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Comment on the higher derivative Lagrangians in relativistic theory

Mathieu Beau
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4∗

(Dated: May 24, 2013)

We discuss the consequences of higher derivative Lagrangians of the form λ2Gµẍ
µ, λ3Bµ

...
x

µ,
λ4Gµ

....
x

µ in relativistic theory.

I. HIGHER DERIVATIVE LAGRANGIANS AND

DYNAMIC EQUATIONS

Ostrogradsky was the first who initiated the idea of
higher derivative Lagrangians in classical mechanics [1],
and more recently were published some articles about this
topic[2],[3],[4]. But in my knowledge, there is no article
dealing with the relativistic consequences if we consider
higher derivative Lagrangians of this type:

L̃(ẋ, ẍ, · · · , x(n)) = λ1Aµ(x)ẋ
µ+λ2Gµẍ

µ+· · ·+λnU(n)µx
(n)µ

(1)
where x(n)(s) ≡ dnx(s)/dsn is the n-derivative of the
position (ds = cdτ , where τ is the proper time), and
U(n)µ(x), n = 1, 2, 3, .. are the generalised field coupling
linearily with the derivatives. One can see that we denote
the field G(1)µ(x) = Aµ(x) to refer to be the electromag-
netic potential. For n ≥ 2, we will see their meaning in
the sequel. Now, we set the action:

S =

∫
dsL0(ẋ) +

∫
dsL(ẋ, ẍ, · · · , x(n)) .

where L0(ẋ) ≡ mc2

2 ẋµẋ
µ We would not give an explicit

general dynamic theory for a given n, we consider only
n = 2 for the moment and we will discuss the general
case later. By some obvious integral by part for n = 2
we get the equivalent action:

S = λ1

∫
dsAµ(x)ẋ

µ + λ2

∫
ds∂νGµẋ

µẋν ,

and one can see that the first part of the action is similar
to the electromagnetic whereas the second part is similar
to the gravitational action. Indeed,the generalised Euler-
Lagrange equation is given by (we give the relativistic
form of the equations in [1],[2][3][4]):

d2

ds2
(
∂L

∂ẍµ
)−

d

ds
(
∂L

∂ẋµ
) +

∂L

∂xµ
= 0 , (2)

for L = L0 + L̃, and so we get:

mc2ηµν ẍ
ν − λ2εµν ẍ

ν − λ2∆µνσ ẋ
ν ẋσ = −λ1Fµν ẋ

ν (3)

where εµν and ∆µνσ are defined as:

εµν ≡ ∂µGν + ∂νGµ

∆µνσ ≡ ∂ν∂σGµ = 1
2 (∂νεµσ + ∂σεµν − ∂µενσ)

(4)
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and where Fµν = ∂µAν − ∂νAµ. Of course one see the
analogy with the geodesic equations for a charged particle
in gravity field and in an electromagnetic field, but we can
see also that the Minkowski metric is such a background
and so thatGµ(x) is nothing but an additional field which
can be seen as a deformation field and that ǫµν can ve
viewed as an infinitesimal strain field by analogy with the
deformation theory of a continuous medium [5].
We would like to go further than the rank 2. Let’s take

n = 3, we denote G(3)µ = Bµ. Then one has

−
d3

ds3
(
∂L

∂
...
xµ ) +

d2

ds2
(
∂L

∂ẍµ
)−

d

ds
(
∂L

∂ẋµ
) +

∂L

∂xµ
= 0 (5)

and so one can easily get:

mc2ηµν ẍ
ν + λ3Hµν

...
x ν − λ3Υµνσρẋ

ν ẋσ ẋρ − 3Σµνσẍ
ν ẋσ

− λ2εµν ẍ
ν − λ2∆µνσ ẋ

ν ẋσ = −λ1Fµν ẋ
ν (6)

where

Hµν ≡ ∂µBν − ∂νBµ

Σµνσ ≡ ∂ν∂σBµ

Υµνσρ ≡ ∂ν∂σ∂ρBµ (7)

We can see that this field generalise the idea of electro-
magnetic field because of the asymmetry of Hµν . But
there is some other gradient fields similar to the field
∆µνσ coupling to the combination of the odd derivatives
of xmu, i.e. ẍν ẋσ and ẋν ẋσẋρ. On can easily consider
that for n = 4 and even more. We denote the field
Kµ(x) ≡ G(4)µ(x). It would give a similar structure
in the dynamic equation than Gµ(x), Is is known in-
deed that in the non-relativistic theory, the Lagrangian
mc2

2 x
....
x is equivalent to this Lagrangian mc2

2 ẍ2 which
could be intepreted as a dynamic energy.[2][3][4] Here the
problem is similar: the Lagrangian λ4Kµ

....
x µ is equiva-

lent to λ4∂µKνẍ
µẍν + λ4∂σ∂µKν ẍ

µẋν ẋσ and hence for
a more general field than the trivial one Kµ = xµ, the
equivalent Lagrangian seems to be more complicated and
the dynamic equations have some similar structure that
for n = 2.
More generally, for G(n)µ(x), n ≥ 1 we will get

some term ∂1 · · ·∂pG(n), p = 1, · · · , n multiplied by the

combination of the derivatives x(l1)x(l2) · · ·x(lr), where∑r

j=1 lj = n. One can see that “even” n-field (for n

even) could be associated with the ”gravitational fields”
and the “odd” n-field with the ”electromagnetic field”
since in the dynamic equations the n-derivative term of
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xµ is multiplied symmetric (if n is even) / antisymmetric
(if n is odd) first derivative of the field

(∂µUν + (−1)n∂νUµ)x
(n)ν

where we denoted Uµ the n-field to remove the index n.

II. GENERAL FIELDS HYPOTHESIS

The point is to relate the possible existence of these
field with some induction phenomena. Or in an other
word, we will suppose some physical coupling, unkown
yet but still relevant at least for future research.
As we noticed just above, the analogies with the elec-

tromagnetic field and gravity field are crucial to uner-
stand what is the physical meaning of these field. We
give some example. Imagine an electrokinetic experiment
where one set a constant intensity of electron current on
a circuit (one can imagine a particle accelerator for a
more modern discussion), whatever the shape of the cir-
cuit. Then one can expect that a serious student at the
University could measure a magnetic field and check the
well known Biot and Savart law. Now, imagine that we
increase constantly the intensity such that I = I0t. This
meansthat the electron on the circuit are uniformly ac-
celerated. By analogy with the gravity field, we assume
that the constant λ2 in (1) is proportional to the energy
mass of the electon, we set λ2 = αmc2, where α is a
universal constant. Then here is the fundamental ques-
tion: what is the effect of the uniform acceleration of
the current on the measurement of the electromagnetic
field? Well, one can say that the student have to open
a book [6] and he will see that following the usual law
of Newton and Maxwell, the effect of the acceleration of
an electric charge can be computed even of it could be
laborious. Nevertheless, the imagination of the student
can go further the academic answer and think about the
consequences of a more general notion of stationary in-
duction such that the one we gave. Indeed, Physics is
always understood by the symmetry of phenomenon and
so why a uniform accelerating current could not be seen
as a symmetric transformation of a more general space-
time structure ? For example considering the existence
of the coupling λ4 in (1), the acceleration plays the rule
of an energy, as we discussed above. Even for n = 2, one
can see that the acceleration can play a rule in the mo-
tion of the bodies but of course all depend of the value
of α. The question of the nature and of the reality of the
acceleration in Physics was already discussed by famous
Physicists and Philosopher like Mach and Einstein, see
for example the reference [7].

A. Construction of the n = 2-field equations by

analogy with the vectorial electromagnetic field

In the Lagrangian (1) for n = 2 we notice that the
field Gµ is coupled with the acceleration of the particles

similary than the field Aµ is coupled with the velocity.
Following the discussion we had above, by a analogous
construction of the electromagnetic field theory, we can
suggest those field equations:

∂µε
µν(x) = −κj(2)ν(x) , (8)

where the 4-acceleration density current j(2)ν (generally
non-conserved) is:

j(2)ν ≡ ρ(x)c2
duν

ds
, (9)

where ρ(x) is the density of particles and duν

ds
is the 4-

acceleration. The constant κ is related to a coupling
constant between the field Gµ and the current j(2)ν and

by dimensional analysis we can set that κ = 8πGλ2

c2
where

λ has the physical unit of a length.
To complete the system of field equations, we need 10

equations obvisously given by

∂σ∂
σεµν + ∂µ∂νε

σ
σ = ∂µ∂

σεσν + ∂ν∂
σεσν , (10)

The equations (10) are analogous to the compatibility
equations for the strain tensor in the three-dimensional
non-relativistic theory of deformation of continuous
media.[5]
Hence we get the following wave equations:

�ενσ(x) + ∂ν∂σε
µ
µ(x) = −κξ(2)νσ (x) (11)

where we get a stress tensor ξ
(2)
νσ (x) ≡ ∂σj

(2)
ν (x) +

∂νj
(2)
σ (x) .

B. Generalisation to the n-field equations

It comes naturally that for the 2n-field G(2n), so-called
gravitational type field, the coupling is of the form:

8πGλ2n

c2
G(2n)µ(x)j

(2n)µ(x)

while the 2n+ 1-field G(2n+1), so-called electromagnetic
type field, the coupling is of the form:

µ0λ
2n

c2
G(2n+1)µ(x)j

(2n+1)µ(x)

where µ0 is the vacuum permeability since we genereral-
ized for the 2n+ 1-field the electromagnetic field theory
(the λ2n come from a dimensional analysis) as well as
we did for the 2n-gravitational fields. The generalized
currents are defined for n = 1, 2, 3, .. by:

j(n)ν ≡ ρ(n)(x)c2
dnxν

dsn

where ρ(n)(x) give the density of mass for n even and the
density of charge for n odd. From those rule we could
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obtain similar wave equation than (11) but with higher
order differential operator �� · · ·�. For example, for
the 4-field we give the wave equation for the trace of the
tensor ηµν ≡ ∂µKν + ∂νHµ:

(�+ 1)�ηµµ(x) = −κλ2∂µj
(4)µ(x) (12)

and this means that the scalar field ηµµ is a massive field.

III. COMMENTS

The effect of the gravitation at the microscopic scale
is not well known yet. We can expect that the current
J (2) of acceleration of mass has a contribution in parti-
cle physics as well as the energy-impulsion tensor. We
can suggest that the constant λ is constraint by the cur-
rent observations. The recent cosmological observations
show that there is a lack of energy due to the cosmolog-
ical constant Λ that might be related to our constant λ
(we could expect λ = 1/

√
Λ). The interpretation of this

relation is not so obvious and again speculative, but re-
member that we gave above an analogy between the field
εµν with the strain-deformation tensor of a continuous
media. This remark is not obsolet. Inded, if we consider
the covariant derivative for a Riemannian metric space
(εµν = DµGν +DνGµ), one can construct a stress field

σµν = ρGc
2εµν

where ρGc
2 = c4

8πGλ2 is the density of energy constant
analogous to the Young modulus. The stress tensor could
be adding to the Einstein field equations of gravity and
we get the relation:

Dµσ
µν +DµT

µν = 0

where Tµν is the energy-momentum tensor in the Ein-
stein field equation. This last equation means that the

total energy in the Universe is conserved but that the
“visible” energy can be accelerated and this variation of
inertie is compensate by the stress energy variation due
to the strain of the internal structure of the continuous
medium. There is no contradiction with the Einstein the-
ory of gravity field and moreover this gives an new per-
spective on the Mach principle revisiting the “absolute”
acceleration concept as a natural motion in a space-time
deformed by the matter-energy contained therein, we re-
fer the reader on the paper of Einstein on this related
topic [7]. The relativistic theory of an Aether was dis-
cussed several time, see for e.g. [8], [9]. In this paper,
our hypothesis is different and gives a relativistic theory
of the deformation of continuous media (for which the
geometry is described by the metric field).
Now we come back to the microscopic scales. Nothing

prove today that at those scales the gravitation can be
viewed as a metric field. It might be challenge to see if
the higher derivative fields play a rule for particle physics
in the domain of astroparticle or for the futur linear ac-
celerator(s). The analogies between the 2n-fields (ex Gµ

and Kµ) and between the 2n+ 1-fields (ex Aµ and Bµ)
can be viewed as a unity between those fields (where the
constant λ plays a rule again) and generalise the notion
of gravitational and electromagnetic field for more gen-
eral currents. Additionally, the unity between the odd
and even field is an other tempting idea, which is less ob-
vious but still interesting. Indeed, we could see the field
G(2)µ and G(1)µ as two components of the same field Gµ

coupling to both currents j(1) and j(2)µ. This is rather
speculative but also shows the wide perspective.
About the 4-field Kµ, in a more general theory of grav-

itational relativity, we can expect that his notion of ”dy-
namic energy” would have a sense in a way that we could
make an analogy between the tensor ∂µKν with a more
general tensor kµν coupling with ẍµẍν and its derivatives
with the covariant form of ẍµẋν ẋσ . This could be a way
to include the dynamic energy in general relativity the-
ory.
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