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aLaboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, UFR des Sciences, 33, rue
Saint-Leu, 80039 Amiens Cedex 1, France, dumont@lma.cnrs-mrs.fr
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Abstract

In this paper, the asymptotic first order analysis, both mathematical and numerical, of two struc-
tures bonded together is presented. Two cases are considered, the gluing of an elastic structure with
a rigid body and the gluing of two elastic structures. The glue is supposed to be elastic and to have
its stiffness of the same order than those of the elastic structures. An original numerical method
is developed to solve the mechanical problem of stiff interface at order 1, based on the Nitsche’s
method. Several numerical examples are provided to show the efficiency of both the analytical
approximation and the numerical method.
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1. Introduction

Adhesive bonding is an assembly technique often used in structural mechanics. In bonded
composite structures, the thickness of the glue is much smaller than the other dimensions. For
example, in Goglio et al. (2008), the thickness of the glue is equal to 0.1 mm, whereas the dimension
of the structure is close to 150 mm, thus the ratio of dimensions of the bodies considered is close
to 1

1500 . Thus, the thickness of the glue can be considered as a small parameter in the modeling
process. Usually, the stiffness of the glue is considered to be one another small parameter when
compared with the stiffness of the adherents (soft interface theory), as shown in Lebon et al. (2004);
Lebon and Rizzoni (2008). For example, in Goglio et al. (2008), two steel structures are bonded by
a Loctite 300 glue and the ratio between the Young moduli of the both components is close to 1

230 .
Nevertheless, in the case of an epoxy based adhesive bonding of two aluminium structures, the ratio
between the Young moduli is typically about 1

20(see for example Cognard et al. (2011)). Thus, the
stiffness of the glue can not be considered as the smallest parameter (stiff interface theory). The
aim of this paper is to analyze mathematically and numerically the asymptotic behavior of bonded
structures in the case of only one small parameter: the thickness. In the following, the stiffness is
not a small parameter, that is to say the Young moduli of the glue and of the adherents are of the
same order of magnitude.

The mechanical behavior of thin films between elastic adherents was studied by several authors:
Abdelmoula et al. (1998); Benveniste (2006); Bertoldi et al. (2007a,b); Bigoni and Movchan (2002);
Cognard et al. (2006, 2011); Duong et al. (2011); Goglio et al. (2008); Hirschberge et al. (2009);
Krasuki and Lenci (2000); Kumar and Scanlan (2010); Kumar and Mittal (2011); Lebon et al.
(2004); Lebon and Rizzoni (2008, 2010, 2011a,b); Lebon and Ronel-Idrissi (2007); Nguyen et al.
(2012); Rizzoni and Lebon (2012); Sacco and Lebon (2012). The analysis was based on the classic
idea that a very thin adhesive film can be replaced by a contact law, like in Abdelmoula et al.
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(1998). The contact law describes the asymptotic behavior of the film in the limit as its thickness
goes to zero and it prescribes the jumps in the displacement (or in the displacement rate) and in
the traction vector fields at the limit interface. The formulation of the limit problem involves the
mechanical and the geometrical properties of the adhesive and the adherents, and in Lebon et al.
(2004); Lebon and Rizzoni (2008, 2010, 2011a,b); Rizzoni and Lebon (2012); Lebon and Ronel-
Idrissi (2007) several cases were considered: soft films (Klarbring (1991); Lebon et al. (2004));
adhesive films governed by a non convex energy (Lebon et al. (1997); Lebon and Rizzoni (2008);
Licht and Michaille (1997); imperfect gluing Zaittouni et al. (2002)); flat linear elastic films having
stiffness comparable with that of the adherents and giving rise to imperfect adhesion between the
films and the adherents (Lebon and Rizzoni (2010, 2011a)); joints with mismatch strain between
the adhesive and the adherents, see for example Rizzoni and Lebon (2012). Several mathematical
techniques can be used to perform the asymptotic analysis: Γ-convergence, Variational analysis,
Matched asymptotic expansions and Numerical studies (see Lebon and Rizzoni (2011b); Sánchez-
Palencia (1980) and references therein).

The first part of the paper is devoted to extend the imperfect interface law given in Lebon
and Rizzoni (2011a) to the case of a very thin interphase whose stiffness is of the same order of
magnitude as that of the adherents, firstly when an elastic body is glued to a rigid base, and
secondly in the plane strain case.

In the second part of the paper, numerical methods adapted to solve the limit problems obtained
in the first part are developed. In the case of the gluing of a deformable body with a rigid solid,
the numerical scheme is very classical. On the contrary, the gluing of two deformable bodies leads
to more complicated numerical strategies. The proposed method is based on an original method
presented in Nitsche (1974). This kind of method is well known in the domain decomposition
context. This method is implemented in a finite element software.

In the third part, some numerical examples are presented and the numerical results are analyzed
(in terms of mechanical interpretation, computed time, convergence, etc.) in order to quantify and
justify the methodology.

2. Theoretical results for thin stiff films

2.1. Asymptotic analysis for an elastic body glued to a rigid base

Let us consider a linear elastic body Ω ⊂ IR3 of boundary ∂Ω. This structure is divided into
three parts (see figure 1): two parts (the adherents) are perfectly bonded with a very thin third
one (the interphase). One of the two adherents is considered as rigid. The glue is perfectly bonded
with the rigid body.

More precisely, after introducing a small parameter ε > 0 which is the thickness of the glue, we
define the following domains

• Bε = {(x1, x2, x3) ∈ Ω : 0 < x3 < ε} (the glue);

• Ωε
+ = {(x1, x2, x3) ∈ Ω : x3 > ε} (the deformable adherent);

• Sε+ = {(x1, x2, x3) ∈ Ω : x3 = ε};

• Γ = {(x1, x2, x3) ∈ Ω : x3 = 0} (the interface);

• Ω+ = {(x1, x2, x3) ∈ Ω : x3 > 1};

• B = {(x1, x2, x3) ∈ Ω : 0 < x3 < 1};
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• S+ = {(x1, x2, x3) ∈ Ω : x3 = 1};

• Ω0
+ = {(x1, x2, x3) ∈ Ω : x3 > 0}.

On a part Γ1 of ∂Ω, an external load g is applied, and on a part Γ0 of ∂Ω such that Γ0 ∩Γ1 = ∅
a displacement ud is imposed. Moreover, we suppose that Γ0 ∩ Bε = ∅ and Γ1 ∩ Bε = ∅. A body
force f is applied in Ωε

+.
We consider also that the interface Γ is a plane normal to the third direction e3.

We are interested in the equilibrium of such a structure. The equations of the problem are
written as follows: 

divσε + f = 0 in Ωε
+ ∪Bε

σεn = g on Γ1

uε = ud on Γ0

uε = 0 on Γ
σε = A+e(u

ε) in Ωε
+

σε = Âe(uε) in Bε

(1)

where e(uε) is the strain tensor (eij(u
ε) = 1

2(ui,j + uj,i), i, j = 1, 2, 3) and A+, Â are the
elasticity tensors of the deformable adherent and the adhesive, respectively. In the sequel, we
consider that the glue is isotropic, with Lamé’s coefficients equal to λ̂ and µ̂ in the interphase Bε.
Let us emphasize that the Lamé’s coefficients of the interphase do not depend on the thickness ε
of the interphase (this will be referred as the case of a stiff interface hereinafter).

Since the thickness of the interphase is very small, it is natural to seek the solution of problem
(1) using asymptotic expansions with respect to the parameter ε:{

uε = u0 + εu1 + o(ε)
σε = σ0 + εσ1 + o(ε)

(2)

In order to write the equations verified by u0, u1, σ0 , σ1 in Ω+ and on the interface Γ, we
consider the method developed by Lebon and Rizzoni (2011a) and based on the mechanical energy
of the system:

Jε(uε) =
1

2

∫
Ωε

+

A+e(u
ε) · e(uε)dx−

∫
Γ1

gu ds+
1

2

∫
Bε

Âe(uε) · e(uε) dx (3)

which is defined in the set of displacements

V ε =
{
u ∈ H(Ω; IR3) : u = ud on Γ0, u = 0 on Γ

}
, (4)

where H(Ω;R3) is the set of admissible displacements defined on Ω.
At this level, the domain is rescaled using the classical procedure:

• In the glue, we define the following change of variable

(x1, x2, x3) ∈ Bε → (z1, z2, z3) ∈ B, with (z1, z2, z3) = (x1, x2,
x3

ε
)

and we denote ûε(z1, z2, z3) = uε(x1, x2, x3).
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• In the adherent, we define the following change of variable

(x1, x2, x3) ∈ Ωε
+ → (z1, z2, z3) ∈ Ω+, with (z1, z2, z3) = (x1, x2, x3 + 1− ε)

and we denote ūε(z1, z2, z3) = uε(x1, x2, x3). We suppose that the external forces and the
prescribed displacement ud are assumed to be independent of ε. As a consequence, we define
f̄(z1, z2, z3) = f(x1, x2, x3), ḡ(z1, z2, z3) = g(x1, x2, x3) and ūd(z1, z2, z3) = ud(x1, x2, x3).

Then, using these notations, the rescaled energy takes the form

J ′ε(ûε, ūε) =

∫
Ω+

(
1

2
A+(e(ūε)) · e(ūε)− f̄ · ūε) dz −

∫
Γ̄1

ḡ · ūε dS

+

∫
B

1

2
(ε−1K̂33(ûε,3) · ûε,3 + 2K̂α3(ûε,α) · ûε,3 (5)

+εK̂αβ(ûε,α) · ûε,β) dz

where a comma is used to denote partial differentiation, α, β ∈ {1, 2} and Kjl, j, l = 1, 2, 3,
are the matrices whose components are defined by the relations

(K̂jl)ki := Âijkl. (6)

In view of the symmetry properties of the elasticity tensor Â, the matrices K̂jl have the
property that K̂jl = (K̂ lj)T , j, l = 1, 2, 3. The rescaled equilibrium problem is formulated

Ω0
+

ε

1

Γ1 Γ1
Γ0 Γ0

z1x1 x1

ΓΓ

L− ε
x3

z3

x3

⊗
x2 = z2

Sε+

L

Γ̄1
Γ̄0

S+

L + ε

ûε
B

Ωε
+

uε

ΓBε uε

Ω+

ūε

u

Figure 1: (a) Initial, (b) rescaled , and (c) limit configuration of a solid glued to a rigid base.

as follows: find the pair (ūε, ûε) minimizing the energy (5) in the set of displacements

V ′ = {(ūε, ûε) ∈ H(Ω+;R3)×H(B;R3) : ūε = ūd on Γ̄1,

ūε = ûε on S+, û
ε = 0 on Γ}. (7)

where H(Ω+;R3) and H(B;R3) are the sets of admissible displacements defined on Ω+ and
B, respectively.

We assume that the displacements minimizing J ′ε in V ′ can be expressed as the sum of the
series

ûε = û0 + εû1 + ε2û2 + o(ε2) , (8)

ūε = ū0 + εū1 + ε2ū2 + o(ε2) . (9)
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Correspondingly, the rescaled energy (5) can be written as:

J ′ε(ûε, ūε) =
1

ε
J ′−1(û0) + ε0J ′0(û0, ū0, ū1) + εJ ′1(û0, ū0, û1, ū1, û2)

+ε2J ′2(û0, ū0, û1, ū1, û2, ū2, û3) + o(ε2), (10)

where

J ′−1 := J ′−1(û0) (11)

:=

∫
B

1

2
(K̂33(û0

,3) · û0
,3) dz,

J ′0 := J ′0(û0, ū0, ū1) (12)

:=

∫
Ω+

(
1

2
A+(e(ū0)) · e(ū0)− f̄ · ū0) dz −

∫
Γ̄1

ḡ · ū0 dS +

+

∫
B

(K̂33(û0
,3) · û1

,3 + K̂α3(û0
,α) · û0

,3) dz,

J ′1 := J ′1(û0, ū0, û1, ū1, û2) (13)

:=

∫
Ω+

(A+(e(ū0)) · e(ū1)− f̄ · ū1) dz −
∫

Γ̄1

ḡ · ū1 dS +

+

∫
B

(K̂33(û0
,3) · û2

,3 +
1

2
K̂33(û1

,3) · û1
,3) dz +

+

∫
B

(K̂α3(û0
,α) · û1

,3 + K̂α3(û1
,α) · û0

,3) dz +

+

∫
B

1

2
K̂αβ(û0

,α) · û0
,β dz,

J ′2 := J ′2(û0, ū0, û1, ū1, û2, ū2, û3) (14)

:=

∫
Ω+

(
1

2
A+(e(ū1)) · e(ū1)− f̃ · ū2) dz −

∫
Γ̄1

ḡ · ū2 dS +

+

∫
Ω+

A+(e(ū0)) · e(ū2) dz +

∫
B
K̂33(û0

,3) · û3
,3 dz +

+

∫
B

(K̂33(û1
,3) · û2

,3 + K̂α3(û0
,α) · û2

,3 + K̂α3(û1
,α) · û1

,3) dz +

+

∫
B

(K̂α3(û2
,α) · û0

,3 dz + K̂αβ(û0
,α) · û1

,β) dz.

As proposed in Lebon and Rizzoni (2010), we now minimize successively the energies J ′−1,
J ′0, J ′1, and J ′2.

2.1.1. Minimization of J ′−1

The energy J ′−1 is minimized in the class of displacements

V ′−1 = {û0 ∈ H(B;R3) : û0 = 0 on Γ}. (15)

Because Â is a positive definite tensor, the second order tensor K̂33 is also positive definite.
Therefore, the energy J ′−1 is non negative and the minimizers are such that

û0
,3 = 0, a.e. in B, (16)
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which, together with the boundary condition in (15), implies

û0 = 0, a.e. on S+. (17)

2.1.2. Minimization of J ′0

Based on (17), the energy J ′0 turns out to depend only on ū0 and it takes the form:

J ′0(û0, ū0, ū1) =

∫
Ω+

(
1

2
A+(e(ū0)) · e(ū0)− f̄ · ū0) dz −

∫
Γ̄1

ḡ · ū0 dS. (18)

In view of (17) and of the continuity of the displacements at the surface Ŝ+, we seek the
energy minimizer in the class of displacements

V ′0 = {ū0 ∈ H(Ω+;R3) : ū0 = 0 on S+, ū
0 = ūd on Γ̄0}. (19)

Using standard arguments, we obtain the equilibrium equations

div(A+(e(ū0))) + f̄ = 0 in Ω+, (20)

A+(e(ū0))n = ḡ on Γ̄1, (21)

A+(e(ū0))n = 0 on ∂Ω+ \ (Γ̄1 ∪ S+). (22)

2.1.3. Minimization of J ′1

In view of (17), the energy J ′1 simplifies as follows:

J ′1(û0, ū0, û1, ū1, û2) :=

∫
Ω+

(A+(e(ū0)) · e(ū1)− f̄ · ū1) dz

−
∫

Γ̄1

ḡ · ū1 dS +

∫
B

(
1

2
K̂33(û1

,3) · û1
,3) dz. (23)

We minimize this energy in the class of displacements

V ′1 = {(ū1, û1) ∈ H(Ω+;R3)×H(B;R3) : ū1 = û1 on S+,

û1 = 0 on Γ, ū1 = 0 on Γ̄0}. (24)

Using (20-22), the Euler-Lagrange equations reduce to the following equation:∫
S+

(A+(e(ū0))n · η̄1)dS +

∫
B

(K̂33(û1
,3) · η̂1

,3) dz = 0, (25)

where η̄1, η̂1 are perturbation of ū1, û1, respectively, and they are such that η̄1 = η̂1 on S+.
Integrating by parts the second integral and using the boundary conditions in (24), we obtain∫

S+

(A+(e(ū0))n · η̄1)dS +

∫
S+

(K̂33(û1
,3) · η̂1)dS −

∫
B

(K̂33(û1
,33) · η̂1) dz = 0. (26)

Using the arbitrariness of η̄1, η̂1, we obtain

û1
,33 = 0 in B, (27)

û1
,3 = −(K̂33)−1(A+(e(ū0))n on S+, (28)

which, together with the boundary condition on Γ, give

û1 = −
(

(K̂33)−1(A+(e(ū0))n
)
z3 in B. (29)
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2.1.4. Minimization of J ′2

Using the results obtained so far, the energy J ′2 simplifies as follows:

J ′2(û0, ū0, û1, ū1, û2, ū2, û3) =

∫
Ω+

(
1

2
A+(e(ū1)) · e(ū1)dz +

∫
B
K̂α3(û1

,α) · û1
,3 dz (30)

In view of (29) the second integral is a constant term and it can be dropped in the minimization
procedure. Thus, we minimize the remaining term in the energy in the class of displacements

V ′2 = {ū1 ∈ H(Ω+;R3) : ū1 = −
(

(K̂33)−1(A+(e(ū0))n
)

on S+}. (31)

and we obtain the equilibrium equations:

div(A+(e(ū1))) = 0 in Ω+, (32)

A+(e(ū1))n = 0 on ∂Ω+ \ S+. (33)

2.1.5. Limit equilibrium problems

Due to the continuity of the displacement across the surface S+, we have

ûε(z1, z2, 1
−) = ūε(z1, z2, 1

+) = uε(x1, x2, ε).

Note that the same condition is obtained for the stress field along S+.

Using an asymptotic expansion, we have uε(x1, x2, ε) = uε(x1, x2, 0
+)+εuε,3(x1, x2, 0

+)+o(ε).

Using relations (2) and the last two equations, we obtain

u0(x1, 0
+) = ū0(x1, 1

+), (34)

u0
,3(x1, 0

+) + u1(x1, 0
+) = ū1(x1, 1

+). (35)

With the help of the above relations, we can rewrite the interface conditions obtained in the
asymptotic analysis in terms of the displacement in the deformable adherent. In summary,
we have the following two equilibrium problems:

(P0)


div(A+(e(u0))) + f̄ = 0 in Ω0

+,
A+(e(u0))n = g on Γ1,
A+(e(u0))n = 0 on ∂Ω0

+ \ (Γ1 ∪ Γ)
u0 = 0 on Γ,

(36)

(P1)


div(A+(e(u1))) = 0 in Ω0

+,
A+(e(u1))n = 0 on ∂Ω0

+ \ Γ

u1 = −
(

(K̂33)−1(A+(e(u0))n
)
− u0

,3 on Γ.
(37)

In the remaining of the paper, the problem (P0) will be referred to as the “problem at the
order zero”, because its unknown is u0. Similarly, the problem (P1) will be referred to as the
“problem at the first order”, because its unknown is u1 and the displacement u0 is considered
as given and calculated by using (P0).
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2.2. Plane strain problem

We consider the case of plane strain in the plane (x1, x2), where the interface between the glue
and the adhesive is a line orthogonal to the direction e2. After adopting natural notations, it
is obvious to obtain, by implementing the same kind of technique used in the previous section,
the two following problems:

(P0)


div(A+(e(u0))) + f = 0 in Ω0

+,
A+(e(u0))n = g on Γ1,
A+(e(u0))n = 0 on ∂Ω0

+ \ (Γ1 ∪ Γ)
u0 = 0 on Γ,

(38)

(P1)


div(A+(e(u1))) = 0 in Ω0

+,
A+(e(u1))n = 0 on ∂Ω0

+ \ Γ

u1 = −
(

(K̂22)−1(A+(e(u0))n
)
− u0

,2 on Γ.
(39)

2.3. Case of the gluing of two elastic bodies

Let us now consider the adhesive bonding of two linear elastic bodies satisfying the plane
strain hypothesis.

We extend the notation used before, and we define the following domains

– Bε = {(x1, x2) ∈ Ω : |x2| < ε
2} (the glue);

– Ωε
± = {(x1, x2) ∈ Ω : ±x2 >

ε
2};

– Sε± = {(x1, x2) ∈ Ω : x2 = ± ε
2};

– Γ = {(x1, x2) ∈ Ω : x2 = 0} (the interface);

– Ω± = {(x1, x2) ∈ Ω : ±x2 >
1
2};

– B = {(x1, x2) ∈ Ω : |x2| < 1
2};

– S± = {(x1, x2) ∈ Ω : x± = ±1
2};

– Ω0
± = {(x1, x2) ∈ Ω : ±x2 > 0}.

The methodology and the notations used here are similar to the ones used in the previous
section. The main differences are:

– The introduction of a jump of the stress vector at order 0 and 1;

– The displacement along the interface is replaced by a jump of the displacement across
the interface between the two bodies;

– The minimization of J ′1 leads to concentrated forces at the edges of the interface.

More precisely, the problem at order 0 becomes

divσ0 + f = 0 in Ω0
±

σ0n = g on Γ1

u0 = ud on Γ0

σ0 = A±e(u
0) in Ω0

±
[u0] = 0 on Γ
[σ0n] = 0 on Γ

(40)
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Ω0
−

x2

z2

x1

x2
⊙

x3 = z3

x1

z1

1

uε

uε

Γ0Γ0

Γ1 Γ1

L+

L−

L+

L−

L+ + ε
2

L− + ε
2

Γ

Ωε
+

ε uεBε

Ωε
−

ūε

ûε

ūε

B

Γ̄1

Ω+

Ω−

Γ̄0

S−

S+
Sε+
Sε−

u

Ω0
+

u

Figure 2: Geometry of the interphase/interface problem. Left: the initial problem with an interphase of thickness ε
– Middle: the rescaled problem with interphase height equal to 1 – Right: the limit interface problem.

where [f ](x1) = f(x1, 0
+)− f(x1, 0

−). The problem at order 1 becomes



divσ1 = 0 in Ω0
±

σ1n = 0 on Γ1

u1 = 0 on Γ0

σ1 = A±e(u
1) in Ω0

±
[u1] = C1(σ0n) + C2(u0),1 − 1

2(u0(x1, 0
+) + u0(x1, 0

−)) on Γ
[σ1n] = C3(σ0n),1 + C4(u0),11 on Γ
σ1e1 = F on ∂Γ

(41)

where

C1 =

(
1
µ̂ 0

0 1
λ̂+2µ̂

)
C2 =

(
0 −1

− λ̂
λ̂+2µ̂

0

)
,

C3 =

(
0 − λ̂

λ̂+2µ̂

−1 0

)
C4 =

(
−4µ̂ λ̂+µ̂

λ̂+2µ̂
0

0 0

)
,

and the localized forces which appear on the lateral boundary of the thin layer are given by

F = C3(σ0e1) + C4(u0),1 (42)

Let us notice that this term appears naturally in this method, and has been first observed by
one another technique in Zaittouni et al. (2002) (see also Lebon and Ronel-Idrissi (2007); Lebon
and Zaittouni (2010)).
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3. Numerical method

In this paragraph, we present the numerical method developed to solved problem (41). The
generic problem associated to this problem can be written

divσ(u) = 0 in Ω0
±

σ(u)n = 0 on Γ1

u = 0 on Γ0

σ = A±e(u) in Ω0
±

[u] = D on Γ
[σ(u)n] = G on Γ

(43)

where D and G are given functions, provided by the solutions u0 and σ0 of problem (40) at
order 0. Note the solution of problem at order 0 (40) is very classic and can be solved using a
classical finite element method. In the following, we will denote the restriction of u on Ω0

+ (resp.
Ω0
−) by u+ (resp. u−).

First, we write the variational formulation of the four first equations of (43) both in Ω0
− and

Ω0
+, that leads, after an integration by parts, to∫

Ω0
±

A±e(u
±) · e(v±)dx−

∫
∂Ω0

±

(A±e(u
±))n± · v±dS = 0 (44)

for v± ∈ {v ∈ H1(Ω) : v = 0 on ∂Γ0}. Then, introducing the boundary conditions, we obtain∫
Ω0

±

A±e(u
±) · e(v±)dx−

∫
Γ
(A+e(u

+))n+ · v+dS −
∫

Γ
(A−e(u

−))n− · v−dS = 0.

We now choose the normal n equal to the outward normal of Ω0
− (n = n− = −n+), and we

denote

I =

∫
Γ
(A+e(u

+))n · v+dS −
∫

Γ
(A−e(u

−))n · v−dS.

Then, using the jump condition (A+e(u
+))n = (A−e(u

−))n+G, we have

I =

∫
Γ
(A−e(u

−))n · (v+ − v−)dS +

∫
Γ
Gv+ dS. (45)

Similarly, writing the jump condition as (A−e(u
−))n = (A+e(u

+))n−G, we also have

I =

∫
Γ
(A+e(u

+))n · (v+ − v−)dS +

∫
Γ
Gv− dS. (46)

In order to have a symmetric variational formulation, we consider the half sum of (45) and (46):

I =

∫
Γ

1

2

[
(A+e(u

+))n+ (A−e(u
−))n

]
· (v+ − v−)dS +

∫
Γ
G

(
v+ + v−

2

)
dS.

Again, in order to have a fully symmetric formulation, we need to add in the left hand side of
equation (44) the term ∫

Γ
(u+ − u−) · 1

2

[
(A+e(v

+))n+ (A−e(v
−))n

]
dS

and we use the fact that u+ − u− = D on Γ.
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Finally, we have the weak formulation∫
Ω0

+∪Ω0
−

A±e(u
±) · e(v±)dx +

∫
Γ

(< Ae(u)n > ·[v] + [u]· < Ae(v)n >) dS =

−
∫

Γ
G· < v > dS +

∫
Γ
D· < Ae(v)n > dS, (47)

for all v ∈ {H1(Ω) : γ(v) = 0 on ∂Ω\Γ}, where < · > denotes the average of the value of the
function on the both sides of the interface Γ: < f >= 1

2(f+ + f−).

This formulation, known as the Nitsche’s method Nitsche (1974) is not stable. It is then

necessary to add a stabilization term such as
β

h

∫
Γ
[u] · [v]dS, where h is the size of the smallest

element of the finite element discretization of Ω0
± considered, and β > 0 is a fixed number that must

be sufficiently large to ensure the stability of the method (see Becker et al. (2010); Dumont et al.
(2006); Stenberg (1995) for the complete study of this method and for a priori and a posteriori
error estimates in the case D = 0).

Let us notice that this method is formally equivalent to the use of Lagrange multipliers to
enforce the jump conditions (see Baiocchi et al. (1992); Barbosa and Hughes (1992); Becker et al.
(2010)), but it takes its advantage on the fact that the Nitsche’s method does not increase the
number of unknowns.

Unfortunately, this method does not work properly to solve the problem (43) as soon as D 6= 0.
To overcome this difficulty, we split the problem (43) into two parts. More precisely, we write
u± = w± + z± where the unknowns z+ and z− solve the problems

div σ(z±) = 0 in Ω0
±

σ(z±)n = 0 on Γ1

z± = 0 on Γ0

σ(z±) = A±e(z±) in Ω0
±

z± = ±1
2D on Γ

(48)

and then, since [w] = w+ − w− = [u]− z+z− = (1− 1
2 −

1
2)D = 0, w± solve

div σ(w±) = 0 in Ω0
±

σ(w±)n = 0 on Γ1

w± = 0 on Γ0

σ(w±) = A±e(w±) in Ω0
±

[w] = 0 on Γ
[σ(w)n] = G− [σ(z)n] on Γ

(49)

The two first problems defined in (48) both in Ω0
+ and Ω0

− are standard and can be solved
simultaneously using a standard finite element method. The problem (49) is solved using the
Nitsche’s method developed above.

4. Numerical results for an elastic body glued to a rigid base

In this paragraph, we consider a 2D solid composed of an aluminum adherent and an epoxy
resin interphase, that glues the structure to a rigid base.

The mechanical coefficients of the materials are the following :
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• In the adhesive (Epoxy resin): Ê = 4GPa, ν̂ = 0.33.

• In the adherent (Aluminium): E = 70GPa, ν = 0.33.

This application was intentionally selected in order to introduce a significative difference between
the elastic moduli of the adherent and those of the adhesive materials.

The geometry of the problem is provided in figure 3. The meshes are realized using the GMSH
software developed by Geuzaine and Remacle (2009). The finite element computations are made
with the MATLAB R© software.

Adhesive ε m.

F=2MPa

5 m.

1 m.

F=2MPa

Adherent 5-ε m.

Figure 3: Geometry of the problem (ε = 0 for the interface problem)

The computations are first realized for the interphase problem with various values of the thick-
ness of the interphase. The values of the jumps of the displacement and of the stress components
across the interphase are then computed. Independently, the interface problem at order 0 (equations
(36)) is solved numerically. Then, the jumps across the interface at order 1 are computed using the
corresponding equations in (37), and they are compared with the jumps across the interphase.

We can notice that, to compute the jump in the displacement using (37), one needs to nu-
merically compute the derivative of the displacement on the boundary. In order to make the
computation in a suitable way, it is necessary to use at least quadratic finite elements. In the
numerical experiments below, we use the quadratic T6 finite elements.

4.1. Jump [u] across the interface

In figure 4, we present comparative plots of displacement amplitudes u1 and u2 across the
interface for various values of the thickness ε. More precisely, since the displacement of the rigid
base is vanishing, we compare the displacement uε(x1 = ε, x2), denoted [uεi ], i = 1, 2 on figure (4)
and computed using the real geometry of the adhesive, with the displacement u(x1 = 0+, x2) =
u0(x1 = 0+, x2) + εu1(x1 = 0+, x2), denoted [ui], i = 1, 2 and computed using equations (36) and
(37). t

We can observe that, as expected, when ε = 0.1 m the difference between the jumps across the
interphase and the jumps across the interface are relatively large (with a maximum relative error
of about 30%). For smaller values of the thickness ε of the interphase, the difference between the
results obtained using the interphase problem and those obtained using the interface approximation
is negligible. More precisely, the maximum relative error is close to 1% for ε = 0.01 m, 0.6% for
ε = 0.005 m and 0.2% for ε = 0.001 m.
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Figure 4: Exemple 1 – Jump in the displacement [u](x1, x2 = 0) (m) along the interface: ε = 0.1 m (left top), ε = 0.01
m (right top), ε = 0.005 m (left bottom) and ε = 0.001 m (right bottom)

4.2. Jump [σ12] across the interface

In this paragraph, we present a comparison between the traction amplitude σ12 at the top of
the interphase/interface and at the bottom of the interphase/interface computed for the original
interphase problem and for the approximated (at order 1) problem with the interface. They are
respectively referred as σup and σbottom on figures (5) to (7). In the comparison, the thickness ε
ranges from 0.01 m to 0.001 m. We also present the traction amplitude computed at order 0 for
the approximated problem. Since the traction is continuous across the interface, i.e. [σ12] = 0, the
traction amplitude takes the same value at the top and at the bottom of the interface.

The case ε = 0.1 m is not presented here because the difference between the case with the
interphase and the case with the interface is large.

We can observe that the stress σ12 computed using the interphase problem numerically converges
to the stress σ12 computed using the interface problem when ε tends to 0.

One can also observe that the traction amplitude calculated at order 0 converges much slower
than the traction amplitude calculated at order 1.

In conclusion, it seems that we can replace the interphase behavior by the interface law at order
1, for a thickness of glue lower than 0.01 m, i.e. less than 1% of the dimension of the structure.

4.3. Time computing

In this paragraph, we present the time computing necessary to obtain the solutions of the
problems considered in the previous section.

Even if only linear finite elements are necessary for the computations for the interphase prob-
lem, we can notice that the CPU times necessary to obtain the solution quickly increases as the
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Figure 5: Exemple 1 (ε = 0.01 m) – Stress σ12(x1, x2 = 0) (GPa) at the bottom of the elastic adherent (up) and on
the rigid base (bottom) computed with the various approximations (zoom on the right)
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Figure 6: Exemple 1 (ε = 0.005 m) – Stress σ12(x1, x2 = 0) (GPa) at the bottom of the elastic adherent (up) and on
the rigid base (bottom) computed with the various approximations (zoom on the right)
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Figure 7: Exemple 1 (ε = 0.001 m) – Stress σ12(x1, x2 = 0) (GPa) at the bottom of the elastic adherent (up) and on
the rigid base (bottom) computed with the various approximations (zoom on the right)

thickness of the interphase tends to 0. The reason is that the mesh has to be sufficiently fine inside
the interphase, at least four nodes along the thickness. Therefore, in order to keep a reasonable
condition number for the rigidity matrix, the mesh has to be fine also in a large zone around the
interphase. This necessity significantly increases the number of degrees of freedom as the thickness
of the interphase tends to zero.

For the interface problem, the computation is relatively independent of the parameter ε. As
a consequence, the meshes and the CPU times of the computations increase very slowly as the
thickness tends to zero. So, for small values of the thickness, the use of the imperfect interface
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Thickness Number of Number of Number of CPU time
ε (m) nodes elements degrees of freedom (sec.)

0.1 2,582 4,966 4,962 6.4
0.01 28,172 55,166 54,342 48
0.005 39,486 77,432 76,304 66
0.001 150,054 294,831 290,106 274

Table 1: Mesh properties (T3 finite elements) and times computing for the interphase problem and various values of
ε

Thickness Number of Number of Number of CPU time
ε (m) nodes elements degrees of freedom (sec.)

0.1 731 1,363 1,410 5.2
0.01 10,887 5338 21,372 22
0.005 12,511 6,138 24,620 24
0.001 13,417 6,586 26,332 25

Table 2: Mesh properties (T6 finite elements) and times computing for the interface problem and various values of ε

model is very convenient.

5. Numerical results for two elastic bodies glued

In this section, we present examples of two elastic structures glued together. These examples
are inspired by Goglio et al. (2008).

The first one is composed of two T-form elastic bodies (Aluminium) glued with an epoxy resin
(see figure 8 for the geometry). More precisely, the mechanical coefficients of the materials are as
follows:

• In the adhesive (Epoxy resin): Ê = 4GPa, ν̂ = 0.33.

• In the adherent (Aluminium): E = 70GPa, ν = 0.33.

We present results for ε = 0.01 m.
The results show that the interface law at order 1 is able to reproduce the phenomena that

occur in the interphase much more accurately that the interface law at order 0.
For example, we observe that σ12 and the jump [σ12] are in good agreement with σε12 and [σε12],

respectively (see figures 9 and 10).
Even in the case of a small jump of a quantity (see figure 12 for [σ22], figure 14 for [u1]),

considering the order 1 term improve the results (see figure 11 for the stress σ22 and figure 13 for
displacement u1).

Finally, the model is able to reproduce the displacement jump [u2] and the displacement u2

with a very small error (see figure 15 and 16).

In our last example, we consider the same geometry as before. The materials are now as follows:

• The adhesive is a reinforced Epoxy resin: Ê = 6GPa, ν̂ = 0.33.
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Figure 8: Exemple 2: geometry of the problem (ε = 0 for the interface problem)
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Figure 9: Exemple 2 (ε = 0.01 m) – Stress σ12(x1 = 2.5, x2) (GPa) on a vertical cut
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Figure 10: Exemple 2 (ε = 0.01 m) – Jump in the stress [σ12](x1, x2 = 5) (GPa) along the interface

• The adherents are made of Polymethyl Methacrylate (PPMA) : E = 3.1GPa, ν = 0.4.

In this last example, the elasticity coefficients of the components are very close. Let us observe
that if they are identical, then the jumps conditions at order 0, that is to say [u] = 0 and [σn] = 0,
are exact conditions. This example permit us to observe the improvement provided by the first order
terms in the case of a small mechanical properties variation between the glue and the adherents.

We present here only the results for the displacement u2 (normal to the interface) and for the
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Figure 11: Exemple 2 (ε = 0.01 m) – Stress σ22(x1 = 2.5, x2) (GPa) on a vertical cut
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Figure 12: Exemple 2 (ε = 0.01 m) – Jump in the stress [σ22](x1, x2 = 5) (GPa) along the interface
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Figure 13: Exemple 2 (ε = 0.01 m) – Displacement u1(x1 = 2.5, x2) (m) on a vertical cut (Zoom on the right)

stress σ22, because they are representative of the results for the other components.
Due to the small difference between the mechanical properties of the glue and the adherents,

we can observe in figure 18 that the jump in the displacement is very small compared to the size
of the structure (less than 2 · 10−3% of the size of the structure), and to the maximum of the
displacement represented in figure 17 (less than 10−2% of the maximum of the displacement of the
structure). Nevertheless, considering the first order term improves the asymptotic approximation
of the displacement (see figure 17) and the stress (see figure 19). Moreover, the jump in the stress
[σ22] is well approximated (see figure 20). The oscillations that we can observe in figure 20 are due
to the smallness of the stress jump, that is of the same order of the error of the approximation.

17



0 1 2 3 4 5
−1

0

1

2

3

4

5

6

7
x 10

−4

x
1
 (m)

[u
1
](

x
1
,x

2
=

5
)

 

 

[u
ε

1
](x

1
,x

2
=5)

[u
0

1
](x

1
,x

2
=5)

[u
0

1
+ ε u

1

1
](x

1
,x

2
=5)

Figure 14: Exemple 2 (ε = 0.01 m) – Jump in the displacement [u1](x1, x2 = 5) (m) along the interface
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Figure 15: Exemple 2 (ε = 0.01 m) – Displacement u2(x1 = 2.5, x2) (m) on a vertical cut (Zoom on the right)
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Figure 16: Exemple 2 (ε = 0.01 m) – Jump in the displacement [u2](x1, x2 = 5) (m) along the interface

6. Conclusion

In this paper, we have presented an interface law at order 1 when the Lamé’s coefficients of
the adhesive do not rescale with the thickness of the interphase. Based on the proposed interface
law, some numerical experiments were also presented that show the accuracy of the method when
the interphase thickness becomes smaller and smaller. For this purpose, we have developed an
original numerical scheme based on the Nitsche’s method to simulate the adhesion between two
elastic materials.

This model is very efficient (maximum relative error less than 1 % for a ratio of thickness
smaller than 1 %) and the interface law is able to reproduce the mechanical behavior of the real
interface. On the other hand, the numerical model developed in this paper is less expensive than
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Figure 17: Exemple 3 (ε = 0.01 m) – Displacement u2(x1 = 2.65, x2) (m) on a vertical cut (Zoom on the right)
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Figure 18: Exemple 3 (ε = 0.01 m) – Jump in the displacement [u2](x1, x2 = 5) (m) along the interface
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Figure 19: Exemple 3 (ε = 0.01 m) – Stress σ22(x1 = 2.65, x2) (GPa) on a vertical cut (Zoom on the right)

the solution of the real problem. More precisely, the method is independent of the thickness of the
interphase and it becomes more and more efficient as the thickness decreases. For example, in the
first numerical test proposed above, the CPU times of the interphase problem and the asymptotic
interface problem are equivalent when ε = 0.1, but their ratio is lower than 1

10 when ε = 0.001.
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assemblage de plaques. C. R. Acad. Sci. II 330, 359–364.

22


