

Classical eddy current losses in Soft Magnetic Composites

Carlo Appino, Olivier de La Barrière, F . Fiorillo, Martino Lobue, Frédéric Mazaleyrat, Carlo Ragusa

► To cite this version:

Carlo Appino, Olivier de La Barrière, F . Fiorillo, Martino Lobue, Frédéric Mazaleyrat, et al.. Classical eddy current losses in Soft Magnetic Composites. Journal of Applied Physics, 2013, 113 (17), pp 17A322-1 - 17A322-3. hal-00825523

HAL Id: hal-00825523 https://hal.science/hal-00825523v1

Submitted on 23 May 2013 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Classical eddy current losses in Soft Magnetic Composites

C. Appino¹, O. de la Barrière^{2a}, F. Fiorillo¹, M.LoBue², F. Mazaleyrat², C. Ragusa³

¹Instituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy ²SATIE, ENS Cachan, CNRS, UniverSud, 61 av du President Wilson, F-94230 Cachan, France ³Dipartimento Energia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

^a Corresponding author: barriere@satie.ens-cachan.fr

2 This paper deals with the problem of loss evaluation in Soft Magnetic Composites (SMC), focusing on the classical loss component. It is known that eddy currents can flow in these granular materials at 3 4 two different scales, that of the single particle (microscopic eddy currents) and that of the specimen 5 cross-section (macroscopic eddy currents), the latter ensuing from imperfect insulation between particles. It is often argued that this macroscopic loss component can be calculated considering an 6 7 equivalent homogeneous material of same bulk resistivity. This assumption has not found so far clear and general experimental validation. In this paper, we discuss energy loss experiments in two different 8 9 SMC materials, obtained using different binder types, and we verify that a classical macroscopic loss 10 component, the sole size-dependent term, can be separately identified. It is also put in evidence that, 11 depending on the material, the measured sample resistivity and the equivalent resistivity entering the 12 calculation of the macroscopic eddy currents may not be the same. A corrective coefficient is therefore 13 introduced and experimentally identified. This coefficient appears to depend on the material type only, 14 the role of sample shape and/or cross-sectional area being irrelevant. An efficient way to calculate the 15 macroscopic classical loss in these materials, based on a minimum set of preliminary experimental 16 results, is thus provided. In this way, a reliable procedure for loss separation, whatever the sample size, 17 can be implemented.

19 Introduction

20 Soft Magnetic Composites (SMC) are of interest in modern electrical engineering applications. 21 Their isotropic magnetic and thermal behavior provides a clear advantage for machines with 3D flux 22 paths, like axial flux machines [1][2], or claw pole generators [3].

The loss separation concept, associated with the Statistical Theory of Losses (STL) [4], is known to 23 24 efficiently assess the loss phenomenology in soft magnetic laminations. Its extension to SMC is, 25 however, far from simple, because one has to deal with an inhomogeneous granular structure, where 26 eddy currents (e.c.) flow at two different scales: the scale of the single particle (microscopic e.c.), and 27 the scale of the whole sample (macroscopic e.c., due to intergrain conductivity) [6][7][8]. The correspondingly measured bulk resistivity is often considered in the macroscopic eddy current 28 29 calculations, assuming an equivalent homogeneous material. It has been suggested that microscopic 30 and macroscopic e.c. can be associated with microscopic and macroscopic classical loss components, 31 respectively [6]. Although a certain dependence of the total dynamic loss on the bulk resistivity has 32 been shown [9], no clear experimental evidence of the separation between macroscopic and microscopic classical losses has been provided so far. At the same time, the assumed link between the 33 34 measured material resistivity and the macroscopic e.c. has not been supported by experimental 35 observations.

36 It was previously shown [10] that loss separation according to STL could be carried out in small and 37 highly resistive SMC samples, where the macroscopic eddy currents are negligible. This appears, 38 however, a substantial restriction when looking at a reliable loss prediction in electrical equipments 39 using SMC [11]. In this paper, this limitation is overcome, by considering different SMC samples of 40 various sizes using either organic or inorganic binders, with resistivity values spanning several orders 41 of magnitude. We start by putting in evidence the dependence of the specific dynamic loss on the sample cross-sectional area. The loss component dependent on the sample size is singled out and found 42 43 to linearly depend on frequency, thereby justifying its assimilation to a classical loss. The problem of the relation between this macroscopic classical loss and the measured sample resistivity is discussed, introducing a coefficient in the loss formulae that takes into account the grain-to-grain eddy current percolation across random contacts. This theoretical framework is validated showing that the corrective coefficient exclusively depends on the material type, regardless of the sample size. This provides an efficient tool to make full loss decomposition in SMC, as discussed in the last part of the paper.

49 I. EXPERIMENTAL

50 A. Samples

51 The experiments presented in this paper have been carried out on several samples of two SMC 52 materials, herein called SMC1 and SMC2, produced from a high purity iron powder ATOMET 1001HP 53 [12] provided by Quebec Metal Powders (QMP). The particles in the SMC_1 and SMC_2 materials are insulated by means of organic and inorganic binder, respectively. The SMC_1 material is heat-treated at 54 55 low temperature (1 hour at 160°C), so as to improve the mechanical properties (e.g. fracture strength) 56 without damaging the organic insulator [13]. A higher-temperature treatment (1 hour at 425°C), as 57 permitted by the inorganic insulator, is applied to the SMC_2 material, bringing about a slight reduction 58 of the hysteresis (DC) loss contribution [13].

The samples are delivered as rings with rectangular cross-section (outside diameter 52.6 mm, inside diameter 43.8 mm). Three different ring thicknesses have been considered: $t_1 = 5$ mm, $t_2 = 9$ mm, $t_3 =$ 13 mm. Type and geometry of each sample are here identified as SMC_i - t_j (i = 1, 2, and j = 1, 2, 3). The compaction pressure was in all cases p = 600 MPa, resulting, however, in increased material density with decreasing sample thickness, as summarized in Table 1.

64 B. <u>Resistivity measurements</u>

In order to overcome the difficulties and ambiguities associated with the conventional four-point resistivity measurement [8][14], an indirect method, where the toroidal sample is used as the secondary winding of a transformer, has been adopted [15]. The results, reported in Table 1, show that the resistivity of SMC_2 (inorganic binder) is more than one order of magnitude smaller than the one of SMC₁ (organic binder). It is noted that different samples of a given material do not exactly exhibit the very same resistivity, because the manufacturing process is not perfectly reproducible.

71 II. MODELING THE MACROSCOPIC EDDY CURRENT LOSSES

72 A. <u>Macroscopic eddy current losses</u>

73 The magnetic characterization of the ring specimens is performed under controlled sinusoidal 74 polarization (peak value $J_p = 1T$) from DC to 10 kHz with a calibrated hysteresisgraph-wattmeter, as 75 described in [16]. The experiments show (see Fig. 1 for SMC_2 , a similar behavior being observed in 76 SMC_1) that the specific loss in SMC materials depends on the material cross-sectional area (i.e., ring 77 thickness). To explain this phenomenon, it is often assumed [6][7] that the observed losses in SMC 78 samples are due to physical effects occurring upon two different scales: a) the microscopic loss, due to 79 the e.c. circulating within the individual iron particles; b) the macroscopic classical loss, due to the e.c. 80 flowing from particle to particle thanks to imperfections in particle insulation and describing 81 macroscopic patterns. However, no clear experimental evidence for effective role of these eddy 82 currents has been provided so far and there is no consensus on the underlying assumptions [17][18]. In 83 the following, we will provide evidence for a loss contribution depending on the sample cross-sectional 84 area that appears to proportionally depend on frequency, as expected for a classical loss component.

In order to single out the contribution to the specific loss depending on the sample cross-section (W_{MAC}) from the one occurring upon the scale of the single particle (the microscopic loss W_{MIC}), the loss difference measured in samples differing only for their size is considered. We thus write, considering two sizes (a) and (b): $\Delta W^{(a,b)} = W^{(a)} - W^{(b)} = W_{MAC}^{(a)} - W_{MAC}^{(b)}$. Fig. 2 and Fig. 3 show the differences ΔW measured between SMC_1 - t_3 and SMC_1 - t_1 , and SMC_2 - t_3 and SMC_2 - t_1 , respectively. Similar results are obtained in other samples. ΔW linearly depends on frequency, thereby showing that the macroscopic loss contribution is classical in nature.

$$\Delta W^{(a,b)} = W^{(a)} - W^{(b)} = W_{\text{class,MAC}}^{(a)} - W_{\text{class,MAC}}^{(b)}$$
(1)

We can thus generally write for the total specific loss $W(J_p, f) = W_{class,MAC}(J_p, f) + W_{MIC}(J_p, f)$. The microscopic part W_{MIC} was previously analyzed in the framework of STL [10] and was shown to be equal to the sum of an hysteresis contribution, an excess component, and a classical loss term deriving from the eddy currents circulating within the particles. This is defined as the microscopic classical loss $W_{class,MIC}$.

97 B. Link between the macroscopic classical loss component and the sample resistivity

It is frequently assumed that the measured material resistivity can be directly used for the macroscopic 98 99 loss computation, assuming an equivalent homogeneous material [6][7]. But the link between sample 100 resistivity and macroscopic classical loss is not obvious, because, as shown in [19], percolation due to 101 random contacts between particles plays a role in highly compacted samples and interpretation of the 102 experiments calls for a specific model of conduction by random contacts [19]. But this model requires 103 considerable computational workload and a simpler approach is proposed here by introducing the notion of equivalent resistivity for the loss $\rho^{(loss)}$, i.e. the resistivity which would produce, in an 104 homogeneous sample, the same macroscopic loss observed in the SMC. Due to percolation, $\rho^{(loss)}$ is 105 106 expectedly different from the measured resistivity ρ , but we assume that proportionality exists, so that we can write $\rho^{(loss)} = Q^{(loss)} \rho$, with $Q^{(loss)}$ a phenomenological coefficient. It is verified that $Q^{(loss)}$ 107 108 depends only on the type of material and can be obtained comparing two samples with different cross-109 sectional area. Starting in fact from the calculation of eddy currents in a rectangular domain [10], we consider a ring sample with rectangular cross-section (thickness t, width ΔR , cross-sectional area $S_c =$ 110 111 $t \cdot \Delta R$) and we obtain the macroscopic classical loss as:

$$W_{\text{class,MAC}}\left(J_{\text{p}},f\right) = 2\pi^{2} \frac{1}{\delta} \frac{1}{Q^{(\text{loss})} \rho} K_{\text{shape}}\left(\frac{\Delta R}{t}\right) \cdot S_{c} \cdot J_{\text{p}}^{2} f \qquad [J/\text{kg}] \qquad (2)$$

112 where the parameter K_{shape} , which depends only on the width-to-thickness ratio $\Delta R / t$, is computed 113 using a finite element method (it can be shown that the skin effect at the scale of the single particle is 114 negligible, implying that K_{shape} is independent of frequency). Comparing two samples (a) and (b) of the 115 same material, Eq. (2) can be written as:

$$\Delta W^{(a,b)} = W^{(a)} - W^{(b)} = 2\pi^2 \frac{1}{Q^{(\text{loss})}} \left\{ \frac{K^{(a)}_{\text{shape}} S^{(a)}_c}{\delta^{(a)} \rho^{(a)}} - \frac{K^{(b)}_{\text{shape}} S^{(b)}_c}{\delta^{(b)} \rho^{(b)}} \right\} J_p^2 f \qquad [J/kg] \qquad (3)$$

116

117 C. <u>Validation of the macroscopic loss model</u>

In order to validate the macroscopic loss model, we show that the dimensionless coefficient $Q^{(loss)}$ is 118 independent of sample shape and size and is only material dependent. $Q^{(loss)}$ is identified looking at the 119 120 experimentally observed loss difference between SMC_i-t_2 (i = 1 or 2) and SMC_i-t_1 samples. In fact, since the experimental loss difference linearly depends on f, it is sufficient to adapt the coefficient 121 $Q^{(\text{loss})}$ to get the observed behavior of $\Delta W^{(a,b)}$ versus f. We find $Q^{(\text{loss})} = 1$ for the material SMC₁ and 122 $Q^{(loss)} = 1.56$ for SMC₂. Since $Q^{(loss)} = 1$, the conventional approach invoking an equivalent 123 124 homogeneous material [6][7] is acceptable in calculating $W_{class,MAC}(J_{p}f)$ in the material SMC₁. This 125 implies that in the material with organic binder heat-treated at low temperature, eddy current 126 percolation by intergrain random contacts does not play any role (the observed resistivity being that of 127 the binder). On the other hand, in the material SMC_2 , heat-treated at higher temperature, percolation takes place and it is accordingly found that $\rho^{(loss)}$ is higher than the measured resistivity [19]. This 128 129 points to percolation as a mechanism affecting to different extent the current patterns involved with the 130 conductivity measurements and the magnetic losses.

131 That the coefficient $Q^{(\text{loss})}$ is, to good approximation, material dependent only can be understood in 132 terms of local character of the random interparticle contacts, making $Q^{(\text{loss})}$ independent of the cross-133 sectional area in sufficiently big samples. This is an important point in the practical use of this model. 134 We observe in Fig. 2 and Fig. 3 the close behaviors of the experimental and the so calculated loss 135 differences ΔW versus *f* in the ring samples SMC_i - t_3 (i = 1 or 2) and SMC_i - t_1 (the experimental ΔW 136 observed at f = 0 being related to the uncertainty associated with the determination of this quantity for 137 the hysteresis loss component). The coefficient $Q^{(loss)}$ can then be simply obtained, for a given material, 138 from the loss difference measured on two differently sized samples, an important result in view of loss 139 prediction in practical cores.

140 D. Loss separation

141 Once the macroscopic classical loss is known, it is possible to perform the loss decomposition. The microscopic classical loss (i.e. the classical loss at the scale of the single particle $W_{\text{class,MIC}}$) is calculated 142 143 once the size distribution of the particles is obtained by micrographic inspection [10]. In the present 144 experiments, $W_{\text{class,MIC}}$ is the same in SMC_1 and SMC_2 (the same iron powder is employed). The excess and hysteresis loss components can then be singled out from the total experimental loss W_{tot} (see [10] 145 146 for the detailed procedure). Fig. 4 and Fig. 5 present the results for SMC_1-t_2 and SMC_2-t_2 , respectively 147 (sinusoidal polarization, $J_p = 1$ T). A striking difference in the macroscopic loss $W_{class,MAC}(J_p,f)$ between 148 the two materials is found, descending from the large difference in the measured resistivities (see Table 149 1). We note, in particular, that $W_{\text{class,MAC}}(J_p, f) \sim 15 \cdot W_{\text{class,MIC}}(J_p, f)$ in the SMC₂-t₂ sample. This would 150 restrict the use of SMC_2 to low frequencies.

151 **III.** CONCLUSION

We have put in evidence the link between sample resistivity and macroscopic classical loss in two different classes of commercial Soft Magnetic Composites. An equivalent resistivity for the magnetic losses, taking into account the effect of random interparticle contacts and percolation, has been introduced besides the measured resistivity. It is a material related quantity, independent of the sample size, which provides a simplified route to loss calculation in practical magnetic cores.

158 **References**

- [1] F. Marignetti, V.D. Colli, and S. Carbone, "Comparison of axial flux PM synchronous machines
 with different rotor back cores," *IEEE Transactions on Magnetics*, vol. 46, no. 2, pp. 598-601,
 2010.
- [2] H. Vansompel, P. Sergeant, and L. Dupré, "Optimized design considering the mass influence of an
 axial flux permanent-magnet synchronous generator with concentrated pole windings," IEEE
 Transactions on Magnetics, vol. 46, no. 12, pp. 4101-4107, 2010.
- [3] L. Li, A. Kedous-Lebouc, A. Foggia, and J.C. Mipo, "Influence of magnetic materials on claw pole
 machines behavior," *IEEE Transactions on Magnetics*, vol. 46, no. 2, pp. 574-577, 2010.
- [4] G. Bertotti, "General properties of power losses in soft ferromagnetic materials," *IEEE Transactions on Magnetics*, vol. 24, no. 1, pp. 621-630, 1988.
- [5] E. Barbisio, F. Fiorillo, and C. Ragusa, "Predicting Loss in Magnetic Steels Under Arbitrary Induction Waveform and With Minor Hysteresis Loops," *IEEE Transactions on Magnetics*, vol. 40, no. 4, pp. 1810-1819, 2004.
- [6] M. Anhalt and B Weidenfeller, "Dynamic losses in FeSi filled polymer bonded soft magnetic composites," *Journal of Magnetism and Magnetic Materials*, vol. 304, no. 2, pp. e549-e551, 2006.
- 174 [7] H. Skarrie, "Design of powder core inductors," University of Lund, Ph.D. dissertation 2001.
- [8] A.H. Taghvaei, H. Shokrollahi, K. Janghorban, and H. Abiri, "Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites," *Materials and Design*, vol. 30, no. 10, pp. 3989–3995, 2009.
- [9] L.P. Lefebvre, S. Pelletier, and C. Gélinas, "Effect of electrical resistivity on core losses in soft magnetic iron powder materials," *Journal of magnetism and magnetic materials*, vol. 176, no. 2, pp. L93-L96, 1997.
- [10] O. de la Barrière et al., "Loss separation in soft magnetic composites," *Journal of Applied Physics*, vol. 109, p. 07A317, 2011.
- [11] J. Cros, P. Viarouge, and C Gelinas, "Design of PM brushless motors using iron-resin composites
 for automotive applications," in *33th IAS Annual Meeting*, 1998, pp. 5-11.
- [12] L.P. Lefebvre, S. Pelletier, B. Champagne, and C. Gélinas, "Effect of resin content and iron
 powder particle size on properties of dielectromagnetics," *Advances in Powder Metallurgy and Particulate Materials*, vol. 6, pp. 20.47-20.61, 1996.
- [13] C. Gélinas, S. Pelletier, P. Lemieux, and L. Azzi, "Properties And Processing Of Improved SMC
 Materials," in *Proceedings of the 2005 International Conference on Powder Metallurgy and Particulate Materials*, 2005.
- [14] L.P Lefebvre and C. Gélinas, "Effect of Material Insulation and Part Geometry on AC Magnetic
 Performances of P/M Soft Magnetic Composites," *Advances in Powder Metallurgy and Particulate Materials*, vol. 7, pp. 36-50, 2001.
- [15] C. Cyr, P. Viarouge, J. Cros, and S. Clénet, "Resistivity measurement on soft magnetic composite
 materials," *Przegląd Elektrotechniczny*, vol. 83, no. 4, pp. 103-104, 2007.
- [16] E. Barbisio, F. Fiorillo, and C. Ragusa, "Accurate measurement of magnetic power losses ans
 hysteresis loops under generic induction waveforms with minor loops," in *Soft Magnetic Conference 16*, 2003.
- [17] M. De Wulf, L. Anestiev, L. Dupré, L. Froyen, and J. Melkebeek, "Magnetic properties and loss separation in iron powder soft magnetic composite materials," *Journal of applied physics*, vol. 91, pp. 7845-7847, 2002.
- [18] H. Shokrollahi and K. Janghorban, "Soft magnetic composite materials (SMCs)," *Journal of materials processing technology*, vol. 187, no. 1, pp. 1-12, 2007.
- [19] C. Appino et al., "Computation of eddy current losses in Soft Magnetic Composites," *IEEE Transactions on Magnetics*, vol. 48, no. 11, pp. 3470-3473, 2012.
- 206

207 Figure captions

- Fig. 1: Specific loss in *SMC*₂ samples (inorganic binder) as a function of frequency, for three different thickness values t_1 , t_2 , and t_3 (sinusoidal polarization, $J_p = 1T$)
- 210 Fig. 2: Measured and calculated energy loss difference ΔW (sinusoidal polarization, $J_p = 1T$)
- 211 between the SMC_1 - t_3 and SMC_1 - t_1 samples. The predicted ΔW behavior is obtained from Eq. (3)
- 212 using the loss coefficient $Q^{(loss)}=1$.
- Fig. 3: As in Fig. 2 for the samples SMC_2 - t_3 and SMC_2 - t_1 . The theoretical ΔW is obtained using $Q^{(loss)} = 1.56$ in Eq. (3).
- Fig. 4: Loss decomposition (sinusoidal polarization, $J_p = 1T$) in the SMC₁- t_2 sample
- Fig. 5: Loss decomposition (sinusoidal polarization, $J_p = 1T$) in the SMC₂- t_2 sample

218 Figures

238 Table captions

- Table 1: Obtained densities δ and resistivities ρ for all materials (*SMC*₁ and *SMC*₂) and thicknesses
- 240 $(t_1, t_2 \text{ and } t_3)$

242 Tables

Material	Axial Thickness (mm)		
	<i>t</i> ₁ =5	<i>t</i> ₂ =9	<i>t</i> ₃ =13
SMC ₁	δ =7110 kg/m ³ ρ =1590 μ Ω·m	δ =7070 ho=911	δ =7010 ho=1170
SMC ₂	δ =7130 ho=48	δ=7130 ρ=43	δ =7100 ho=45
Table 1			