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Abstract. In this paper we propose a novel approach for matching cartographic images over detecting interest points 
invariant to scale and affine transformations. Our scale and affine invariant detectors are based on the following recent 
results: Interest points extracted with the SIFT detector which is adapted to affine transformations and give repeatable 
results (geometrically stable). This provides a set of distinctive points which are invariant to scale, rotation and translation 
as well as robust to illumination changes and limited changes of viewpoint. The characteristic scale determines a scale 
invariant region for each point. The characteristic scale and the affine shape of neighbourhood determine an affine 
invariant region for each point.  We apply an unsupervised classification to reduce the space of sets of interest points by 
using weighted bipartite graph matching in solving the point correspondence. Diffusion map: projection of the bipartite 
graph in a reduce space on which we apply K-means to classify the representatives clusters. The performance of our 
approach detector is also confirmed by excellent matching results. 
Keywords: Interest points, Local features, Scale invariance, Affine invariance, Matching and Recognition 
 
1. Introduction 

Local features have been shown to be well suited 
to matching and recognition as well as to many other 
applications as they are robust to occlusion, 
background clutter and other content changes. The 
difficulty is to obtain invariance to viewing 
conditions witch is the main characteristics of aerial 
images in cartographic data bases. Different solutions 
to this problem have been developed over the past 
few years and are reviewed in Section 2. These 
approaches first detect features and then compute a 
set of descriptors for these features. In the case of 
significant transformations, feature detection has to 
be adapted to the transformation, as at least a subset 
of the features must be present in both images in 
order to allow for correspondences. Features which 
have proved to be particularly appropriate are interest 
points. However, the Harris interest point detector is 
not invariant to scale and affine transformations [29]. 
There are different descriptors like Gradient Location 
and Orientation Histogram (GLOH), shape context 

[12], PCA-SIFT [10], spin images [11], steer able 
filters [4], differential invariants [9], complex filters 
[26], moment invariants [28] and cross-correlation of 
sampled pixel values. Gradient Location and 
Orientation Histogram (GLOH) is a new descriptor 
which extends SIFTS by changing the location grid 
and using PCA to reduce the size. 

In this paper we use the SIFT point detector as 
presented in Section 3. To obtain scale invariant 
features transform points, for which the localization 
and scale perfectly reflect the real scale change 
between two images. The points are then detected at 
each scale within this range. As a consequence, there 
are many points, which represent the same structure, 
but the location and the scale of the points is slightly 
different. The unnecessarily high number of points 
increases the probability of mismatches and the 
complexity of the matching algorithms. In this case, 
efficient methods for rejecting the false matches and 
for verifying the results are necessary. For each point 
detected it is assigned a descriptor for one position, 
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one scale and one orientation, the descriptor is 
constituted with a histogram of spatial intensities of 
gradient orientation weighted by spatial gradient 
norm. Our approach solves this problem by selecting 
the points in the multi-scale representation by 
applying an unsupervised classification to reduce the 
space of sets of interest points by use of weighted 
bipartite graph matching in solving the point 
correspondence. Diffusion map: projection of the 
bipartite graph in a map reduced space on which we 
apply K-means to classify the representatives clusters 
who represent the reduced points matched of input 
images. To measure the accuracy of our detectors we 
introduce a repeatability criterion which we use to 
evaluate and compare our detectors to existing 
approaches. Section 6 presents the evaluation criteria 
and the results of the comparison, which shows that 
our detector performs better then existing ones. 
Finally, in Section 7 we present experimental results 
for matching. 

2. Related Work 

Many approaches have been proposed for 
extracting scale and affine invariant features. These 
are reviewed in the following.  

2.1. Scale Invariant Detectors 

There are a few approaches which are truly 
invariant to significant scale changes. Typically, such 
techniques assume that the scale change is the same 
in every direction, although they exhibit some 
robustness to weak affine deformations. Existing 
methods search for local extrema in the 3D scale-
space representation of an image (x, y and scale). 
This idea was introduced in the early eighties by 
Crowley [7]. In this approach the pyramid 
representation is computed using difference-of-
Gaussian filters. A feature point is detected if a local 
3D extremum is present and if its absolute value is 
higher than a threshold. The existing approaches 
differ mainly in the differential expression used to 
build the scale-space representation. 

Lindeberg [21] searches for 3D maxima of scale 
normalized differential operators. He proposes to use 
the Laplacian of Gaussian (LoG) and several other 
derivative based operators. The scale-space 
representation is built by successive smoothing of the 
high resolution image with Gaussian based kernels of 
different size. The LoG operator is circularly 

symmetric and it detects blob-like structures. The 
scale invariance of interest point detectors with 
automatic scale selection has also been explored by 
Bretzner [3] in the context of tracking. 

Lowe [22] proposed an efficient algorithm for 
object recognition based on local 3D extrema in Scale 
& Affine Invariant Interest Point Detectors 65 the 
scale-space pyramid built with difference-of- 
Gaussian (DoG) filters. The input image is 
successively smoothed with a Gaussian kernel and 
sampled. The difference-of-Gaussian representation 
is obtained by subtracting two successive smoothed 
images. Thus, all the DoG levels are constructed by 
combined smoothing and sub-sampling. The local 3D 
extrema in the pyramid representation determine the 
localization and the scale of the interest points. The 
DoG operator is a close approximation of the LoG 
function but the DoG can significantly accelerate the 
computation process. A few images per second can 
be processed with this algorithm. The common 
drawback of the DoG and the LoG representation is 
that local maxima can also be detected in the 
neighbourhood of contours or straight edges, where 
the signal change is only in one direction. These 
maxima are less stable because their localization is 
more sensitive to noise or small changes in 
neighbouring texture. 

A more sophisticated approach, solving this 
problem, is to select the scale for which the trace and 
the determinant of the Hessian matrix (H) 
simultaneously assume a local extremum [26]. The 
trace of the H matrix is equal to the LoG but 
detecting simultaneously the maxima of the 
determinant penalizes points for which the second 
derivatives detect signal changes in only one 
direction. A similar idea is explored in the Harris 
detector, although it uses the first derivatives. The 
second derivative gives a small response exactly in 
the point where the signal change is most significant. 

Therefore the maxima are not localized exactly at 
the largest signal variation, but in its neighbourhood. 
A different approach for the scale selection was 
proposed by Kadir [16]. They explore the idea of 
using local complexity as a measure of saliency.  The 
salient scale is selected at the entropy extremum of 
the local descriptors. The selected scale is therefore 
descriptor dependent. The method searches for scale 
localized features with high entropy, with the 
constraint that the scale is isotropic. 
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2.2. Affine Invariant Detectors 

An affine invariant detector can be seen as a 
generalization of the scale invariant detector. In the 
case of an affine transformation the scaling can be 
different in each direction. The non uniform scaling 
has an influence on the localization, the scale and 
the shape of a local structure. Therefore, the scale 
invariant detectors fail in the case of significant 
affine transformations. An affine invariant algorithm 
for corner detection was proposed by Alvarez [1]. 

They apply affine morphological multi-scale 
analysis to extract corners. For each extracted point 
they build a chain of points detected at different 
scales, but associated with the same local image 
structure. The final location and orientation of the 
corner is computed using the bisector line given by 
the chain of points. A similar idea was previously 
explored by Deriche [8]. The main drawback of 
these approaches is that an interest point in images 
of natural scenes cannot be approximated by a 
model of a perfect corner, as it can take any form of 
a bi-directional signal change. The real points 
detected at different scales do not move along a 
straight bisector line as the texture around the points 
significantly influences the location of the local 
maxima. 

This approach cannot be a general solution to 
the problem of affine invariance but gives good 
results for images where the corners and multi-
junctions are formed by straight or nearly straight 
step-edges. Our approach makes no assumption on 
the form of a local structure. It only requires a bi-
directional signal change. Recently, Tuytelaars [31] 
and [32] proposed two approaches for detecting 
image features in an affine invariant way. The first 
one starts from Harris points and uses the nearby 
edges. Two nearby edges, which are required for 
each point, limit the number of potential features in 
an image. A parallelogram region is bounded by 
these two edges and the initial Harris point. Several 
intensity based functions are used to determine the 
parallelogram. In this approach, a reliable algorithm 
for extracting the edges is necessary. The second 
method is purely intensity-based and starts with 
extraction of local intensity extrema. Next, the 
algorithm investigates the intensity profiles along 
rays going out of the local extremum. An ellipse is 
fitted to the region determined by significant 
changes in the intensity profiles. A similar approach 

based on local intensity extrema was introduced by 
Matas [23]. They use the water-shed algorithm to 
find intensity regions and fit an ellipse to the 
estimated boundaries. Lindeberg [20] developed a 
method for finding blob-like affine features with an 
iterative procedure in the context of shape from 
texture. The affine invariance of shape adapted fixed 
points was also used for estimating surface 
orientation from binocular data (shape from 
disparity gradients). This work provided the theory 
for the affine invariant detector presented in this 
paper. It explores the properties of the Mikolajczyk 
[24] second moment matrix and iteratively estimates 
the affine transformation of local patterns. The 
authors propose to extract the points using the 
maxima of a uniform scale-space representation and 
to iteratively modify the scale and the shape of 
points. However, the location of points is detected 
only at the initial step of the algorithm, by the 
circularly symmetric, not affine invariant Laplacian 
measure. 

Therefore, the spatial location of the maximum 
can be slightly different if the pattern undergoes a 
significant affine deformation. This method was also 
applied to detect elliptical blobs in the context of 
hand tracking [18]. The affine shape estimation was 
used for matching and recognition by Baumberg [2]. 
He extracts interest points at several scales using the 
Harris detector and then adapts the shape of the 
point neighbourhood to the local image structure 
using the iterative procedure proposed by Lindeberg 
[21]. 

The affine shape is estimated for a fixed scale 
and fixed location, that is the scale and the location 
of the points are not extracted in an affine invariant 
way. The points as well as the associated regions are 
therefore not invariant in the case of significant 
affine transformations (see section 6.1 for a 
quantitative comparison). Furthermore, there are 
many points repeated at the neighbouring scale 
levels (see figure 1), which increases the probability 
of false matches and the complexity. Recently, 
Schaffalitzky [28] extended the Harris-Laplace 
detector [24] by affine normalization proposed by 
Baumberg [2]. However, the location and scale of 
points are provided by the scale invariant Harris-
Laplace detector [24] and [26], which is not 
invariant to significant affine transformations. 
3. Scale Invariant Interest Point Detector 
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The evaluation of interest point detectors 

presented in Schmid [29] demonstrate an excellent 
performance of the Harris detector compared to 
other existing approaches [6], [10], [14] and [15]. 
However this detector is not invariant to scale 
changes. In this section we propose a new interest 
point detector that combines the reliable Harris 
detector [13] with automatic scale selection [26] to 
obtain a scale invariant detector. In Section 3.1 we 
introduce the methods SIFT-Features on which we 
base the approach. In Section 3.2 we discuss in 
detail the scale invariant detector and present an 
example of extracted points. 

3.1. Scale Invariant Features Transform 

First step of our work is the automatic extraction 
of image features followed by an automatic 
matching process in order to assign each image 
detail a unique number referring to the 
corresponding object detail. As we deal with aerial 
images and cartographic databases we use point type 
image features. As we do not pose any restrictions 
on the exterior orientation their detection and 
description should be scale and rotation invariant. 
We therefore use the point operator proposed by 
Lowe [22]. The operator detects points in an image 
pyramid and describes the points by means of 
rotation and scale-invariant features, so called SIFT-
features (,,Scale-Invariant Feature Transform’’).  

The descriptor represents the scale dependent 
window around the point with 16 histograms of the 
gradient orientations leading to 128 values in the 
range between 0 and 255. As local projective 
distortions can often be approximated quite well by 
a scale and a rotation transformation, using SIFT-
features allows handling nearly arbitrary camera 
positions provided that enough tie points are 
available. This is an important advantage compared 
to procedures which employ a conventional point 
detector and subsequent correlation or least squares 
matching. Such procedures only work with relative 
rotations up to approximate 15 degrees. 

3.2. SIFT Features 

SIFT features were proposed in [22] as a method 
of extracting and describing key points which are 
robustly invariant to common image transforms. The 
Scale Invariant Feature Transform (SIFT) algorithm 
has 4 major stages.  

• Scale-space extrema detection: The first stage 
searches over scale space using a Difference of 
Gaussian function to identify potential interest 
points. 

• Key point localisation: The location and scale of 
each candidate point is determined and key 
points are selected based on measures of 
stability. 

• Orientation assignment: One or more 
orientations are assigned to each key point based 
on local image gradients. 

• Key point descriptor: A descriptor is generated 
for each key point from local image gradients 
information at the scale found in stage 2. 

An important aspect of the algorithm is that it 
generates a large number of features over a broad 
range of scales and locations. The number of 
features generated is dependent on image size and 
content, as well as algorithm parameters. A typical 
image of 500x500 pixels will generate 
approximately 2000 features however in our indoor 
examples a similar size image will typically only 
generate 300 features. In figure 1, typical indoor 
office environment and the extracted SIFT features 
with their locations represented by arrows. The 
length of the arrow represents the scale of the 
extracted key point and the direction represents the 
orientation of the descriptor. The SIFT feature 
algorithm is based upon finding locations within the 
scale space of an image which can be reliably 
extracted. The first stage finds scale-space extrema 
located in D(x, y, θ), the Difference of Gaussians 
(DOG) function, which can be computed from the 
difference of two nearby scaled images separated by 
a multiplicative factor k: 
 
D (x, y, σ) = (G (x, y, kσ) - G (x, y, σ))* I (x, y)    (1) 

     = L (x, y, kσ) - L (x, y, σ) 
 

Where L(x, y, σ) is the scale space of an image, 
we built by convolving the image I(x, y) with the 
Gaussian kernel G(x, y, σ). Points in the DOG 
function which are local extrema in their own scale 
and one scale above and below are extracted as key 
points. Generation of extrema in this stage is 
dependent on the frequency of sampling in the scale 
space k and the initial smoothing σ0. The key points 
are then filtered for more stable matches and more 
accurately localised to scale and sub pixel image 
location using methods described in Brown [5]. 
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Before a descriptor for the key point is constructed, 
the key point is assigned an orientation to make the 
descriptor invariant to rotation. This key point 
orientation is calculated from an orientation 
histogram of local gradients from the closest 
smoothed image L(x, y, σ). For each image sample 
L(x, y) at this scale, the gradient magnitude m(x, y) 
and orientation θ(x, y) is computed using pixel 
differences: 
 
m (x, y) = ((L(x + 1, y) − L(x − 1, y))2 +(L(x, y + 1) 
− L(x, y − 1))2) ½                                                                                   (2) 
 
θ (x, y) = tan−1 ( L(x, y + 1) − L(x, y − 1) ) / (L(x + 
1, y) − L(x − 1, y))                                                  (3) 
 

The orientation histogram has 36 bins covering 
the 360 degree range of orientations. Each point is 
added to the histogram weighted by the gradient 
magnitude, m(x, y), and by a circular Gaussian with 
σ variance that is 1.5 times the scale of the key 
point. Additional key points are generated for key 
point locations with multiple dominant peaks whose 
magnitude is within 80% of each other. The 
dominant peaks in the histogram are interpolated 
with their neighbours for a more accurate 
orientation. 

 
Figure 1. A key point descriptor is created using 
the gradient magnitude, m(x, y) and orientation, 
θ(x, y) around the key point. These are weighted 
by a circular Gaussian window indicated by the 
overlaid circle. Each orientation histogram is 
calculated from a 4x4 pixel support window and 
divided over 8 orientation bins. Figure from [22] 
 

The local gradient data from the closest 
smoothed image L(x, y, σ) is also used to create the 
key point descriptor. This gradient information is 
first rotated to align it with the assigned orientation 
of the key point and then weighted by a Gaussian 

with variance that is 1.5 times the scale of the key 
point. The weighted data is used to create a 
nominated number of histograms over a set window 
around the key point. Typical key point descriptors 
use 16 orientation histograms aligned in a 4x4 grid. 
Each histogram has 8 orientation bins each created 
over a support window of 4x4 pixels. The resulting 
feature vectors are 128 elements with a total support 
window of 16x16 scaled pixels. For a more detailed 
discussion of the key point generation and factors 
involved see [22]. Like other feature-based matching 
systems, it sequentially finds key points in an image, 
determines a feature vector for each, and matches 
those features to a database. Each of these steps is 
described as bellow: 
 
1. Detect key points based scale-space extremas 
2. Remove unstable key points 
3. Determine key point orientation 
4. Construct key point descriptor 
 
• Construct a scale-space representation  
Very similar to the standard Laplacian pyramid (see 
figure 2). 

 
Figure 2. Octaves are separated by 2*σ in scale 

space 
• Gaussian and Difference of Gaussians Example 

(see figure 3). 
 

 
Figure 3. Difference Gaussians example 
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• Scale-space Extrema Detection (see 

figure 4). 
 

 
Figure 4. Pixel marked with “X” is compared to 

26 neighbors in a 3x3x3 window that spans 
adjacent pixels and scales 

• Accurate key point localization: Our scale-space 
representation is desecrated; hence the detected 
key points are only close to true minima / 
maxima in the scale-space. What can we do to 
add accuracy to key point detection: 
• Select finer  decartelization (costly) 
• Fit a polynomial (quadratic) function to the 

discrete pixel values, and look for a 
minimum/maximum in the fitted function 
(details omitted) 

• Removing unstable points: 
• Key points that correspond to regions of low 

contrast are removed  
• Not enough distinct information 
• Key points along the edges are removed  
• Helps with scale and rotation invariance 

 
Figure 5. SIFT descriptor. (a) Detected region. 

(b) Gradient image and location grid. (c) 
Dimensions of the histogram. (d) Four of eight 
orientation planes. (e) Cartesian and the log-
polar location grids. The log-polar grid shows 

nine location bins used in shape context (four in 
angular direction). 

1. Identify candidate feature key points 

2. Finding extrema across scales. Gaussians blur 
the scales with a bunch of stepped-variance 
Gaussians, and take the difference to 
approximate a Laplacian. Find maxima and 
minima that are maximal and minimal across 
different levels of blur, and different scales, 
effectively finding scale-invariant illumination 
extrema. 

3. Removing undesirable extrema. First, each 
extremum was adjusted to be the maximum 
around the original extremum of the derivative 
of a Taylor expansion of a difference of 
Gaussians. Bad extrema (as determined from a 
criterion based on this adjustment) were thrown 
out. Next, extrema corresponding to otherwise-
un-noteworthy locations along important edges 
were removed. Without this, very small changes 
to an image could lead to very different points 
along an important edge (that isn’t around other 
features) being chosen as key points. To get rid 
of these, they got rid of key points where the 
ratio of the Eigen values of a Hessian of the 
difference of Gaussians (by space) exceeded a 
threshold. 

4. Calculate feature value at each key point 

Now that we know where our features are, we 
calculate them. First normalizing for feature-
neighbourhood orientation, we create a grid of 
orientation histograms for local areas surrounding 
the key point. This seems to work pretty well. 
Intuitively, I wonder about orientation stability at 
finer scales (not when everything’s blurred out, but 
pixel-scale features might not survive rotation well). 
By allowing a little bit of sliding of position within 
much localized areas, the system attempts to use the 
same trick the visual system does for local location 
independence in primary visual cortex complex 
cells. SIFT descriptors are computed for normalized 
image patches with the code provided by Lowe [22]. 
A descriptor is a 3D histogram of gradient location 
and orientation, where location is quantized into a 
4*4 location grid and the gradient angle is quantized 
into eight orientations. The resulting descriptor is of 
dimension 128. The figure 5 illustrates the approach. 
Each orientation plane represents the gradient 
magnitude corresponding to a given orientation. To 
obtain illumination invariance, the descriptor is 
normalized by the square root of the sum of squared 
components. After this first issue, namely, feature 



4th International Conference on Computer Integrated Manufacturing CIP’2007  03-04 November 2007 

 
selection by extracting valid and invariant set of 
features in both images. The second issue, namely, 
feature matching is very difficult problem and it is 
unlikely that any single algorithm will provide a 
solution enough to address all application and in 
particular in cartographic data bases image. So in 
this paper we address the issue of feature matching 
by use of weighted bipartite graph as detailed in the 
section below. 

4.1. Weighted bipartite graphs 

A weighted bipartite graphs whose vertex set 
can be divided into two disjoint sets U and V such 
that all edges run between U and V. Formally, such 
a graph is denoted by G = (U, V, E, W) where U and 
V are disjoint sets of vertices, R U x V is a set of 
edges and W: E →R is a function that associates a 
real number called a weight to each edge. For 
simplicity, let us assume that │U │ = │V │ = n and 
that E = U x V (i.e., every vertex in U is connected 
to every vertex in V). Given any subset A of edges, 
the weight of A is defined to be the sum of weights 
of the edges in A. we define a matching to be a set 
M of edges that (1) │M │= n and (2) each vertex in 
the graph is incident on exactly one edge in M. if an 
edge (u, v) belongs to M then vertex u is said to be 
matched to vertex v and vice versa. A matching with 
a minimum weight is said to be the minimum weight 
matching or simply a minimum matching. in figure 6 
shows a weighted bipartite graph with n = 3 and a 
minimum weight matching of weight 11. 

 
Figure 6. An example of a weighted bipartite 

graph (a) and a minimum weight matching (b).  

There are two elegant algorithms for finding a 
minimum weight matching in a weighted bipartite 
graph called Hungarian method and greedy 
algorithm. 
Despite the fact that the greedy algorithm does not 
always provide a minimum weight matching, It is 

useful to use also the Hungarian method in 
combination with it or a hybrid method (greedy and 
Hungarian). For a detailed discussion about these 
methods, the reader is referred to Refs [8], [9] and 
[10]. These three algorithms give as results a set of 
minimal weight matching between images point 
descriptors. 

5. Computational Complexity 

The complexity and efficiency of a feature 
detector is an important issue in particular when 
applying the detectors to image sequences or large 
image databases as Cato graphics one. The 
comparison done in related works shows that the 
computation time required by the detectors. Here, 
each detector is applied to an image of size 800 × 
640 Detection is done on a Pentium 4 1.3 GHz. The 
run time is the computational time required by a 
Pentium 4 1.3 GHz to detect features in a 800×640 
image. This time can slightly vary depending on the 
number of features in the image. The fastest detector 
is SIFT since it only smoothes subtracts and samples 
the image. The scale selection (4 the best one and σ 
= 2) All these Simplifications can significantly 
reduce the detection time but at the cost of accuracy. 

6. Applications 

In this section we present an example 
application for our interest point detectors and show 
how they can be used to match image pairs with 
significant scale or viewpoint changes. For examples 
of other applications the reader is referred to 
Lazebnik [19], Rothganger [27], and Schaffalitzky 
[28]. In Section 6.1 we describe our matching 
approach. Section 6.2 shows the results for scale and 
affine invariant features. 

6.1. Matching Algorithm 

Given an image we detect a set of interest points 
and compute the point descriptors. The descriptors 
are then compared with a similarity measure. The 
resulting similarity is used for finding the 
corresponding points. 
Descriptors and Similarity Measure 
Our descriptors are Gaussian derivatives computed 
in the local neighborhood of interest points. 
Invariance to rotation is obtained by Scale & Affine 
Invariant Interest Point Detectors 81 “steering” the 
derivatives in the direction of the gradient [11]. To 
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obtain a stable estimate of the gradient direction, we 
use the average gradient orientation in a point 
neighbourhood [25] and [26]. Invariance to affine 
intensity changes is obtained by dividing the higher 
order derivatives by the first derivative. We obtain 
descriptors of dimension 12 by using derivatives up 
to 4th order. To measure the similarity between the 
descriptors we use the Mahalanobis distance. The 
covariance matrix is estimated over a large set of 
images and incorporates signal noise, variations in 
photometry as well as inaccuracy of the interest 
point location. 

Matching 
To robustly match the images, we first reduce the 
space of Interest points given by SIFT algorithm, we 
project theses sets of features in a reduced space 
(i.e., two dimensional), this is done by comparing 
each point to its eight neighbour in each image, in 
second phase, we determine point-to-point 
correspondences using the similarity measure. We 
select for each descriptor in the first image the most 
similar descriptor in the second image using the 
Mahalanobis distance. If the distance is below a 
threshold the match is potentially correct. A set of 
initial matches is obtained. In the second step of 
verification we apply cross-correlation, which 
rejects low-score matches. Finally, a robust 
estimation of the transformation between the two 
images based on Random Sample Consensus 
(RANSAC) enables the selection of the inliers. In 
our experiments the transformation is either a 
homographic or a fundamental matrix. A model 
selection algorithm [17] and [30] can be used to 
automatically decide which transformation is the 
most appropriate. 

6.2. Experimental Results for Matching 

In this section, we present matching results in 
the presence of scale and viewpoint changes. The 
results are obtained with the Harris-Laplace and the 
Harris-Affine detector. We show the matched points 
which are inliers to the estimated transformations. 
The number of correctly matched descriptors is 
limited by the number of corresponding features 
provided by the detector and depends on the 
accuracy of the detectors. The matching approach is 
based on the distance measure e between the 
descriptors and RANSAC. If the fraction of inliers 
among the initial matches is too small then 

RANSAC fails. Note that there are points which are 
correctly detected but are rejected by the distance 
measure. However, these points could be matched 
by using a more distinctive descriptor or by applying 
semi-local constraints. 

7. Conclusion and Future Work 

SIFT features provide a distinct and accurate 
means of matching digital images for image retrieval 
and vision based localisation. In this paper we have 
presented a reduction to the traditional SIFT feature 
by projecting the set of descriptors in reduced space 
of two dimension to improve their performance. 
This reduction uses the structure of an indoor 
environment to remove the need for translation 
invariance of the features in different scale. From the 
results obtained we have shown that this reduction 
has a minimal affect on the retrieval rate of images 
and significantly reduces the size of the image 
descriptors and the time to needed to generate and 
match them. Furthermore we have used the scale 
information of the SIFT features to improve location 
discrimination. Future work with the reduced SIFT 
feature will look at further reducing the size of the 
image description by filtering key points with low 
matching likelihood. A future area of work will also 
be the use of the proposed approaches in different 
applications, as for example, shot matching in a 
video sequence, recognition of object classes and 
tracking.  
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