interpolating Approximating
thin-plate spline (TPS) mapping

Figure 8: Element Reconstruction Issue in [MWTI11]. The
sample set of each object may endure spatial deformations
during the EM iterations depending on the initialization and
the constraint to preserve the exemplar organization. Recon-
structing the objects based on their samples depends on the
desired faithfulness to the sample locations dictated by the
EM algorithm. We here show reconstructions based on an
interpolating and approximating thin-plate spline mapping
(left and middle respectively), and a rigid transform (right).

7.3. Editing

Our model-based synthesis algorithm relies on few parame-
ters. Varying the fitted parameters paves the way to interest-
ing editing operations that we describe below.

Intensity Modulation Although the B intensity function is
considered as constant in the exemplar (according to the sta-
tionarity assumption of textures), we can locally adjust its
value over the synthesis window in order to obtain spatially-
varying textures. This variation can intuitively be given by
the user using a grayscale mask image, as the beard gradient
image in Figure 9.

el
i

hlmm

Figure 9: Local Intensity Modulation. Spatially modulat-
ing the intensity P with control maps (middle) results in lo-
cal density variation, and thus creates shading-like effects
(right).

Interaction Variation More elaborate editing operations
can be achieved by changing the values of the parameters
obtained by our input analysis. Indeed, changing the param-
eters of the fitted interaction function I" boils down to defin-
ing a new shape process model that can be synthesized by
our MCMC algorithm. Examples of editing operations are
illustrated in Figure 10. These kinds of procedural opera-
tions enable one to impose global geometrical organizations
such as clustering or alignment.

8. Discussion

Performance Run times for all the discrete texture outputs
are provided in Table 1. They range from less than 30 sec-
onds and up to 7 minutes, and are comparable with the
ones from previous work such as [MWT11] . These non-
negligible run times are explained by the algorithmic com-
plexity of our method’s core components (model fitting, and
sampling). As shown in Table 1, their execution hinders di-
rect user interaction, especially the intrinsically sequential
MCMLC iterative synthesis procedure. Yet, some subroutines
could be multi-threaded, such as part of the numerical inte-
gration of the log PL. maximization, or the batch process of
the MCMC perturbations.

Element Shape Distance Figure 11 compares different
pairwise element interaction strategies. The centroidal rep-
resentation combined with the Euclidean distance is used
in most previous work (see Section 2). As pointed out
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Figure 10: Model-Based Texture Editing. From left to right: original texture, output texture without editing, three different

textures obtained through parameter editing, a fourth example of edited texture applied on a giraffe (after rotation). The editing
operations consist in changing interaction distance thresholds 8;y and enforcing to zero some interaction values ;. They

enable to impose clustering and/or alignment over the whole output texture.

Table 1: Computation Times. The proxy number, which
greatly impacts the overall times of our technique, desig-
nates the average number of proxy sub-parts (2D segments
or 3D triangles) per texture element. This information is cru-
cial as discrete texture elements can exhibit arbitrary com-
plexities. The MCMC algorithm is run during 50,000 itera-
tions and 10,000 iterations, for 2D outputs and 3D outputs
respectively.

input complexity output synthesis
Fig #elements  proxy proxy fitting MCMC
number | creation

1(left) 12 106.1 1.06s 19.45s  71.58s
5(a) 24 554 3.9s 8.5s 89.3s
5(b) 7 98.8 1.1s 4.4s 195.9s
5(c) 11 8.3 0.3s 1.6s 16.8s
5(d) 17 234 0.7s 1.4s 28.1s
5(e) 11 48 2.7s 1.5s 31.1s
5(f) 13 25.8 0.3s 1.1s 23.2s
9 51 5 0.8s 4.8s 178.2s
1(right) 12 544 39s  17.8s 108.9s
6(left) 12 152.3 1.3s  113.2s  350.4s
6(right) 7 140.7 0.9s 62s 451.1s

in [HLT*09, LZZ11], this simple representation performs
poorly on textures whose elements show a pronounced
anisotropic spatial extent. The Hausdorff metric has been
suggested as a possible alternative [HLT*09]. In [BBT*06,
BBMTO06], it is also used to trigger the clustering of too suf-
ficiently close elements. Initially asymmetric, this metric can
be made a distance by taking the maximum values between
the two one-sided Hausdorff distances. Still, since it is based
on the farthest point-shape distance, the Hausdorff distance
does not represent an intuitively exploitable measurement
for element interaction.

Interlocking Elements A limitation of our model is its lack
of control over occlusions and interpenetrations between el-
ements. While our shape model can be used with texture el-
ements that interlock (see Figure 1 (left)), it does not encode

submitted to Eurographics Symposium on Rendering (2013)

Centroid Euclidean distance Hausdorff distance

Figure 11: Influence of Shape Distance. The Euclidean
distance between centroids is only suitable for objects with
strictly isotropic spatial extents. When used as the interac-
tion distance between elongated elements, it generally pro-
duces undesirable overlaps (left). The Hausdorff distance
is a costly alternative that is also unable to avoid over-
lap. Observe that both distances underestimate the mean
nearest-neighbor distance, leading to denser output textures.
Conversely, we propose to quantify interactions using the
shortest path length between element pairs to overcome such
shortcomings (Figure 5).

relevant features such as the location or the amount of over-
lap between element pairs, as illustrated by Figure 12. Ad-
ditional measurements could be embedded to our model in
order to mitigate this issue, but we must be careful to keep
its parameter number reasonable.

9. Conclusion

We presented a new shape-aware method for by-example
synthesis of discrete element textures. Our approach relies
on a shape process model for which we proposed an auto-
matic procedure for parameter estimation and an MCMC
simulation algorithm that ensures the correct sampling of
the targeted distribution. Since our model is based on spatial
measurements that fully take into account the geometries of
the elements, our algorithm is able to reproduce anisotropic
element distributions and systematically prevents undesir-
able object collisions, contrary to previous techniques. As
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Figure 12: Inaccurate Handling of Interlocking Elements.
If element penetrations are observed within the exemplar
(left), our model can only account for this phenomenon to
a limited extent. Indeed, since ignored during the fitting of
our model’s parameters, visual features such as the exact
amount, or location of overlap cannot be faithfully preserved

(right).

for future work, we would investigate the extension of our
approach to time-varying discrete textures, especially for 2D
animation where physical simulation is better avoided.
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