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Abstract

We study in this paper a P1 finite element approximation of the solution in Hga(Q) of a biharmonic
problem. Since the P1 finite element method only leads to an approximate solution in Hg (), a
discrete Laplace operator is used in the numerical scheme. The convergence of the method is shown,
for the general case of a solution with HZ (Q) regularity, thanks to compactness results and to the
use of a particular interpolation of regular functions with compact supports. An error estimate is
proved in the case where the solution is in C*(€2). The order of this error estimate is equal to 1 if the
solution has a compact support, and only 1/5 otherwise. Numerical results show that these orders
are not sharp in particular situations.

1 Introduction

This paper deals with the approximation of the following problem, called the biharmonic problem, which
arises in various frameworks of fluid or solid mechanics:

find u such that A(Au)(x) = f(x) — divg(x) + Al(x), for x € Q, (1)
u(x) =0 and Vu(x) - ngo(x) =0, for x € 9.

In this paper, Problem (1) is considered in the following weak sense:

find v € H3(Q) such that
Vv € HZ (), /QAu(:c)Av(a:)dw = /Q(f(:c)v(m) +g(x) - Vu(z) + l(z)Av(x))de, )

where H3 () denotes the closure in H?(Q2) of the set C2°(£2) of infinitely continuously differentiable
functions with compact support in 2, and where

d € N\ {0} denotes the space dimension,
() is an open polygonal bounded and connected subset of RY, (3)
with Lipschitz-continuous boundary 052,

and
fel?*Q), (el*Q) andge (L2(Q))d. (4)

Numerous discretization methods for Problem (2) have been proposed in the recent past. The most
classical is probably the conforming finite element method; the finite element space must then be a finite
dimensional subspace of the Sobolev space H?(£2). Hence elementary basis functions are sought such that
the reconstructed global basis functions on € belong to C'(Q). On Cartesian meshes, such basis functions
are found by generalizing the one-dimensional P? Hermite finite element to the multi-dimensional frame-
work. This task becomes much more difficult on more general meshes and involves rather sophisticated
finite elements such as the Argyris finite element on triangles in 2D, which unfortunately requires 21 de-
grees of freedom [8]. Hence non-conforming FEMs have also been widely studied: see e.g. [8, Section 49],



[9], and references therein, and [3, 4] for more recent works. Discontinuous Galerkin methods have also
been recently developed and analysed [12, 13, 14, 11]; error estimates have been derived for polynomials
of degree greater or equal to two or three. Other methods which have been developed for fourth order
problems include mixed methods [6, 12] (see also references therein), [15], and compact finite difference
methods [7, 2, 1]. All the above methods are high order methods, and therefore, rather computationally
expensive and may not be so easy to implement. Recently, a cheaper low order method based on the
discretization of the Laplace operator by a cell centred finite volume scheme was proposed [10].

The idea developed in the present paper is to use the discretization of the Laplace operator, which is
naturally provided by the continuous piecewise linear finite element method (see Section 2). Such a
method leads to a nonconforming method in H?(), since it only provides an approximate solution in
H}(Q). This discrete Laplace operator is then used in a discrete bilinear form, which is applied to
the elements of the P1 finite element space which vanish at the boundary. Note that the condition
Vu - nygqg = 0 at the boundary of the domain is satisfied by the limit of a sequence of approximate
solutions thanks to the definition of the discrete Laplace operator (see Lemma 3.4 in Section 3). Then
the convergence has to be proved, using a suitable interpolation of regular test functions. In the general
case, the discrete Laplace operator applied to the standard interpolation of a regular function is not
consistent with the continuous Laplace operator applied to this function, although it leads to a second
order discrete operator (see Lemma 3.5). Therefore a non standard interpolation of regular functions in
the P1 finite element space has to be derived (see Lemma 3.6). Error estimates are derived in the case
where the continuous solution has some regularity (Section 4). An order 1 is shown in the case where the
solution has a compact support in Q (Theorem 4.2), but only 1/5 for a general regular solution (Theorem
4.3). It is worth noticing that the order of these estimates is lower than that which is numerically observed
in various situations (Section 5).

A short conclusion of ongoing research is finally drawn in Section 6.

2 Definition of the scheme

Let © be an open polyhedral domain in R¢, with d € N*. We consider a conforming simplicial mesh 7 of
Q (in the standard sense provided for example in [8]). We denote by hy the maximum of the diameters
hgofall SeT.

Let V be the finite set of the vertices ot the mesh; the set of the vertices of a simplex S € 7 is denoted
by Vg, and the subset of all S € 7 such that z € Vg is denoted by 7,. We denote by Ve, the set of all
z € V such that z € 9Q, and we denote Viyy = V \ Vext the set of the interior vertices.

Let (K.)zep be a family of disjoint open connected subsets of 2 such that:

1. forallzeV, z€ K, and K, C USeTz S,

2 Uner Kz =00

We denote by 67 the minimum of (0s)ser, (02)zcv, where 6g is the ratio between the radius of the
largest Euclidean ball contained in S and diam(S), and
| K|

b, — 2=l vaey.
|USETz S|

For any z € V, we denote by V, the set of all y € V such that there exists S € 7, with y € Vg (which
means that V; = (Jgcr. Vs). In the following, we will also use the notation 7" for denoting the whole set
of discrete geometric definitions.

Remark 1 The results of this paper hold under the gemeral requirements on K, given above. In the
numerical examples given in this paper, we use the following definition of K,. For all S € T and all
z € Vg, we denote by Kg , the subset of S of all points whose barycentric coordinate related to z is larger
than that related to any z’' € Vg with z' # z (see figure 1). We then denote for all z € V by K, the
union of all Kg », for all S € 7.



Figure 1: Definition of K,

For any z € V, let £, € H'(Q) be the piecewise affine basis function of the P1 finite element, such that
€2(z) =1and &,(2') =0 for all 2/ € V\ {z}. We then denote by V7 the vector space spanned by all
functions £, z € V. We remark that the property v =3 __,, v(2)§; holds for any v € Vr, and we define
the natural P1 interpolation Z7r¢ € V7 of any continuous function ¢ by

Ire(z) = ¢(z), Vz €V, Yp € C°(Q). (5)
For any u € Vr and any S € 7, we denote by Vgu the constant value of Vu in S, and we define
Ty — —/ Ve (z) Ve (m)dz = — 3 |S|Vsts - Vsby, Va,y € V. (6)
Q SeT

Using the property >, ), Thy = 0 since >, o, {y(x) =1 forallz € QA let A, © Vr — R, forall z €V,
be the linear form defined by

1 1
Agu = 0 > u(y)Tey = ] > Tey(uly) —u(2)), Yu € Vr, ¥z € V. (7)
= yey z yeV,
We then define Ar : Vr — L2(Q2) by
Aru(x) = Z Azulg, (x), forae xeQ, YueVr. (8)
zeV

We define the discrete space
Vro={ue€ Vr,u=0ondN}. (9)

Then the scheme for the approximation of Problem (2) consists in finding
u € Vro; Yv € Vr, / Aru(x)Arv(z)de = / (f(x)v(x) + g(x) - Vo(z) + £(x)Arv(z))de.  (10)
Q Q
An important relation for the mathematical analysis is

Yu,v € Vr, / Vu(x) - Vo(z)de = — Z |K2lv(z)Au = —/ Pru(z)Aru(x)de, (11)
a2 z€V 2
where we define the piecewise constant reconstruction of the elements of Vi by

Prv(z) = Z v(z) 1k, (x), forae. xe€Q, Yve Vr. (12)
zeV



3 Convergence analysis

Lemma 3.1 (Piecewise reconstruction) Let us assume Hypotheses (3). Let T be a conforming
simplicial mesh of Q. We then have the following inequality:

||lv — PTv||L2(Q) < hTHVU”L?(Q)d; Yv € Vr. (13)

PROOF. Let S € T, z € Vg and « € S. We have v(x) — v(z) = Vgv - (x — z), denoting by Vgv the
constant gradient of v in S. This leads to |v(z) — v(z)| < |Vgv| hr. Therefore we get

[ 0@ = Pro@ra =33 [

(v(@) — v(2))%da < h?T/ V(@) 2de,
zcv seT / K=NS Q2
which gives (13). O

Lemma 3.2
Let us assume Hypotheses (3). Let T be a conforming simplicial mesh of Q. Then the following inequalities
hold:

||V’LU||L2(Q)d <2 diam(Q)HATwHLz(Q), Yw € VT,07 (14)

and
H’LU||L2(Q) S 2 diam(Q)QHAq—wHLz(Q), Yw S VT,(). (15)

PROOF. Setting v = w in (11), we get

/ |Vw(x)* = —/ Prw(z)Arw(xz)de.
Q Q
Hence, by using the Cauchy-Schwarz inequality, we have
Vw2 < |1Prwllp2 )| ATwl| L2 o) (16)
The Poincaré inequality [5], which holds since Vr o C H{ (), reads
|wllz2(@) < diam(Q)[|Vw|[L2q)e-
By using (13) and hr < diam(2), we have

1Prwllza) < l[Prw —wllr2@) +llwlirz @) < (hr + diam(Q)) V|| 12 ()
<2 diam(Q)HVwHLz(Q)d.

Gathering the above results, we deduce (14) and (15) from (16).0

Lemma 3.3 (Existence, uniqueness and estimate on the solution of (10)) Let us assume Hy-
potheses (3) and (4). Let T be a conforming simplicial mesh of Q. Then, for any u € Vr o satisfying
(10), the following holds:

l[ull 20y < 4 diam(Q)*|| fll2(0) + 4 diam(Q)?(lg]| 12(q)e + 2 diam(2)[|4]| r2(q), (17)
IVl p2(0ye < 4 diam(Q)%|| f||r2(q) + 4 diam(Q)?(|g]|r2(qye + 2 diam(Q)[|4]| 2, (18)

and
[Azullr2) < 2 diam(Q)?|| £l z2) + 2 diam(Q)||g]| L2y + 14 2 )- (19)

As a consequence, there exists one and only one u € Vr o such that (10) holds.



PROOF. Let u be given such that (10) holds. Let us take v = u in (10). We get

/Q(Afu(a:))zda: = / (f(x)u(x) + g(x) - Vu(e) + {(x)Aru(x))dr,

Q

which leads to
”ATUH%Z(Q) < Mlullzz@)ll fllz2 @) + IVullL2()allgll L2 ) + [ 2 @) [ ATull2 (),
Thanks to Lemma 3.2, the previous inequality provides
[AzullL2(0) < 2 diam(Q)?||f]| L2 (o) + 2 diam(Q)||gllL2(qys + 1€l L2(0)»

which is (19). We then deduce (18) and (17), using again Lemma 3.2.

On the other hand, we remark that (10) is equivalent to a square linear system. Setting f =0, g = 0 and
¢ =0, we get from (17) that u = 0, showing the invertibility of the matrix of the system. This implies
the existence and uniqueness of the discrete solution. [J

Lemma 3.4 (Compactness of a sequence of approximate solutions) Let us assume Hypotheses
(3). Let (Trm)men be a sequence of conforming simplicial discretizations of §) such that hr, tends to
0 as m — oo. Assume that there exists 6 > 0 with § < 07, for all m € N. Let (um)men be a
sequence of functions such that u,, € V7Qm,0 for all m € N. For simplicity, we shall denote the discrete
operator Az, by A,,. Assume that the sequence (A tum)men is bounded in L2(Q) by C > 0; then there
ezists a subsequence of (Tp)men, again denoted (T;)men, and u € HZ(QQ), such that the corresponding
subsequence (Um)men satisfies:

1. Uy — u in L2(Q),

2. Yy, — Vu in L2(Q)4,

3. Ay, — Au weakly in L?(Q),
as m — 0o.

PROOF. Since the sequence (A, )men is bounded in L?(2), we may extract a subsequence of (7., U )men,
again denoted (7, U )men, such that (A, )men converges weakly in L2(£2) to some w € L?(Q). From
Lemma 3.2, we get that

[Vum|l2) < C, vm €N,

where C' € R only depends on © and C. Therefore, applying Rellich’s theorem, we get the existence of
some u € HZ(Q) and of a subsequence of (7, U, )men, again denoted (7., Um )men, such that

Vi, — Vu weakly in - L?(Q)4,

and
Uy — u strongly in  L*(Q),

as m — o0o. Let us prove that u € HZ(Q2). Let U (resp. U,,) denote the prolongement of u (resp. u,,) by
0 in R?\ Q. Thanks to u € H}(Q) (resp. u,, € H}()), we have Vi € L2(R4)4 (resp. Vi, € L2(R%)4),
with the property

Vi, — Vi weakly in L?(R%)%. (20)

Let ¢ € C°(R?); note that ¢ does not necessarily vanish at the boundary of 2. Let Z,,¢ denote Zr,, ¢
for short. Recall that Z,,¢ tends to ¢ in H'(2) as m — oo, thanks to the hypothesis that there exists
0 > 0 with 0 < 07, for all m € N. We then define the approximation G, of Vi by

VZIne(x) for ae x €,

Gmep() = { Vo(x) forae xcRY\Q. (21)



Let Ty, = [ga V() - Grp(x)de. Using (20), and the convergence of Gy () to Vi in L*(RY)?, we
get

lim T, = Vu(x) - Vo(z)de.
m— 400 Rd
On the other hand, we have
T = Vi (x) - Guo(x)de = / Vum(x) - VIp(x)de.
Rd Q

Thanks to (11), we get
T = 7/ Pr, Tho(x)Apu(x)de.
Q

Passing to the limit m — oo in the above relation, since (13) shows that Pr, Z,, converges to ¢ in
L?(Q2), we get thanks to strong/weak convergence properties,

Vite) - Vele)de = - [ p@yu@) = [ o).

R4 Q R

where we denote by W the prolongement of w by 0 in R% \ Q. This proves that Vu € Hg;,(R?) and that
A% =W a.e. in R, which means that A% = 0 outside  and that Au = w a.e. in Q. Since uw € H!(R?)
and A7 € L?(R%), a classical result of regularity shows that 7 € H?(R%). Since Vi = 0 in R?\ Q, we get
that the trace of Vu on 9 is equal to 0. Hence u € HZ ().

Let us now prove the strong convergence of Vu,, to Vu. Using the weak convergence of this sequence,
it suffices to prove the convergence of ||V, | r2(qye to ||[Vul|p2(q)e. To this aim, we write the relation
obtained by setting u = v = u,, in (11):

/ IVt ()]? = — / Pr iy () Aty ()da, ¥m € N.
Q Q

Passing to the limit m — oo in the above relation, we get, using strong/weak convergence properties in
the right hand side,

lim |V, (2)]? = —/ u(x)Au(z)de = / |Vu(z)|?,
m—0oQ Q Q Q

hence concluding the proof.]

In order to conclude the convergence analysis, it is natural to examine the convergence of the discrete

Laplace operator, when applied to Zrp € Vz g, for any regular function ¢ € C%(Q) N HZ(2). We show

in the next lemma that this operator is indeed a second order discrete operator.

Lemma 3.5 (Order of the discrete Laplace operator applied to standard interpolation) Let
us assume Hypotheses (3). Let T be a conforming simplicial mesh of Q@ and let 6§ > 0 such that 6 < 6r.
Then there exists C1 > 0, only depending on 0, such that

C
[Vséz| < h—l Vz € Vs, VS €T, (22)
S
and B
|AZro| < Cilgla, Yo € C3(Q), Yz € Vi, (23)

where A is defined by (7), Try is defined by (5) and ||y = max; j—1,4 03¢l > (0)-

PROOF. Inequality (22) results from the fact that the ratio, between the distance from any vertex of S
to the opposite face and hg, is larger than 26. We now consider z € Vix and ¢ € C?(Q). We can write,
using (7),

AuTro = 3 (W) — ¢l Ty
#lyev,



A Taylor expansion provides p(x) — p(z) = G - (x — 2) + D(z, z)|z — z|?, where |D(z, 2)| < d?|¢|2 and
G = V(z). Let us check that the discrete operator A, vanishes on the affine function p :  — G-(x—2)
(which is such that p € V7). Indeed, we have, using (11) and (12),

KA = / A ()i, (x)de / A (@) Prés (x)da
/w V(@ d:c—/G Ve, (z)da = 0.

We therefore get

1
AIrp= > TeyD(y,2)ly — 2> = > > ISIVsés - Vs&y Dy, 2)ly — 2.

| z| SeT, yeVs

Using (22) and the regularity condition 6 ) ¢, [S| < |K;| and |y — 2| < hs, we conclude (23). O
Since the discrete Laplace operator is a second order discrete operator, the question of its strong conver-
gence to the continuous Laplace operator arises. Indeed, the proof that A7+Zrp converges to Ay for the
weak topology of L?(2) results from the following property, the proof of which uses Lemma 3.1:

/(ATIq—(p—Ago)Pq—vdsc = [ Ap(v— Prv)de — / (VIzo—Vo)-Vode < Chr|Vol[12q)e, Yo € V1.
Q

Q Q

Nevertheless, whatever be the choice of (K,).ecyp satisfying the hypotheses required above, it is not
possible in the general case to obtain that A7Z7p strongly converges to Ay as hy — 0, while 8 < 6.
Therefore it is not possible to conclude to the convergence of the scheme by letting v = Z7¢ in (10):
another interpolation is necessary, which we introduce in the following Lemma 3.6.

Lemma 3.6 (Interpolation of regular functions with compact support) Let us assume Hypothe-
ses (3). Let T be a conforming simplicial discretization of 1, and let @ > 0 be given such that 6 < 7.
Let o € C%(Q) and let a = d(support(y), 0Q).

Then there exists fﬂa € Vro and C > 0 only depending on Q and 8 such that

Zre — plluse < Chr 22, (21)
IVZze = Vel s < Chr 57 |‘p|2 (25)
and | |
IATZro — Broll2() < ChT by (26)
where |pla = max; j=1 4 [|07;¢[ L~ ) and AT is the piecewise constant function defined by
— 1
Ayp=—— Ap(z)dx, Vz €V, (27)
| K|
and -
= Z Ao 1k (x), for a.e. x €. (28)
zeV

PROOF. Let p € C°(R%, Ry ) be the function defined by

exp(—1/(1 — |z|*))
Jp0.1y exp(=1/(1 = [y[?))dy’

,0(113) = Vo € B(O, 1),



/ \
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Figure 2: Functions ¢ and v

and p(x) =0 for ¢ B(0,1). Let ¢ € C°(9,[0,1]) be the function defined by

d
vw) = | s (4) p(j<y—w>) da, vy € Q. (20)

Then ¢ (x) = 0 for all @ € Q such that d(z,0Q) < % and ¥(x) = 1 for all € Q such that d(z, 02) > 3¢
(see Figure 2). The idea of the construction of fﬂp is to consider the approximation of ¢ in Vi o obtained

by the finite element method in the case where the right hand side is given by —A; since Z7p must be
equal to 0 on the boundary cells, we multiply this discrete solution by . Then the proof mimics the
identity A(yv) = vAY + 2V - Vo + pAv.

We first suppose that 7 is such that hy < §. Let us define v and v € V7 o such that

/Vv /Ag@ )Prou(x)da,
V'UEVT,Q, (30)

and /VU -Vou(z)de = — /A(p v(x)de.

We define w = v — 0. By subtracting the second relation to the first one in (30), and setting v = w, we
get

/ |V (x)|*de = —/ Ap(z)(Pru(z) — w(z))de.
) Q

Applying Lemma 3.1, we obtain
/Q V(@) Pdz < | Al o)l Priv(@) — @(@)ll20) < hrll Al @I VillLa -
We then deduce
VU = V| 120y < hr[|A¢| 22(0)-
A standard interpolation result gives the existence of Cy, only depending on 2 and 6, such that
Ve = VIzo|rz) < Cohrlpls. (31)
Thanks to
/Q Vi) — Veo(a) da = / (Vi) - Vo(@)) - (VIre(a) — Ve(e))de,

we also get
VO = Vol 2qye < Cohrlpl

Hence, defining w = v — Z7p, we obtain

[Vl r2)e < V@ = 0)|r2@) + IV@ = @)lle2@) + V(e = Zre)lr2) < (2Co + Dhrlpl2.  (32)



The Poincaré inequality, which holds since w € Hg(Q),writes
lwllL2(0) < diam(Q)||vaL2(Q)d < diam(Q)(2Cy 4+ 1) hr|p|2. (33)

Let us remark that, thanks to (30), v satisfies

AU =ALp, Yz € Ving, (34)

using the notation given by (27) (note that this equality is not a priori satisfied for z € Veyt). We now
observe that we have

Y(2)A0 = AL, Vz € V. (35)

Indeed, if d(z,09) > %“, we have (z) = 1 and z € Vi, which implies that (34) holds. Otherwise, if

d(z,00) < %‘1 and z € Vi, we have |K,|AL0 = sz Ap(x)de = 0, and if 2z € Vey, we have p(z) =0
and sz Ap(x)daz = 0. We now define Zrp € Vo by Zrp(2) = ¢(2)0(2), for all z € V. From formula
(7), we get

KA Tro =Y Toy(Tro(y) — Ire(2) = Y Tey(V(y)0(y) — $(2)3(2)).
YeEV: yeV,

Thanks to the identity ab — ed = ¢(b — d) + d(a — ¢) + (a — ¢)(b — d), we get, for z,y € V,

Y(y)o(y) — (2)v(z) = ¥(2)(0(y) —v(2)) + 0(2) (P (y) — ¥(2)) + (©(y) —¥(2)(0(y) — v(2)).
This implies, from formula (7), that
K| ALy = (2) |Ko| AT +0(2) [Ke| ATy + Y Tey((y) — $(2)(0(y) - 5(2)).  (36)
yeV,

We remark that

V() —(2)e(y) = (U(y) — ¥(2))p(z) =0, Vz €V, Vy € V.. (37)

Indeed, assuming ¢(y) # 0 or p(z) # 0, we have d(z,9) > a or d(y,9) > a. Since d(z,y) < hy < a/4,
we get that d(z,0Q) > 3¢ and d(y,0Q) > 3¢. This implies ¥(z) = 1 and ¢(y) = 1. Therefore

¥(z) —(y) = 0.
We then get from (37), for all z € V and y € V,,

(V(y) = ¥(2)(W(y) —v(2)) = (V(y) — P(2))(0(Y) — (y) —v(2) + ¢(2))

and

3(2) AT = 5(2) Y Tay (bly) — 0(2)) = (5(2) — 0(2)) I Ty (b(y) — $(2)) = w(z)ATrv.

YEV, YyEV,

Using (35) and the two preceding relations in (36), we obtain

1| (8:Tre — Bap)
= w(@)| K2 ATrv + 3 Toy(ly) — (=) (w(y) — w(z).

yeV,

Taking the square of the previous relation and applying the inequality (a + b)? < 2(a? + b?) we get,

~ _ 2
KL (AsTre — Bap) < 2(w(2)| KA Trv)”

+2 (Z Toy(¥(y) — ¥(2))(w(y) — U)(Z))) :

IS 2%



Using the Cauchy-Schwarz inequality and dividing by |K |, we obtain
~ . \2
K| (AZIT@—Azw) <2 w1 ITW

& D 1 Tel® )Y [ Tayl(w w(z))?.
YyeV: yeV,

We now use (22), which implies that

2
 Isic
hs
Thanks to the definition (29) of ¢, we have the existence of a constant C3 such that
03

, Vy,z€ Vg, VS €T.

V(@) - VEy(z)de
S

Vel < —

This leads, using |(y) — ¥(z)] < %hs, to the existence of Cy, only depending on 6, such that
Cy
Z |sz|(¢(y) - "/](z))z < §|Kz|
yeV,

Applying (23) proved in Lemma 3.5, since ||z < C5/a?,

NI
a

where Cg only depends on # (this inequality also holds for z € Ve since in this case A,Z71 = 0). Hence
we get

. . 2
Z |K.| (AZZT‘P - Azﬁp>2 < 2072 Z ‘Kz|w(z)2

zeVy zEV
+2—Z > [ Tayl(w(y) —w(z))”.
zeVyeV,
We now remark that, for S € 7 such that y, z € Vg, we have
5]
Tolw@ -w@)P< > IT5IVsu- (-2 <t > SVsul?hd,
SET y,2€Vs SET y,zeVs 5
where we denote by TzSy = —|S|Vs&, - Vs&y. Hence, we may write
d(d+1)C?
Do ITayl(w(y) —w(z)® < 22—+ TR > ISVswl
2EV yeV, SeT
remarking that each edge of a simplex occurs two times in the above summation, and that any simplex
has @ edges. Gathering the above results, we thus obtain

04 Cl

~ _ 2
Sl (Ao~ Bap) € 2% g + 240+ 1)
zeV

Using (33) and (32) provides (26). We then remark that, for all v € V7 o, we have

va||L2(Q)d

/Q(Azfﬂp(w) — ALo(x))Prv(x)de = — /Q VZIre(x)- Vo(z)de + /Q Vo(x) - Vu(z)de

thanks to both (11) and (30). Hence taking v = Z7¢ — 0 provides (25), as well as (24) using the Poincaré
inequality.

The proof of (26) in the case hz > ¢ is obtained by defining Zr¢ = 0, and using [ATollr2) < |ol2QY2,
hr/a>1/4 and 1/a > 1/diam(Q ) Then (25) and (24) follow in that case. O
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Theorem 3.7 (Convergence of the scheme) Let us assume Hypotheses (3) and (4). Letu € HZ(Q)
be the solution of Problem (2); let T be a conforming simplicial mesh of Q@ and ur € Vr o be the solution
of (10). Then, as ht tends to 0 with 0 < O, for a fixved value of 0 > 0:

1. ug converges in L?(Q) to u,
2. Vur converges in L*(Q)? to Vu,

3. Azur converges in L*(2) to Au.

PROOF. Let (7;,)men be a sequence of conforming simplicial meshes of 2 such that hz, tends to 0 as

m

m — oo and 0 < 07, for all m € N. Let u,, € V2, for all m € N, be the solution of (10). Thanks
to Lemmas 3.3 and 3.4, we get the existence of a subsequence of (7, )men, again denoted (7, )men, and
of u € HZ(Q) such that the conclusion of Lemma 3.4 holds. Let ¢ € C°(£) be given. We take, in
(10) with 7 = 7,,, v = Zz, ¢ defined by Lemma 3.6. Passing to the limit as m — oo in the resulting
equation (thanks to the weak/strong convergence properties provided by Lemmas 3.4 and 3.6) and using
the density of C2°() in HZ(S2), we get that u is the solution of Problem (2). By a classical uniqueness
argument, we get that the whole sequence converges. Setting v = u,, in (10), we get that HAT,,LU/m”%2(Q)

converges to [, (f(z)u(x) + g(x) - Vu(z) + (z)Au(z)) dx = [,(Au(x))? de as m — oco. Together with
the weak convergence of Ax_u,, to Au as m — oo, this provides the convergence in L?(Q) of Az, u, to
Au. O

4 Error estimates

Let us first prove a technical lemma used in the following error estimate results.

Lemma 4.1 (An inequality for regular continuous solutions.)

Under Hypotheses (3), let u € C*(Q) be given and let f = A(Au). Let T be a conforming simplicial
mesh of Q and let @ > 0 be such that 0 < 0. Let ur € Vr o be the solution of (10) in the case where
f=A(Au), g = 0 and £ = 0. Then there exists C > 0, only depending on Q and 0, such that the
following inequality holds:

||Au — ATUT||L2(Q) < ChT”U”ooA +2 HZTU — ATUHLQ(Q), Yv € Vf]:o, (38)

where, for all k € N, ||lulw & denotes the mazimum value of the absolute value of u and of its derivatives
until order k and A1 is defined by (28).

Proor. Let v,w € V7 be given. We have
/Q(ATv(m) — Arur(x)Arw(x)de = /Q(ATv(ac) — Aru(z))Arw(x) dz
+ /Q(Zf[u(m) — PT(ITAU) (:B))AT’U)(.’E) dx
+ / (PT(ITAU)(w) — ATUT(:B))ATw(:B) dx.
Q
Using (10), f = A(Au) and w € H}(2), we may write
/QATUT(:B)AT’M)(:I:) dx = /QA(AU)(:B) w(z)de = — /Q V(Au)(x) - Vw(x) dz.
We have, from (11),

/QPT(ITAu)(:B)ATw(:B) de = — /Q V(Z7Au)(z) - Vw(z) de.

11



Hence we get
/Q (Arv(@) — Aur (@) Arw(z) de = /Q (Arv(@) — Bru(@)Arw(z) do
; / (Bru(x) — Pr(TrAu)(@)Arw(z) de
+ /Q V(Au — IrAu)(z) - Vw(z) dz.
Using (14) and the Cauchy-Schwarz inequality, we obtain
[ (arui@) - Srur@)arute) ae
< (||ATU — Azull2(0) + |A7u — Pr(ZrAu)|| 2 (o) + 2diam(Q)[|V(Au — ITAU)||L2(Q)d) AT w]|L2(0).-

Taking w = v — uz in the above inequality, we get

||AT’U — ATUTHLQ(Q) S HAT’U — ZTUHLZ(Q) + ||Z7—u - PT(ITAU)”L'z(Q)
+2 diam(Q)[|V(Au — Zr Au) || L2 (q)e-

We now write
[Au = Arurlr20) < |Au— Agullp20) + [[A7u — A7v|[L2(0) + [|[A70 — ATur||L2(0)-
Thanks to the two above inequalities, we get

||Au - ATUTHLQ(Q) < 2||ZTU — ATU||L2(Q) + HAU - ZT’UJH[;(Q) + HZTU — PT(ITAU)”LQ(Q)
+2 diam(Q) ||V (Au — Zr Au) || L2 (q)e-

Thanks to the regularity of Au, we have

— 1 2
1A = BrulZary = / (/ (Au(y)—Au(w))dm) dy
e ; i \IK] U, (39)
1 4 h34|ullZ, 5-

IN

We may also write

J— 1 2

Sru- Prizrdulig = LI (g [ (Bute) - Auzae)
zcV # =

< 2 R34l

Applying standard results on the interpolation error of the regular function Au in V7, we have the
existence of Cpy, only depending on 6 and €2, such that

IV(Au — I7Au)][12(0)e < Crihr||ul|oo,4-

Therefore the proof of (38) follows. O
We can then state the following result.

Theorem 4.2 (Error estimate in the case where u € C#(Q))

Let us assume Hypotheses (3) and (4), let u € C2(Q) be given and let f = A(Au). Let T be a conforming
simplicial mesh of Q and let 0 > 0 be such that 0 < 0r. Let ur € Vo be the solution of (10) in the case
where f = A(Au), g =0 and £ = 0. Then there exists C > 0, only depending on Q0,0 and u such that

|ur —ullz2() < Chr, (40)
Vur — Vul| 2y < Chr, (41)

and
IArur — Au||L2(Q) < Chrt. (42)

12



Proor. We apply Lemma 4.1 with v = fTu. Thanks to Lemma 3.6, we get the existence of C' > 0, only
depending on 2,0 and u (by its derivatives, and the distance of the support of u to the boundary of the
domain) such that (42) holds. Then, writing

||V’LLT - VU”Lz(Q)d < ||V’LLT - VfTuHLz(Q)d + Hij‘u - VuHLz(Q)d,
we can apply Lemma 3.2. We get

< 2 diam(Q)HATuT — ATfTU||L2(Q)d + ||Vf7u~— VUHL2(Q)d
< 2 diagl(Q)(HATuT — AU||L2(Q)d + ||Au — ATITUHLQ(Q)d)
+||VIT'LL — VUHL2(Q)d.

||VUT - Vu||L2(Q)d

Using (42) and Lemma 3.6 provide (41). Then (40) results from the Poincaré inequality. O
Let us now state the result, without assuming that the solution has a compact support.

Theorem 4.3 (Error estimate in the case where u € C*(Q) N HZ())

Let us assume Hypotheses (3) and (4), let u € C*(Q) N HZ(Q) be given and let f = A(Au). Let T be
a conforming simplicial mesh of €0 and let 0 > 0 be such that 0 < 07. Let ur € Vo be the solution of
(10) in the case where f = A(Au), g =0 and £ = 0. Then there exists C > 0, only depending on Q0,0
and u such that

lur —ullp2@0) < Chr, (43)
IVur — Vaul gy < Chr?, (44)
and .
IArur — AUHLQ(Q) < Chys. (45)
PROOF.

For a given a > 0, we define the function %, by (29), and the function u, by
uq(x) = u(x)Ya(x) Y € .
We remark that, for any 4,5 =1,...,d,
07 jua(®) = Yo ()0 u(@) + 0pa(@)du(®) + 9jva(®)diu(@) + u(@)0}a (). (46)
Thanks to a Taylor expansion of u and Vu from any point y € 9Q such that |z — y| = d(=z, 9Q), we
get the existence of C,, > 0, only depending on w such that, for all x € Q, |[Vu(zx)| < C,d(x,9Q) and
lu(z)| < C,d(z,0Q)2. Thanks to |9;9.(x)| < C/a and |8i2j1/)a(a:)| < C/a?, we get from (46) the existence
of C!,, only depending on u, such that
lugl2 < C;,, VYa € [0,diam(2)]. (47)
Hence we have the existence of C!/, only depending on wu,
|Aug () — Au(z)| < Cl, Vo € Q such that d(z,0Q) < a.
Since Aug(x) = Au(z) for all & € 2 such that d(x, IN) > a, we get
1A () — Au()|[72(q) < {z € Q,d(2,09) < a}| (C)).
Thanks to Hypotheses (3), there exists some Cq > 0 such that

{z € Q,d(x,00) < a}| < Cqa, Ya € [0,diam(Q2)].

13



On the other hand, since the distance between the support of u, € C°(Q2) and 0N is greater than a/4,
Lemma 3.6 gives the existence of C7 > 0, only depending on 2 and 6, such that

hT‘ua|2
7

heC,
2 (12 :

|ATZ7uq — Brug| r2i0) < C < C

a

We have
|ATZ7uq — Aul| 20y < |ATZ7U — Azua||r2) + |B7Ua — Arulr2) + [Aru — Aul|12(q)-

Thanks to the Cauchy-Schwarz inequality, we derive

J— _ 1 2
| A7u, — ATU||2L2(Q) = Z | K| (|K /K (Aug(x) — Au(az))dm)

zeV
<> (Aua(e) — Au(w))’de = | Aug — AulFsq)-
zeV K=
Since (39) provides -
[Azu — Aul|2i) < 4 |22 |[u]loo 3,
we then get the existence of Cg > 0 independent on the mesh, such that
hrC!,

a2 + (CQa)1/2 (Cg) + CghT.

||A7—f7—ua - Au||L2(Q) S 07

Choosing ag = hQT/5 leads to the existence of Cy > 0, only depending on u, 2 and @, such that
|ATZ 70, — At 20y < Cohll”.
Applying Lemma 4.1 with v = i’Tuao, we conclude the proof of the theorem, following the proof of
Theorem 4.2 for the derivation of (44) and (43). O
5 Numerical results
Let us introduce the following error norms for the solution, its gradient and its Laplacian:

1/2
By = (Z K. (u(z) - U:r(z))2> /Nl (e,

zey

1/2
E, = <Z IS| |Vsur — VU(fBS)|2> /IVullz2 (),

SeT

denoting by xs the center of gravity of S, and

1/2
B = (Z Ko |(Daur — Au<z>>2> /118l 220y,

zeV

We are going to study these error norms for a one-dimensional and a two-dimensional examples.
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5.1 One-dimensional case

We approximate the solution

(z(1 —2))?
=2 1
u(x) 5 , Yz € [0,1],
of the problem
uP(z) =1, z €[0,1],
w(0) = u(1) =4/ (0) = /(1) = 0,
using Scheme (10), with different 1D meshes with N interior points. In the following figure and table,

we show the numerical results obtained in the case where the mesh is uniform, i.e. the points z € V are
located at the abscissae i/N, for i =0,..., N.

0.0035

5 0.366 - 0.246 - 8.94E-2 -

10 | 9.16E-2 | ~2 | 6.24E-2 | ~2 | 2.24E-2 | 2
20 | 229E-2 | ~2 | 1.5TE-2 | ~2 | 5.59E-3 | ~2
40 | 5.73E-3 | ~2 | 3.92E-3 | ~2 | 140E-3 | ~2
80 | 1.43E-3 | ~2 | 9.80E-4 | ~2 | 3.49E-4 | ~2
160 | 3.58E-4 | ~2 | 245E-4 | ~2 | 873E-5 | ~2
320 | 8.95E-5 | ~2 | 6.13E-5 | ~2 | 218E-5| 2
640 | 2.25E-5 | ~2 | 1.54E-5 | ~2 | 5.50E-6 | ~2

0.0020 o

0.0005

An order 2 is numerically obtained for the solution, its gradient and its discrete Laplacian, which is much
more than the theoretical order proved in this case (1/5). In the following figure and table, we show the
numerical results obtained when the interior points z € V are located at the abscissae (i + «;)/N, for
i=1,...,N — 1, where «; is a random value between —0.3 and 0.3.

0.0010

N Ey order F1 order FEs order
5 0.416 - 0.283 - 0.111 -
10 | 9.66E-2 ~2 | 6.64E-2 ~2 2.49E-2 ~2
20 | 2.40E-2 ~2 1.70E-2 ~2 | 6.24E-3 ~2
40 | 6.45E-3 ~2 | 4.67E-3 ~2 1.62E-3 ~2
80 | 1.64E-3 ~2 1.19E-3 ~2 | 4.15E-4 | ~2
160 | 4.42E-4 | ~2 | 3.31E4 | ~2 1.05E-5 ~2
320 | 1.03E-5 ~2 7.56E-5 ~2 2.53E-5 ~2
640 | 2.70E-6 ~2 2.02E-5 ~2 | 6.50E-6 ~2

0.0035

0.0010 o

0.0005

Again, an order 2 is numerically obtained for the solution, its gradient and its discrete Laplacian, which
shows the robustness of the scheme in this less regular case.

5.2 Two-dimensional cases

We consider Scheme (10) for the approximation of the 2D problem, where Q = (0,1)? and where the
continuous solution is given by:

u(z1,22) = (1 — cos(2mx1))(1 — cos(2mxs)), Y(z1,22) € [0,1]?,

which satisfies (2) for the ad hoc data f = A(Au), g = 0, £ = 0, Q =]0, 1[%; hence we choose f as the
function defined by:

f(z1,22) = A(Au)(21,22) = (27)* (4 cos(2mzy) cos(2mz2) — (cos(2ma1) + cos(2mz2)))
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We first consider the case where the mesh is obtained by splitting Nyas X Nyar squares in 2 triangles. The
total number of triangles is then 2 Nfaf, and the size of the mesh is of order 1/N,,¢. In the figure below,

we show one of the meshes used, and in the table below, we present the results obtained using the scheme
(10).

Nyat Ey order Ey order FEy order | Umin | Umax
10 | 6.82E-2 - 0.171 - 3.36E-2 - 0.000 | 4.273
20 | 1.66E-2 ~2 8.14E-2 ~1 8.27E-3 ~2 0.000 | 4.066
40 | 4.12E-3 ~2 4.02E-2 ~1 2.06E-3 ~2 0.000 | 4.016
80 | 1.03E-3 ~2 2.00E-2 ~] 5.14E-4 ~2 0.000 | 4.004
160 | 2.57E-4 ~2 1.00E-2 ~] 1.29E-4 ~2 0.000 | 4.001

In this 2D case, we again observe that the order of convergence is much better than 1/5. Turning to
less regular meshes, we consider the case where the simplicial meshes are generated by the repetition of
the same square pattern. In the figure below, one can see the repetition of Nyar X Nya¢ times the initial
pattern, with Nyar = 5. The total number of triangles is then 14 N2, and the size of the mesh is of order
1/Nyas. The interest of such meshes is that no symmetry can increase the numerical order of convergence,
whereas the regularity factor of the mesh remains constant. We then observe the results provided in the

table below.

Nyat Ey order E; order Es order | Umin | Umax
5 5.06E-2 - 0.101 - 5.50E-2 - 0.000 | 4.125
10 | 1.L16E-2 | >2 | 460E-2 | ~1 | 3.29E-2 | <1 | 0.000 | 4.059
20 | 249E-3 | >2 | 225E-2 | ~1 | 227E-2| <1 | 0.000 | 4.013
40 | 441E-4 | >2 | 1.12E-2 | ~1 | 1.60E-2 | <1 | 0.000 | 4.003
80 | 827E-5 | >2 | 557E-3 | ~1 | 1.13E-2 | <1 | 0.000 | 4.000

We again observe that the numerical orders of convergence are much better than the theoretical ones for
Ey and Eq, but only slightly better for FEs.

6 Conclusion

We show in this paper that it is possible to approximate the solution in H2(€2) of the biharmonic problem
using a P1 finite element approximation, which results in a robust and cheap scheme. Since the approx-
imate solution only belongs to H}(Q), a discrete Laplace operator is used in the discrete variational
formulation. This operator, applied to the natural interpolation of a regular function, is not consistent
with the continuous Laplace operator, and an adapted interpolation is provided. This allows to prove
the convergence of the scheme in the general case, and to derive error estimates. Numerical observations
show that these error estimates are not sharp.

Hence some further work should explore possible improvements of these error estimates. The problem
of the approximation of more general fourth-order elliptic operators by P1 finite elements should also be
examined.
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