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I. INTRODUCTION 19

OFT MAGNETIC COMPOSITES (SMCs) are attractive for 20 modern electrical machine applications. On the one hand, 21 they display isotropic behavior, allowing the circulation of 22 three-dimensional magnetic flux paths [START_REF] Cros | Design and Optimization 291 of Soft Magnetic Composite Machines With Finite Element Methods[END_REF]. This is a clear 23 advantage in modern electrical machine topologies, such as 24 axial flux machines [START_REF] Marignetti | Comparison of axial 294 flux PM synchronous machines with different rotor back cores[END_REF][3], or claw pole generators [START_REF] Li | Influence of 301 magnetic materials on claw pole machines behavior[END_REF]. On the 25 other hand, their granular structure tends to inhibit 26 macroscopic eddy current pattern, making them suitable for 27 high-speed machine cores [START_REF] Chebak | Analytical Computation of 304 the Full Load Magnetic Losses in the Soft Magnetic Composite Stator of 305 High-Speed Slotless Permanent Magnet Machines[END_REF]. In these high-frequency 28 applications, a correct evaluation of the eddy current classical 29 loss component is crucial. 30

It is generally assumed [START_REF] Anhalt | Dynamic losses in FeSi filled 308 polymer bonded soft magnetic composites[END_REF][7] that eddy currents in SMCs can 31 be associated with paths either confined within the grains or 32 extending, because of imperfect insulation between grains, 33 over the scale of many grains, eventually investing the whole 34 sample cross-section. As shown by the homogenization theory 35 [START_REF] Bottauscio | Electromagnetic phenomena in heterogeneous media: Effective 316 properties and local behavior[END_REF], this empirical separation of eddy currents is not 36 straightforward from a mathematical viewpoint and the degree 37 to which its application is justified must be clarified. It has 38 been suggested that the measured electrical resistivity ρ meas of 39 the material can be taken as a direct entry for the macroscopic 40 loss model [START_REF] Anhalt | Dynamic losses in FeSi filled 308 polymer bonded soft magnetic composites[END_REF]. This approach could be justified in materials 41 where, like in [START_REF] Anhalt | Dynamic losses in FeSi filled 308 polymer bonded soft magnetic composites[END_REF], the grains are well separated and the 42 material conductivity is dictated by the conductivity of the 43 insulating filler. However, in the practical high-density SMCs 44 for electrical machines, the measured resistivity is chiefly the 45 one arising from the random contacts between the grains [START_REF] Yanhong | Modeling of soft magnetic 318 composites[END_REF]. 46

Consequently, the link between the measured resistivity ρ meas 47 and the macroscopic loss is not obvious. In Ref. [START_REF] Bordianu | A Multiscale Approach to Predict Classical Losses in Soft Magnetic 321 Composites[END_REF] grains (assumed to be square) l g =114µm. See [START_REF] De La Barrière | Loss separation in soft 327 magnetic composites[END_REF] for an 67 example of micrograph in such materials. 68

The resistivities of the two toroids ρ meas (1) and ρ meas (2) have 69 been measured using an indirect method, discussed in 70 [13][12], where the ring sample is made to load the secondary 71 circuit of a transformer. The results are shown in Table I. 72 

103

The optimal statistical parameters (m, s) of the distribution 104 are identified by an optimization algorithm minimizing the 105 quadratic distance (QD) between the relative measured and 106 calculated resistivities for the two considered S values: 107
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The values m=3.07 and s=3.29 were found to minimize (1) to 108 less than 1.6%. The measured ( currents [START_REF] Cyr | Resistivity 329 measurement on soft magnetic composite materials[END_REF]. 116

III. NUMERICAL LOSS PREDICTION 117

We turn now our attention to the eddy current losses, by 118 developing a bidimensional numerical loss model upon the 119 sample cross-section (see Fig. 2). We assume square iron 120 grains of resistivity ρ i =1.04•10 -7 Ω•m and side length l g = 121 114 µm. The resistances between grains are modeled by 122 resistive layers of infinitely small thickness and their values 123 follow the previously introduced log-normal distribution of 124 parameters (m,s). The skin effect is neglected. 125

A. Problem formulation 126

The equation on the electric vector potential T to compute 127 eddy currents, written in the phasorial form, is the following 128 one: 129

( ) 2 0 on the boundary m T i fB T ρ π  ∇ ⋅ ∇ =   =   (2)
being B m the amplitude of the applied sinusoidal induction 130 with frequency f on the cross-section, and ρ the total resistivity 131 of the medium, which is not uniform due to the grain 132 boundary layer presence. 133 Equation ( 2) is discretized by using the cell method 134 [START_REF] Tonti | A direct discrete formulation of field laws: The cell 334 method[END_REF][16], where square cells are applied for meshing the toroid 135 cross-section. The one-component current potentials are 136 assigned to the nodes of this primal mesh, whereas the 137 electrical current intensities belong to the primal edges. Under 138 this assumption, the currents are expressed by the relation:

139 { j} = G ⋅{T} (3)
where G is the edge-node connection matrix. A second, dual, 140 mesh is then superposed to the former (see Fig. 2). Here, the 141 magnetic fluxes belong to the dual surfaces, whereas the 142 electrical voltages are naturally assigned to the dual edges. 143

The Faraday law can then be expressed as: 144

G T ⋅{u} = -i ⋅ 2π f ⋅ B m ⋅ h 2 ⋅{1 N } ( 4 
)
where {u} is the vector of voltages, f is the frequency, B m is 145 the average induction amplitude in the cross-section, h is the 146 mesh size, and {1 N } is the unity vector of size N. This size is 147 equal to the number of dual surfaces, i.e. the number of primal The current potential {T} is assumed zero on the boundary 157 to satisfy boundary conditions [START_REF] Marignetti | Comparison of axial 294 flux PM synchronous machines with different rotor back cores[END_REF]. An example of computation 158 of current paths is given in Fig. 3. The specific classical loss 159 per cycle is obtained by computing the following sum:

{ } { } class 1 1 T m N W i B T N π = [J/m 3 ] (7) 
The mesh resolution must satisfy a priori the condition 161 h<<l g , in order to correctly provide both the loss inside the 162 grains, and the eddy currents between the cells. This point is 163 discussed in detail in the following sections. 164

B. Numerical validation 165

The proposed model can be validated by numerical 166 experiments, using models already presented in the literature 167 [START_REF] Bottauscio | Comparison of Multiscale Methods 337 for the Analysis of Fine Periodic Electromagnetic Structures[END_REF]. µm (for the model [START_REF] Bottauscio | Comparison of Multiscale Methods 337 for the Analysis of Fine Periodic Electromagnetic Structures[END_REF], an average contact thickness, lower 181 than 1µm has been chosen, based on the density considerations 182 made in [START_REF] Bordianu | A Multiscale Approach to Predict Classical Losses in Soft Magnetic 321 Composites[END_REF]). 198 It is shown in the next section that it is possible to decompose 199 the classical loss under two components: a "microscopic" part, 200 restricted to the scale of the particles, and a "macroscopic" 201 one, associated with the long-range eddy currents. 202

C. Loss decomposition 203

Since skin effect can be disregarded, the classical loss at 204 the scale of the particle can be calculated independently of the 205 classical loss associated with the macroscopic scale. We 206 therefore write: 207

class classMIC classMAC W W W = + (8) 
To check this equality, the specific microscopic loss term 208 W classMIC is computed by a calculation over a single cell of pure 209 iron. The macroscopic classical term W classMAC is computed by 210 using only one cell per particle (i.e. h=l g ). In this way, only the 211 loss due to the current flowing from grain to grain is obtained. 212

This loss can be compared with the full classical loss W class 213 obtained by imposing an important number of cells per grain 214 (h<<l g ), as done in the previous section. The results are shown 215 in Fig. 5, for the toroid 1 and a sinusoidal applied induction 216 B m =1T. A significant macroscopic loss contribution can be 217 observed for example for m = 0.5 and s = 0.25. It is obvious 218 that the classical loss decomposition method seems to provide 219 good results, although it is not straightforward from a 220 mathematical point of view. 221 222 ( )

2 2 1 1 = cell class MIC MAC N S S W J dS J J dS f f ρ ρ = + ∑ ∫ ∫ (9)
where resistivity ρ is non uniform (i.e. it is a step function with 237 values equal to the resistivity of the iron grain ρ i or to the 238 resistivity of the boundary between each grain). 239

Being the microscopic term restricted within each grain by 240 definition, it is possible to write: 241 
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D. Experimental validation of the model 260

In absence of skin effect, the specific loss terms at the 261 scale of the particle are the same (hysteresis, excess, and 262 microscopic eddy currents) for the two samples. Thus, the loss 263 difference between the two toroids 1 and 2 for the same B m 264 and frequency f is only due to the difference of macroscopic 265 loss terms: 266

( ) ( ) ( ) ( ) 2 1 2 1 classMAC classMAC W W W W W ∆ = - = - (11) 
This loss difference is computed by the previous random 267 model and compared with experiments. The results are given 268 in Fig. 7, for a peak induction B m =1 T, with the parameters m 269 = 3.07 and s = 3.29 for the lognormal law, identified from 270 resistivity measurements, have been adopted. The results 271 obtained with the plain literature model [START_REF] Anhalt | Dynamic losses in FeSi filled 308 polymer bonded soft magnetic composites[END_REF], taking the mean 272 measured resistivity of 
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 1 Fig.1: Modeling the resistive properties of the material by a three-

  of the toroids resistivity are 110 reported in Table I. The measured and computed resistivity 111 values are in quite good agreement for the two samples. The 112 discrepancy can be explained by an uncertainty on the 113 measured resistivity values (estimated around 5%), due to the 114 indirect measurement method based on the induction of eddy 115
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 23 Fig. 2: 2D loss model with random contacts between grains modeled as resistive layers. Fig. 3: Example of current paths obtained from numerical simulation (m=3.07, s=3.29).
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 44 Fig. 4: Classical loss in function of frequency (Bm=1T) for the toroid 1, 189
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 56 Fig. 5: Classical loss versus frequency (Bm=1T) for the toroid 1, obtained

  RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 2 sample cross-sections and the equivalent resistivity offered by 90 the network is calculated. This can be done by numerically 91 inverting the system of equations obtained from the 92 application of Kirchhoff's laws to each node and branch of the 93 resistance network, in order to get the currents in each branch.
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  Table I (ρ meas ≈ 913 µΩ•m), and 273 assuming an homogeneous material of the same resistivity for 274 the computation of the macroscopic eddy currents paths are 275 also reported. It is apparent the gross disagreement of such 276 results with the experiments, being the predicted loss figure 277 ∆W about three times higher than the experimental one. 278 IV. CONCLUSION 279 A model taking into account the random contacts between 280 grains is necessary for a correct loss prediction in SMCs. The 281 validity of an approach based on the decomposition of the 282 classical loss in heterogeneous material into a macroscopic 283 and local eddy current term, has been demonstrated. This 284 correctly accounts for the experiments carried out in toroidal 285 SMC samples of different sizes. 286
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